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] Motivation

— Portfolio Optimization: Learn a policy for wealth allocation in order to
e maximize return,
e minimize risk.
— Stochastic Factors like economic indexes and proprietary trading
signals:
e Not controllable.
e Evolve over time stocahstically.
e Affect asset prices.



] Motivation

— Machine Learning v.s. Continuous-Time Finance
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] Motivation

— Combine machine learning with continuous-time finance
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Methodology

Neural Stochastic Factor Model
Model-Reqgularized Policy Learning



] Methodology

— Problem Formulation
e Assets: S;:=[S},S2,---S%]T and a risk-free money market
account with, for simplicity, zero interest rate of return;
o Features: Y;
Factors: From Y;, we can derive dy factors denoted as X; which
e affect the dynamics of asset prices;
e evolve over time stochastically;
e are not affected by investment decisions.
Policy: m; as the fractions of wealth invested in the ds assets at
time point t.
Wealth: Z7.
Performance Objective/Value Function:

max V(r) with V(r) = E[U(Z})].



J Neural Stochastic Factor Models

— Stochastic Factor Models

dS .
= fo(Xe; 6%) dt+Zg (Xe; 05)dW, e {1,2,---,ds},

Jj=1
dXt = fX(Xt, Hs)dt + gX(Xt, HS)Tth.

— Representation Function

Xe = 6(Yi;05)



l Model-Regularized Policy Learning

— Policy Functional Form

e Using tools in stochastic optimal control, we can derive the
functional form of an optimal continuous-time policy:
ﬁ': = H(t, St, Zt,Xt; Q;)

e Use the funtional form in policy parameterization.

7 (t, St, Zt, Ye; 0, 0r) := 1L(L, St, Zt, (Y, 0): O ).
— Model Calibration
max  H(8,,6,,0s),

(64,0m,05) €A
H(0,,0x,05) == (1 — \\V(0y,0:) + AL(6,, 05).
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l Model-Regularized Policy Learning

— Algorithm

Algorithm FaLPO

: Input: number of iterations N.
: Initialize 6, and 6. .
: forn € [N] do

Estimate the policy gradient for H.
Update 6, 6., and 6s.

end for

: Return n(-;6,,0,)

RAAPRBRS

Parameterize the policy function with II.
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] Example: Kim-Omberg Model

— Neural Stochastic Factor Model

ds; ,
5 = X dt + Zafdm,

dXt = (u) —Xt> dt"‘ Vth, and Xt = ¢(Yt, 8:;)

— Model-Regularized Policy Learning
e Policy Functional Form: For power utility
II(t, St, Zt, (Y15 65); 0x) = kl(t 0:)0(Ye; 0) + ka(t; 6,); for exponential
utility TI(t, S¢, Ze, p(Ye; 03); 0x) = ki (6;0:)9(Ye; 04) /2t + Ka(L; 01) / Zt.
e Model Calibration:

L(0s,05) := —E[Zf'il [10g(S}, ae) — 10g(S}) — /(Y 6,) At — 6]°
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] Theory

— Setup

Algorithm Projected FaLPO

: Input: Number of iterations N and a ball B.
: Output: 6,4, 0., and s

: forn e [N] do

Parameterize the policy function by II.
Estimate the gradients of H.

Project the achieved update to 5.
end for
: Return 6, 0, and 0s.

BB RN S

Xe]

Update s and 6 with learning rate n by gradients.

— In B, we pose assumptions.

15



] Theory

— Main Results

Theorem
With the aforementioned projection-based FaLPO algorithm and
assumptions, there exist positive constants C,, Cy, Cs, and C, such that

. eac  H(Bx) —H@O) Cilog(N)
EVa VO] <7— + =2 N(1 =)
G, log(N)
BN(1-1)

(1)
[(1=X)?Co 4+ XG5 + 2A(1 — \)C],

where \ € [0,1]. Also, et is an error term not related to N or B but
dependent on At with limas_oeas = 0.



J Experiments

— Synthetic:
Annual Volatility 0.1 0.2 0.3

FaLPO —0.465 £0.446 | —1.35£0.155 | —2.737 £0.219

DDPG —1.650 £0.456 | —3.30+£1.294 | —5.495+£ 1.269

SLAC —0.750 £0.210 | —5.50£0.011 | —6.160 £ 0.012

RichID —3.350£0.111 | —=5.65£0.102 | —6.325 £ 0.048

CT-MB-RL —2.850+£0.014 | —5.35£0.020 | —6.160 +0.026

MMMC —4.723 £7.619 | —5.602+4.299 | —6.124 £ 3.217

Table: Average terminal utility after tuning with
standard deviation for synthetic data



J Experiments

— Real-world portfolio optimization:

Methods Energy Material Industrials Mix
FaLPO —24+19| -3.2+£10 —6.3+23 —3.5+15
DDPG —66+12 | =73+15 —73+21 —2.5x 10* + 3.3 x 108
SLAC —6.84+0.2 | —7.0£1.5 —342.4 + 886.8 —3.0 x 10% £ 4.3 x 10'2
RichID —6.5+0.1 | —69£14 —6.9+04 —8.1+3.9
CT-MB-RL | —4.2+6.2 | —5.4+4.3 | —11655 £ 32947.5 —5.7+3.1
MMMC —85+76 | —6.5+1.7 —11.0+5.4 —7.5+44

Table: Average terminal utility for real-world data. Mix
denotes a mix of stocks in the previous three sectors.
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l Appendix

— Competing Methods:

Explicit Factor | Continuous-Time | Discrete-Time

Methods Representation Model Model
MMMC x v E 4
DDPG x x E 4
SLAC v ® v
RichID v x v
CT-MB-RL x v ®
FaLPO v v E 4

Table: Competing methods and
their characteristics.
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l Appendix

— More results:
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Figure: Sensitivity analysis for A

(d) Mix
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