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Problem Description

Glucose is a 6-carbon sugar molecule that plays a key role in
many different biochemical pathways.

Glucose binds to protein molecules at specific binding sites.

Binding sites are specific to their respective ligands.

Identifying the ligand docking at a certain binding site
remains an open research problem.

Definition

Ligand: The specific molecule that binds to the binding site.

Goal

Identify glucose-binding sites.
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Biochemical Background

A glucose-binding site involves:

1 A glucose molecule.

2 A protein.

3 Their interaction.
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Glucose Structure
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Glucose is a 6-carbon sugar.

It contains two functional groups.

Both groups can interact together.
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Glucose Cyclization

The molecule folds on itself and forms a pyranose ring.

In two different ways. Watch the star!
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Glucose readily shifts from one conformation to another.

In physiological solutions: almost exclusively in the pyranose
ring form.

36% α-pyranose
64% β-pyranose
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Amino Acid Structure
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An amino acid consists of:

a central carbon atom C, bonded to:
an amino group NH2

a carboxyl group COOH
a hydrogen atom H
and a side chains R.

Amino acids differ by their side chain R.

The side chain confers to each amino
acid its distinctive properties.

There are 20 different amino acids.

Amino acid properties

Similar R ⇔ similar properties. Different R ⇔ different properties.
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Protein Structure

Protein: a long chain of amino acids linked together.

Amino acids in a protein are also called residues.

Residues sequence and properties determine the protein shape
and function.

CO—NHC
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C
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Figure: Linked residues

Important Fact

Similar residues can be easily interchanged in a protein.
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1 Van der Waals Forces
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Figure: Covalent
bond

Close and strong interaction.

Form a molecule.

Atoms share electrons.

Electronegativity.

Equal ⇒ nonpolar
Different ⇒ polar

Partial charges.

Definition

Electronegativity: A measure of an atom’s attraction for electrons
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The most relevant in protein
interaction.

Attraction between a positively
charged H and a negatively charged
atoms.

Glucose attaches to the protein using
hydrogen bonds.
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1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics

Weak electrostatic attraction and repulsion forces.



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics

Hydrophobic atoms tend to gather together.

Hydrophilic atoms tend to gather together.



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics

Hydrophobic atoms tend to gather together.

Hydrophilic atoms tend to gather together.



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Forces and Interactions

1 Van der Waals Forces

2 Hydrophobic Interactions

3 The pyranose ring is hydrophobic

Definition

Hydrophobic: water hating. Hydrophilic: water loving.

Characteristics
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Pattern Recognition

Pattern recognition

includes:
1 Classifier

k-Nearest-Neighbor (kNN)
Support Vector Machines (SVM)

2 Feature selection

Random Forest (RF)

Definition

Pattern recognition: The computer learns how to correctly classify
an object.
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Atomic Combinations Results

kNN and SVM give similar results

Table: Atomic properties classification error rates.

Properties kNN SVM SV

Charge 14.55% 14.55% 78.18%
H-Bond 21.82% 16.36% 92.73%
Hydrophobicity 21.82% 20.00% 92.73%
Charge + H-Bond 14.55% 14.55% 89.09%
Charge + Hydro 12.73% 14.55% 47.27%
H-Bond + Hydro 21.82% 18.18% 100%
Charge + H-Bond + Hydro 16.36% 16.36% 60.00%
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Atomic Combinations Results

Charge outperforms hydrophobicity and hydrogen bond

Charge, linked with another property, yields similar or slightly
better results

kNN and SVM give similar results

Table: Atomic properties classification error rates.
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Hydrogen Bond Property

To validate this hypothesis:

1 Negative set composed of random protein surface regions

2 Hydrogen bond should outperform charge and hydrophobicity

The results confirm the hypothesis:

Table: Classifier training using an exclusively non-binding sites negative
set.

Properties kNN SVM SV

Charge 05.26% 05.26% 73.68%
H-Bond 03.51% 03.51% 61.40%
Hydrophobicity 05.26% 05.26% 68.42%
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Residue Schemes Comparison

Adding histidine to the aromatic subgroup gives slightly better
results

Table: Comparison of the different residue schemes.

