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context 
c ∈ "

action 
a ∈ #policy 

π ∈ Π
What is the best policy 
that gives personalized 

recommendations to 
different users in an 

experiment?

• At each time :

•  arrives, action  from 

• Receive reward ,  

• Learn

• Allow context space  and policy class  to be infinite

t = 1,2,⋯
ct ∼ ν ∈ △" at ∈ # pct

∈ △#
rt ([rt |ct, at] = r(ct, at) ∈ ℝ

" Π
π* := arg max

π∈Π
V(π) := arg max

π∈Π
(c∼ν[r(c, π(c))]

Goal: an instance-optimal and computationally efficient 

algorithm for —PAC learning that hits the lower bound(ϵ, δ)

•  such that  for 

• Let 

• Agnostic:  ,   

∃ϕ : " × # → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

ϕπ := (c∼ν[ϕ(c, π(c))] ⇒ V(π) = ⟨ϕπ, θ*⟩
θ* ∈ ℝ|"|×|#| [θ*]c,a = r(c, a) ⇒ r(c, a) = ⟨vec(ece⊤

a ), θ*⟩

Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. 
Any -PAC algorithm satisfies  where  

τ
(0,δ) ([τ] ≥ ρΠ,0 log(1/2.4δ)

ρΠ,ϵ := min
pc∈△#, ∀c∈"

max
π∈Π∖π*

∥ϕπ − ϕπ*
∥2

(c∼ν[∑a∈# pc,aϕ(c,a)ϕ(c,a)⊤]−1

(⟨ϕπ* − ϕπ, θ*⟩ ∨ ϵ)2 .
gap

variance

Input:  
Initialize , estimate  
for   
   1. Choose  and  such that 

2. For , for each context , sampling  and compute 

IPW estimate  for each  
3. Update 

                           

Π
Π1 = Π ̂π0

l = 1,2,⋯
p(l)

c ∈ △# , ∀c ∈ " nl

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂l(π, ̂πl−1)

min
pc∈△#,∀c∈"

max
π∈Π

−Δ̂l(π, ̂πl−1) +
∥ϕ ̂πl−1

− ϕπ∥2
A(p)−1 log(2l2 |Π | /δ)

nl
≤ 2−l

π

−Δ(π)
2−l

goes to zero as  largel

the estimation of 
the gap is at 

least -good for 
-good policies! 

2ϵ
ϵ

Define the gap . In round , given 

, 

Δ(π, π′ ) := ⟨ϕπ′ − ϕπ, θ*⟩ l
{(cs, as, rs)}n

s=1 Δ̂IPW
l (π, π′ ) := 1

n
A(p(l))−1

n

∑
s=1

ϕ(cs, as)rs

min
pc∈△#,∀c∈"

max
π∈Π

− Δ̂l(π, ̂πl−1) +
∥ϕ ̂πl−1

− ϕπ∥2
A(p)−1 log(1/δ)
n

= min
pc∈△#,∀c∈"

max
π∈Π

min
γπ≥0

− Δ̂l(π, ̂πl−1) + γπ∥ϕ ̂πl−1
− ϕπ∥2

A(p)−1 + log(1/δ)
γπn

max
λ∈△Π

min
γπ≥0

min
pc∈△#,∀c∈" ∑

π∈Π
λπ( − Δ̂l(π, ̂πl−1) + γπ∥ϕ ̂πl−1

− ϕπ∥2
A(p)−1 + log(1/δ)

γπn )
The dual problem is: agnostic setting  analytical solution! ⇒

= max
λ∈△Π

min
γ ∑

π∈Π
λπ( − Δ̂l(π, ̂πl−1) + log(1/δ)

γπn ) + (c∼ν[( ∑
a∈#

(λ ⊙ γ)⊤t(c)
a )

2
] =: max

λ∈△Π
min

γ
hl(λ, γ)

convex in pc, ∀c ∈ "

strong duality holds!

where . 

To get a sparse solution of , we use the Frank-Wolfe subroutine. 
In each step  of Frank-Wolfe, we compute  

t(c)
a = 1{π(c) = a} + 1{ ̂πl−1(c) = a} − 21{π(c) = ̂πl−1(c)}

λ
t

πt = arg max
s∈△Π

s⊤ ∇λhl(λt, γt) = arg max
π∈Π [∇λhl(λt, γt)]π

which could be computed using an argmax oracle. 

Definition (argmax oracle). Given contexts and cost vectors 

, it returns . (c1, v1), ⋯, (cn, vn) ∈ " × ℝ|#| arg max
π∈Π

n

∑
t=1

vt(π(ct))

Theorem [Li et al. 2022] The algorithm returns an -PAC policy 
with at most  samples and 

 calls to argmax oracle. 

(ϵ, δ)
O(ρΠ,ϵ log( |Π | /δ)log2(1/ϵ))

poly( |# | , ϵ−1, log(1/δ), log( |Π | ))

Reduction to Linear Realizability

concave in  and locally strongly convex in  
 can solve the saddle point problem! 

λ γ
⇒

low-regret 
algorithms 

are inefficient!
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ϕ(c, a)
True mean
estimate

conf. interval

A(p)

We start with the primal problem, which is the design itself: 


