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Contextual Bandit Setting
• At each time :

• Context  arrives,  

• Choose action 

• Receive reward ,  

t = 1,2,⋯
ct ∈ 𝖢 ct ∼ ν ∈ Δ𝖢

at ∈ 𝖠
rt 𝔼[rt |ct, at] = r(ct, at) ∈ ℝ
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Return  satisfying,  with 
probability greater than  in a minimum 
number of samples.

(ϵ, δ) − PAC Guarantee

̂π V( ̂π) ≥ V(π*) − ε
1 − δ

• Policy class , each Π π ∈ Π, π : 𝖢 → 𝖠

• Average reward: V(π) := 𝔼c∼ν[r(c, π(c))]

• Optimal policy: π⋆ := arg max
π∈Π

V(π)

Contributions: 

• Show the first instance-dependent 
lower bound for PAC contextual 
bandits

• Design sampling procedure that 
achieves this lower bound 

• Design a computationally efficient 
algorithm - allowing context space 

 and policy space  to be infinite!𝖢 Π



Regret Minimization Not Enough
• Regret heavily studied:

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves , 
computationally efficient

• Modification gives - PAC algorithm w/ sample complexity , 
also see [Zanette et al. 2021]  

RT = O( |𝖠 |T log(Π))

(ϵ, δ) O( |𝖠 | log(Π/δ)/ϵ2)

3

Two Problems

a) Minimax Result! Does not adapt to hardness of instance.

b) Can construct an example, where any optimal regret algorithm won’t be instance optimal!

True for any policy class! Not 
capturing difficulty for learning π*



Agnostic Setting Reduces to Linear
• Lower bound motivated by best-arm identification in linear bandits [Fiez et al. 2019]
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• Let  where θ* ∈ ℝ|𝖢|×|𝖠| [θ*]c,a = r(c, a)

c(     )
a

r(c, a)
vectorize

θ*

⇒ r(c, a) = ⟨vec(ece⊤
a ), θ*⟩

ϕ(c, a)



Contribution 1: A Lower Bound
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Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. Any -
PAC algorithm satisfies  with high probability where  

τ (0,δ)
τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△𝖠,∀c∈𝖢

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2
.
gap

variance

• This bound is better than the sample complexity bound based on disagreement 
coefficients [Foster et al. 2020] and decision-estimation coefficients [Foster et al. 
2021]

• Let  and , ϕπ := 𝔼c∼ν[ϕ(c, π(c))] A(p) = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤



Contribution 2: An Instance-Optimal Algorithm
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Theorem [Li et al. 2022] The algorithm returns an -PAC policy 
with at most  samples. 

(ϵ, δ)
O(ρΠ,ϵ log( |Π | /δ)log2(1/ϵ))

• In each round, Choose  and  such that  pc ∈ △𝖠 , ∀c ∈ 𝖢 n

min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

−Δ(π) +
∥ϕπ − ϕπ*

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l



Contribution 3: An Efficient Algorithm
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min
pc∈△𝖠,∀c∈𝖢

max
π∈Π

− Δ(π, π*) +
∥ϕπ − ϕπ*

∥2
A(p)−1 log(1/δ)
n

max
λ∈△Π

min
γπ≥0

min
pc∈△𝖠,∀c∈𝖢 ∑

π∈Π

λπ (−Δ(π, π*) + γπ∥ϕπ − ϕπ*
∥2

A(p)−1 +
log(1/δ)

2γπn ) .Dual

Primal

• Consider the dual formulation of the design of the previous algorithm: 

analytical solution  implicitly maintain  for all  simultaneously!⇒ pc c ∈ 𝖢

• The dual objective is concave in  and locally strongly convex in , so 
the saddle point problem can be solved

• Frank-Wolfe subroutine gives us a sparse yet good enough solution 

λ γ

λ



Thank you!


