Instance-Optimal PAC Algorithms for Contextual Bandits

Zhaoqi Li*, Lillian Ratliff*, Houssam Nassif[†], Kevin Jamieson*, Lalit Jain*

*University of Washington

†Amazon

Contextual Bandit Setting

- At each time $t = 1, 2, \cdots$:
 - Context $c_t \in C$ arrives, $c_t \sim \nu \in \Delta_C$
 - Choose action $a_t \in A$
 - Receive reward r_t , $\mathbb{E}[r_t | c_t, a_t] = r(c_t, a_t) \in \mathbb{R}$
- Policy class Π , each $\pi \in \Pi, \pi : \mathbb{C} \to \mathbb{A}$
- Average reward: $V(\pi) := \mathbb{E}_{c \sim \nu}[r(c, \pi(c))]$
- Optimal policy: $\pi_{\star} := \arg \max V(\pi)$ $\pi \in \Pi$

(ϵ, δ) – PAC Guarantee

Return $\hat{\pi}$ satisfying, $V(\hat{\pi}) \geq V(\pi_*) - \varepsilon$ with probability greater than $1 - \delta$ in a minimum number of samples.

Contributions:

- Show the first instance-dependent lower bound for PAC contextual bandits
- Design sampling procedure that achieves this lower bound
- Design a computationally efficient algorithm - allowing context space C and policy space Π to be **infinite**!

Regret Minimization Not Enough

- Regret heavily studied:
 - computationally efficient
 - also see [Zanette et al. 2021]

Two Problems

- Minimax Result! Does not adapt to hardness of instance. a)

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves $R_T = O(\sqrt{|A|} T \log(\Pi))$,

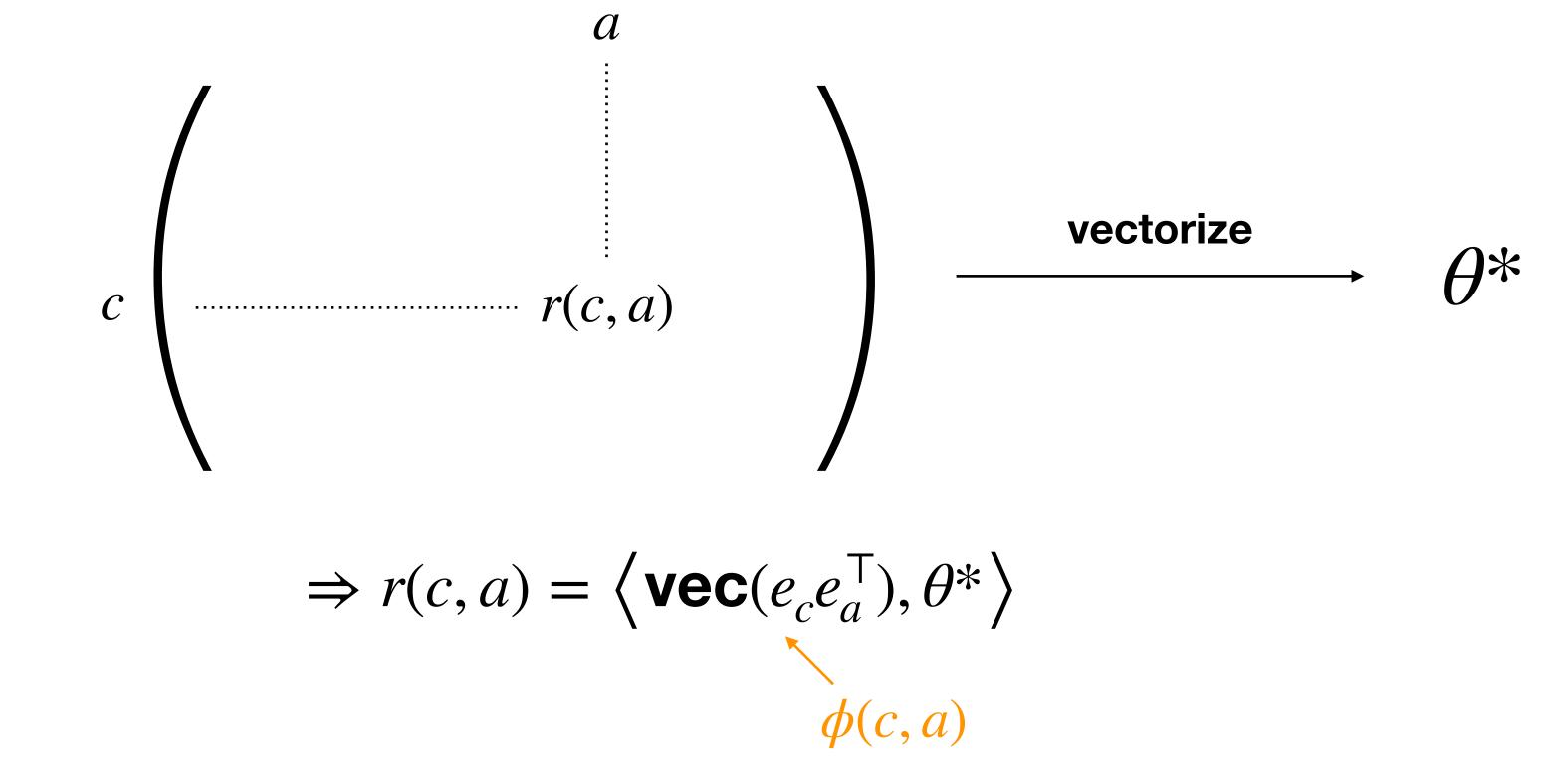
• Modification gives (ϵ, δ)- PAC algorithm w/ sample complexity $O(|A|\log(\Pi/\delta)/\epsilon^2)$,

