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Motivation



Motivation

→ Portfolio Optimization: Learn a policy for wealth allocation in order to
• maximize return,
• minimize risk.

→ Stochastic Factors like economic indexes and proprietary trading
signals:

• Not controllable.
• Evolve over time stocahstically.
• Affect asset prices.
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Motivation
→ Machine Learning v.s. Continuous-Time Finance

Performance
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Calibration
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Policy

Stochastic Optimal Control tools

Data Domain Knowledge

Machine Learning Continuous-Time Finance
Machine Learning:

4 Flexible Representation
6 Poor sample complexity and

tend to overfit

Continuous-Time Finance:

4 Small sample complexity.
6 Rely on domain knowledge and

thus may end up with over-
simplified models.
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Motivation

→ Combine machine learning with continuous-time finance

FaLPO
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Methodology

Neural Stochastic Factor Model
Model-Regularized Policy Learning



Methodology
→ Problem Formulation

• Assets: St := [S1t , S2t , · · · S
dS
t ]⊤ and a risk-free money market

account with, for simplicity, zero interest rate of return;
• Features: Yt
• Factors: From Yt, we can derive dX factors denoted as Xt which

• affect the dynamics of asset prices;
• evolve over time stochastically;
• are not affected by investment decisions.

• Policy: πt as the fractions of wealth invested in the dS assets at
time point t.

• Wealth: Zπt .
• Performance Objective/Value Function:

max
π

V(π) with V(π) := E[U(ZπT )].
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Neural Stochastic FactorModels

→ Stochastic Factor Models

dSit
Sit

= fiS(Xt; θ∗S)dt+
dW∑
j=1

gij
S(Xt; θ

∗
S)dW

j
t, i ∈ {1, 2, · · · ,dS} ,

dXt = fX(Xt; θ∗S)dt+ gX(Xt; θ∗S)⊤dWt.

→ Representation Function

Xt = ϕ(Yt; θ∗ϕ)
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Model-Regularized Policy Learning
→ Policy Functional Form

• Using tools in stochastic optimal control, we can derive the
functional form of an optimal continuous-time policy:
π̃∗
t = Π(t, St, Zt, Xt; θ∗π̃).

• Use the funtional form in policy parameterization.

π(t, St, Zt, Yt; θϕ, θπ) := Π(t, St, Zt, ϕ(Yt; θϕ); θπ).

→ Model Calibration

max
(θϕ,θπ ,θS)∈A

H(θϕ, θπ, θS),

H(θϕ, θπ, θS) := (1− λ)V(θϕ, θπ) + λL(θϕ, θS).
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Model-Regularized Policy Learning

→ Algorithm

Algorithm FaLPO

1: Input: number of iterations N.
2: Initialize θϕ and θπ .
3: for n ∈ [N] do
4: Parameterize the policy function with Π.
5: Estimate the policy gradient for H.
6: Update θϕ, θπ, and θS.
7: end for
8: Return π(·;θϕ,θπ)
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Example: Kim-OmbergModel
→ Neural Stochastic Factor Model

dSit
Sit

= Xit dt+
dW∑
j=1

σij dWj
t,

dXt = µ(ω − Xt)dt+ v dWt, and Xt = ϕ(Yt; θ∗ϕ).

→ Model-Regularized Policy Learning
• Policy Functional Form: For power utility

Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = k1(t; θπ)ϕ(Yt; θϕ) + k2(t; θπ); for exponential
utility Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = k1(t; θπ)ϕ(Yt; θϕ)/Zt + k2(t; θπ)/Zt.

• Model Calibration:
L(θϕ, θS) := −E

[∑dS
i=1

[
log(Sit+∆t)− log(Sit)− ϕi(Yt; θϕ)∆t− θiS

]2]
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Theory
→ Setup

Algorithm Projected FaLPO
1: Input: Number of iterations N and a ball B.
2: Output: θϕ, θπ, and θS
3: for n ∈ [N] do
4: Parameterize the policy function by Π.
5: Estimate the gradients of H.
6: Update θS and θR with learning rate η by gradients.
7: Project the achieved update to B.
8: end for
9: Return θϕ, θπ, and θS.

→ In B, we pose assumptions.
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Theory

→ Main Results

Theorem
With the aforementioned projection-based FaLPO algorithm and
assumptions, there exist positive constants C1, C2, C3, and C4 such that

E[V∗
∆t − V(θ̄)] ≤ e∆t

1− λ
+

H(θ∗∆t)− H(θ†)
1− λ

+
C1 log(N)
N(1− λ)

+
C1 log(N)
BN(1− λ)

[
(1− λ)2C2 + λ2C3 + 2λ(1− λ)C4

]
,

(1)

where λ ∈ [0, 1]. Also, e∆t is an error term not related to N or B but
dependent on ∆t with lim∆t→0 e∆t = 0.
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Experiments

→ Synthetic:
Annual Volatility 0.1 0.2 0.3

FaLPO −0.465± 0.446 −1.35± 0.155 −2.737± 0.219

DDPG −1.650± 0.456 −3.30± 1.294 −5.495± 1.269

SLAC −0.750± 0.210 −5.50± 0.011 −6.160± 0.012

RichID −3.350± 0.111 −5.65± 0.102 −6.325± 0.048

CT-MB-RL −2.850± 0.014 −5.35± 0.020 −6.160± 0.026

MMMC −4.723± 7.619 −5.602± 4.299 −6.124± 3.217

Table: Average terminal utility after tuning with
standard deviation for synthetic data
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Experiments

→ Real-world portfolio optimization:
Methods Energy Material Industrials Mix
FaLPO −2.4± 1.9 −3.2± 1.0 −6.3± 2.3 −3.5± 1.5

DDPG −6.6± 1.2 −7.3± 1.5 −7.3± 2.1 −2.5× 104 ± 3.3× 108

SLAC −6.8± 0.2 −7.0± 1.5 −342.4± 886.8 −3.0× 108 ± 4.3× 1012

RichID −6.5± 0.1 −6.9± 1.4 −6.9± 0.4 −8.1± 3.9

CT-MB-RL −4.2± 6.2 −5.4± 4.3 −11655± 32947.5 −5.7± 3.1

MMMC −8.5± 7.6 −6.5± 1.7 −11.0± 5.4 −7.5± 4.4

Table: Average terminal utility for real-world data. Mix
denotes a mix of stocks in the previous three sectors.
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Appendix

→ Competing Methods:
Methods Explicit Factor

Representation
Continuous-Time

Model
Discrete-Time

Model
MMMC 6 4 6

DDPG 6 6 6

SLAC 4 6 4

RichID 4 6 4

CT-MB-RL 6 4 6

FaLPO 4 4 6

Table: Competing methods and
their characteristics.
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Appendix
→ More results:
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Figure: Sensitivity analysis for λ
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