Residue scheme kNN SVM SV

Simplified1 16.36% 18.18% 76.36%
Simplified2 18.18% 18.18% 70.91%
Simplified3 16.36% 16.36% 70.91%
Detailed1 16.36% 14.55% 81.82%
Detailed2 21.82% 14.55% 81.82%
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Residue Schemes Comparison

Detailed schemes outperform simplified schemes

Simplified schemes have better generalization

Adding histidine to the aromatic subgroup gives slightly better
results
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Detailed schemes yield similar results to the atomic properties

Incorporate in themselves some of the atomic knowledge?

Adding histidine to the aromatic subgroup gives slightly better
results

Table: Comparison of the different residue schemes.

Residue scheme kNN SVM SV

Simplified1 16.36% 18.18% 76.36%
Simplified2 18.18% 18.18% 70.91%
Simplified3 16.36% 16.36% 70.91%
Detailed1 16.36% 14.55% 81.82%
Detailed2 21.82% 14.55% 81.82%



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Residue Schemes Comparison

“Simplified2” scheme gives similar results to
“simplified1”while adding the aromatic subgroup

Adding histidine to the aromatic subgroup gives slightly better
results

Table: Comparison of the different residue schemes.

Residue scheme kNN SVM SV

Simplified1 16.36% 18.18% 76.36%
Simplified2 18.18% 18.18% 70.91%
Simplified3 16.36% 16.36% 70.91%
Detailed1 16.36% 14.55% 81.82%
Detailed2 21.82% 14.55% 81.82%



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Residue Schemes Comparison

“Simplified2” scheme gives similar results to
“simplified1”while adding the aromatic subgroup

Aromatic residues play an important role in glucose binding

Adding histidine to the aromatic subgroup gives slightly better
results

Table: Comparison of the different residue schemes.

Residue scheme kNN SVM SV

Simplified1 16.36% 18.18% 76.36%
Simplified2 18.18% 18.18% 70.91%
Simplified3 16.36% 16.36% 70.91%
Detailed1 16.36% 14.55% 81.82%
Detailed2 21.82% 14.55% 81.82%



Biochemical Background Pattern Recognition Problem Representation Experimental Results

Residue Schemes Comparison

“Simplified2” scheme gives similar results to
“simplified1”while adding the aromatic subgroup

Aromatic residues play an important role in glucose binding

Aromatic residues do not seem to contribute to the
classification accuracy

Adding histidine to the aromatic subgroup gives slightly better
results

Table: Comparison of the different residue schemes.
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Water and Ion inclusion

Ordered water molecules and ions play a role in glucose
binding

We test and validate this hypothesis

Table: Testing the importance of water and ions to glucose specificity

Mode Properties kNN SVM SV

Water Charge + Hydro 12.73% 14.55% 47.27%
+ ions Residue + Charge + Hydro 20.00% 09.09% 100%

Ions Charge + Hydro 14.55% 16.36% 83.64%
Residue + Charge + Hydro 20.00% 10.91% 100%

Water Charge + Hydro 16.36% 18.18% 83.64%
Residue + Charge + Hydro 20.00% 10.91% 100%

Charge + Hydro 14.55% 16.36% 52.73%
Residue + Charge + Hydro 20.00% 12.73% 100%
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Atomic Properties Feature Selection

Table: Classifiers performance on atomic data using feature selection.

Property RF Feat. kNN SVM Sensi- Speci- SV
Nb. Error Error tivity ficity

Charge false 24 14.55% 14.55% 96.55% 73.08% 78.18%
true 6 09.09% 05.45% 93.10% 96.15% 41.82%

H-Bond false 16 21.82% 16.36% 86.21% 80.77% 92.73%
true 5 09.09% 07.27% 96.55% 88.46% 16.36%

Hydro false 24 21.82% 20.00% 79.31% 80.77% 92.73%
true 5 09.09% 10.91% 96.55% 84.62% 34.55%
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Atomic Properties Feature Selection

Definition

Sensitivity: Ability to detect true positives (TP/P)
Specificity: Ability to reject true negatives (TN/N)

Table: Classifiers performance on atomic data using feature selection.

Property RF Feat. kNN SVM Sensi- Speci- SV
Nb. Error Error tivity ficity
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Classification error decreases

SV percentage decreases (generalization capacity increases)
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Atomic Properties Feature Selection

Classification error decreases

SV percentage decreases (generalization capacity increases)

Table: Classifiers performance on atomic data using feature selection.

Property RF Feat. kNN SVM Sensi- Speci- SV
Nb. Error Error tivity ficity
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Charge Feature Selection
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Hydrogen Bond Feature Selection
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Combined Atomic and Residue Feature Selection

3.64% error for both classifiers.