True for any policy class! Not capturing difficulty for learning π_*

b) Can construct an example, where any optimal regret algorithm won't be instance optimal!

Agnostic Setting Reduces to Linear

- Let $\theta^* \in \mathbb{R}^{|C| \times |A|}$ where $[\theta^*]_{c,a} = r(c,a)$



Lower bound motivated by best-arm identification in linear bandits [Fiez et al. 2019]

Contribution 1: A Lower Bound $p) = \sum \nu_c \sum p_{c,a} \phi(c,a) \phi(c,a)^{\mathsf{T}},$ c a

Let
$$\phi_{\pi} := \mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))]$$
 and $A(p)$

$$\rho_{\Pi,0} = \min_{\substack{p_c \in \triangle_A, \forall c \in C \\ p_c \in A}} p_c \in P_c \in C$$

2021]

Theorem [Li et al. 2022] Let τ be the stopping time of the algorithm. Any $(0,\delta)$ -PAC algorithm satisfies $\tau \ge \rho_{\Pi,0} \log(1/2.4\delta)$ with high probability where $\max_{\pi \in \Pi \setminus \pi_*} \frac{\|\phi_{\pi_*} - \phi_{\pi}\|_{A(p)^{-1}}^2}{\Delta(\pi)^2}.$

• This bound is better than the sample complexity bound based on disagreement coefficients [Foster et al. 2020] and decision-estimation coefficients [Foster et al.

Contribution 2: An Instance-Optimal Algorithm

• In each round, Choose $p_c \in \Delta_A, \forall$

 $\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left(-\Delta(\pi) + \sqrt{\frac{\|\phi_{\pi} - \phi_{\pi}\|}{\|\phi_{\pi} - \phi_{\pi}\|}} \right)$

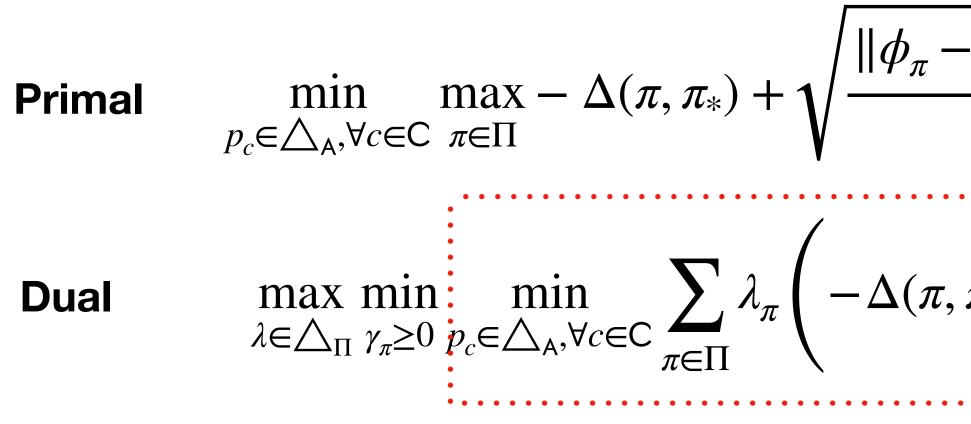
$$\frac{|c| \in \mathbb{C} \text{ and } n \text{ such that}}{|-\phi_{\pi_*}||_{A(p)^{-1}}^2 \log(1/\delta)} \le 2^{-l}$$

$$n_l$$

Theorem [Li et al. 2022] The algorithm returns an (ϵ, δ) -PAC policy with at most $O(\rho_{\Pi,\epsilon} \log(|\Pi|/\delta) \log_2(1/\epsilon))$ samples.

Contribution 3: An Efficient Algorithm

• Consider the dual formulation of the design of the previous algorithm:



- The dual objective is concave in λ and locally strongly convex in γ , so the saddle point problem can be solved
- Frank-Wolfe subroutine gives us a sparse yet good enough solution λ

$$\frac{-\phi_{\pi_*}\|_{A(p)^{-1}}^2 \log(1/\delta)}{n}$$

$$\pi_*) + \gamma_{\pi} \|\phi_{\pi} - \phi_{\pi_*}\|_{A(p)^{-1}}^2 + \frac{\log(1/\delta)}{2\gamma_{\pi}n} \right).$$

analytical solution \Rightarrow implicitly maintain p_c for all $c \in C$ simultaneously!

Thank you!