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Introduction
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Content Experimentation
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Research motivations

Hence, we introduce Al-driven
insights into content
experimentation loop:

* real-time

* versatile

* Triplet insights:
* Input success rate

* Element-wise contributions
e Design recommendation
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Related work

Previous digital marketing content insight

framework: ...
* Sinha et al. leverages abstracted :
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[1] Sinha, Moumita, Jennifer Healey, and Tathagata Sengupta. "Designing with Al for digital
marketing." Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and

Personalization. 2020. D
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Our contribution

* 1. a novel image and text insight-generation framework
e 2. a novel insight evaluation framework

* 3. a demo system that generates interpretable insights in an
interactive visual format
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Methodology
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Pipeline

e 1. Train a multimodal neural network with digital marketing data

e 2. Interpret output from the multimodal neural network and provide
recommendations based on historical data

3. Evaluate the interpretations
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Marketing content modeling

* Input:
Content screenshot(lmage): I
Promotion campaign(Text): T
Content domain: D
Categorical features: F

* Neural network modeling:

It = ResNet(I), Tump, = BERT(T),
Demp = MLP1(D),  Femp = MLP2(F).

g = C(Xemb) = MLP; ( {Iemb: Tembt Dembs Pemb})*

* Target prediction:
Y = Najicks/Ntotal

e Goal:

assumeY = ) xy(x)and
C(X) = 2xexc(x),
we can get Ply(xX) # c(x)] = 0
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Pipeline

e 1. Train a multimodal neural network with digital marketing data

* 2. Interpret output from the multimodal neural network and provide
recommendations based on historical data

3. Evaluate the interpretations
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Neural insights generation

* 1. generate insights overlaid e 2. summarize historical insights and
on marketing contents provide image and text recommendations.
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Pipeline

e 1. Train a multimodal neural network with digital marketing data

e 2. Interpret output from the multimodal neural network and provide
recommendations based on historical data

3. Evaluate the interpretations
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Evaluation Metric

Existing evaluation metrics of interpretations are
heuristic, spanning faithfulness, stability and
fairness[1].

Correlation between the difference of interpretation
and the change of outcomes.

cov(Ac(x), AY)
OAc(x)OAY ,

Ac(x): difference of interpretation score for design elements
in a content and their substitutes in another content .

A Y: the actual change of outcomes.

[1] Agarwal, Chirag, et al. "Openxai: Towards a transparent
evaluation of model explanations.” Advances in Neural Information
Processing Systems 35 (2022)
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Experiment
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Experiment design

e Dataset: Amazon industry dataset

* Each marketing content is equipped with an image screenshot, text campaign,
categorical features and marketing domain.

* Target: success rate

 Evaluation:
* Success rate prediction accuracy
* Insights evaluation
* Visual examples of generated insights
* Demo experiences from users
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Success rate prediction accuracy

Table 1: Success rate prediction results for different models and modality combinations. We show the percentage decrease of
RMSE and MAE for each model compared to GLM.

In-domain test set Out-of-domain test set
Model Modality RMSE change § MAE change § | RMSE change § MAE change §
GLM Categorical Features 0% 0% 0% 0%
MLP Categorical Features -42% -31% -44% -35%
MLP Domain -54% -33% -50% -29%
XGBoost Categorical Features -38% -9% -41% -24%
ResNet-18 images -25% 19% -38% -12%
BERT Text -39% -64% -39% -66%
Multi-modal Neural Network All modalities -68% -65% -66% -75%

* Each modality is helping modeling the success rate.
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Visual examples of insight recommendation
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Demo experiences from users

 We launched a demo among Input Content

digital marketers in industry. bt B 1 e Patch Phffises
- Py Recommendations Recommendations

* Message from a marketer: » i —— - NODGPNEG: NGRSO R

* “The new demo visualization e - -
insights helped make analyzing - . -
our current templates faster - g e — I =
allowing marketers to spend % == -
more time identifying e —
opportunities, create _ _ N e e
hypotheses, and test new " oo e
experiences based on the results. TS — == =
We are looking forward to

continue working to develop this
tool and use it to help with
successful experiments!”
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Future works

1. Explore causal-aware models for modeling content
experimentation;

2. Integrate high-capacity language and vision models such as
ChatGPT and SAM into our framework;

3. Extend the application of insight evaluation metric

* For example, quantifying the estimated contributions of biological risk factors
on healthcare costs or examining the effectiveness of a predicted business
decision from an Al agent on the company’s income/loss.
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Thank you.
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