Table: Classifiers performance using feature selection.

Property RF Feat. kNN SVM Sensi- Speci- SV
Nb. Error Error tivity ficity

Detailed2 false 104 14.06% 07.81% 93.10% 91.43% 53.13%
+ Charge
+ H-Bond true 15 03.64% 03.64% 96.55% 96.15% 69.09%
+ Hydro
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Selected Feature Subset

Table: The selected feature subset.

Property Features L1 L2 L3 L4 L5 L6 L7 L8

Charge Negative X
Neutral X X

H-Bond H-Bonding X
Hydro Hydrophilic X X X

Neutral X
Hydrophobic X X

Residues Neutral X
Carboxylate X X X
Aliphatic X
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Feature Selection Findings

The difference in spatial configuration

Charge is the best discriminant property

Discriminating atomic properties on layer 3

Negatively charged layer 3

High density of negatively charged carboxylate residues

The relevance of planar polar residues

Low discrimination capacity of hydrophobic interactions and
aromatic residues

Possibly due to their one-correctly-placed relationship
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Testing Phase

Parse PDB for entries newer than October 2004

7 distinct glucose binding sites

Compare with COTRAN, a galactose-binding site classifier

Precision: ability to reject false positives.

Table: Testing phase results.

Classifier TP FP TN FN Error Sensi- Speci- Preci-
tivity ficity sion

SVM 6 0 15 1 04.55% 85.71% 100% 100%
kNN 6 2 13 1 13.64% 85.71% 86.67% 75.00%
COTRAN 94 27 633 12 05.09% 88.68% 95.91% 77.69%
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appendix A: AA Table Appendix B: Atomic Features Appendix C: Residue Experiments

Amino Acids Table

Table: Standard amino acids names, three- and one-letter abbreviations.
They are sorted according to biological convention based on the size and
properties of the side chain.

Name 3-L 1-L Name 3-L 1-L

Glycine Gly G Cysteine Cys C
Alanine Ala A Serine Ser S
Valine Val V Threonine Thr T
Leucine Leu L Aspartate Asp D

Isoleucine Ile I Glutamate Glu E
Proline Pro P Histidine His H

Phenylalanine Phe F Lysine Lys K
Tyrosine Tyr Y Arginine Arg R

Tryptophan Trp W Asparagine Asn N
Methionine Met M Glutamine Gln Q
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Atomic Features

Atom Type Functional Group Location Residue PDB Atom Symbol Chrg Hydrophob H Bond

Oxygen Amide peptide linkage Backbone All O 0 -1 H Bond

Oxygen Carboxyl – C terminus Backbone All OXT -ve -1 H Bond

Oxygen Side Chain GLU OE1 -ve -1 H Bond

Oxygen Side Chain GLU OE2 -ve -1 H Bond

Oxygen Carboxyl Side Chain ASP OD1 -ve -1 H Bond

Oxygen Carboxyl Side Chain ASP OD2 -ve -1 H Bond

Oxygen Amide Side Chain GLN OE1 0 -1 H Bond

Oxygen Amide Side Chain ASN OD1 0 -1 H Bond

Oxygen Hydroxyl Side Chain SER OG 0 -1 H Bond

Oxygen Hydroxyl Side Chain THR OG1 0 -1 H Bond

Oxygen Hydroxyl - Phenolic Side Chain TYR OH 0 -1 H Bond

Nitrogen Amide peptide linkage Backbone All except PRO N 0 -1 H Bond

Nitrogen Amide peptide linkage Backbone PRO N 0 -1 --

Nitrogen Amide Side Chain GLN NE2 0 -1 H Bond

Nitrogen Amide Side Chain ASN ND2 0 -1 H Bond

Nitrogen Amine Side Chain LYS NZ +ve -1 H Bond

Nitrogen Guanidino Side Chain ARG NE +ve -1 --

Nitrogen Guanidino Side Chain ARG NH1 +ve -1 H Bond

Nitrogen Guanidino Side Chain ARG NH2 +ve -1 H Bond

Nitrogen Imidazole Side Chain HIS ND1 0 -1 --

Nitrogen Imidazole Side Chain HIS NE2 0 -1 H Bond

Nitrogen Indole Side Chain TRP NE1 0 0 --

Carbon Amide peptide linkage Backbone All C 0 0 --

Carbon C-alpha Backbone All CA 0 0 --

Carbon Aliphatic – neutral Side Chain Set A (See below) CB, CG, CD, CE 0 0 --

Carbon Aliphatic – hydrophobic Side Chain LEU, VAL, ILE, MET CB, CG, CD, CE 0 1 --

Carbon Aliphatic – Branch Side Chain LEU, VAL, ILE CG1, CG2, CD1, CD2, CD1 0 1 --

Carbon Phenyl - aromatic Side Chain PHE, TYR CG,CD1, CD2, CE1, CE2, CZ 0 1 --

Carbon Imidazole Side Chain HIS CG, CD2, CE1 0 1 --

Carbon Aromatic Side Chain TRP CG,CD1, CD2, 0 1 --

Carbon Aromatic Side Chain TRP CE2, CE3, CZ2, CZ3, CH2 0 1 --

Sulfur Sulfhydril Side Chain CYS SG 0 -1 H Bond

Sulfur Thioether Side Chain MET SD 0 0 --

Oxygen Sulfate HET Group SO4 O1, O2, O3, O4 -ve -1 H Bond

Oxygen Phosphate HET Group 2HP O1, O2, O3, O4 -ve -1 H Bond

Oxygen Water HET Group HOH O 0 -1 H Bond

Calcium Ion HET Group CA CA +ve -1 H Bond

Magnesium Ion HET Group MG MG +ve -1 H Bond

Zinc Ion HET Group ZN ZN +ve -1 H Bond

Set A = ALA, SER, THR, CYS, ASP, ASN, GLU, GLN, ARG, LYS, PRO

Carboxyl

Carboxyl
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Atomic and Residue Combinations Results

“Charge + Hydro + Residue ” is the best combination

Table: Atomic and residue properties classification error rates.

Properties kNN SVM SV

Residue (detailed1 scheme) 16.36% 14.55% 81.82%
Residue + Charge 18.18% 10.91% 100%
Residue + H-Bond 16.36% 10.91% 94.55%
Residue + Hydro 16.36% 10.91% 90.91%
Residue + Charge + H-Bond 16.36% 10.91% 100%
Residue + Charge + Hydro 20.00% 09.09% 100%
Residue + H-Bond + Hydro 18.18% 10.91% 98.18%
Residue + Charge + H-Bond + Hydro 18.18% 09.09% 100%
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Atomic and Residue Combinations Results

SVM performs better

kNN deteriorates

“Charge + Hydro + Residue ” is the best combination

Table: Atomic and residue properties classification error rates.

Properties kNN SVM SV

Residue (detailed1 scheme) 16.36% 14.55% 81.82%
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Atomic and Residue Combinations Results

Residue property constrains the differences between the
various combinations of atomic features

“Charge + Hydro + Residue ” is the best combination

Table: Atomic and residue properties classification error rates.
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Hydrophobicity and Charge Properties

Charge: the best discriminating factor

Glucose exhibits a dual hydrophobic-hydrophilic nature

Both antagonist properties are involved in glucose binding

1 Hydrophobic: Aromatic residues stack against pyranose ring
2 Hydrophilic: Planar-polar residues form hydrogen-bonds

May explain why hydrophobicity is the worst discriminant

Hydrophobicity: secondary discriminating factor
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Detailed Schemes Comparison
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Figure: Comparison of detailed1 and detailed2 schemes
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Residue Schemes Feature Selection

Table: Classifiers performance on residue data using feature selection.

Property RF Feat. kNN SVM Sensi- Speci- SV
Nb. Error Error tivity ficity

Detailed1 false 48 16.36% 14.55% 89.66% 80.77% 81.82%
true 19 09.09% 12.73% 93.10% 88.46% 56.36%

Detailed2 false 40 21.82% 14.55% 96.55% 73.08% 81.82%
true 3 10.91% 12.73% 89.66% 88.46% 56.36%

Simplified1 false 16 16.36% 18.18% 96.55% 69.23% 76.36%
true 6 12.73% 12.73% 93.10% 80.77% 67.27%

Simplified2 false 24 18.18% 18.18% 86.21% 76.92% 70.91%
true 4 10.91% 10.91% 96.55% 80.77% 54.55%

Simplified3 false 24 16.36% 16.36% 96.55% 69.23% 70.91%
true 6 12.73% 12.73% 96.55% 76.92% 74.55%
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The Selected Features Importance
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Figure: Importance of the selected features subset
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