# Instance-Optimal PAC Algorithms for Contextual bandits

Zhaoqi Li\*, Lillian Ratliff\*, Houssam Nassif\*\*, Kevin Jamieson\*, Lalit Jain\*

\* University of Washington, \*\* Amazon

### Motivation



What is the best policy that gives personalized recommendations to different users in an experiment?

## Problem Statement

- At each time  $t = 1, 2, \cdots$ :
  - $c_t \sim \nu \in \triangle_C$  arrives, action  $a_t \in A$  from  $p_{c_t} \in \triangle_A$
  - Receive reward  $r_t$ ,  $\mathbb{E}[r_t | c_t, a_t] = r(c_t, a_t) \in \mathbb{R}$
- Learn  $\pi_* := \arg \max_{\pi \in \Pi} V(\pi) := \arg \max_{\pi \in \Pi} \mathbb{E}_{c \sim \nu}[r(c, \pi(c))]$
- Allow context space C and policy class  $\Pi$  to be infinite

Goal: an *instance-optimal* and *computationally efficient* algorithm for  $(\epsilon, \delta)$  – PAC learning that hits the *lower bound* 

# Related Work

| Method                 | Sample Complexity                                                                  | Policy Classes    |
|------------------------|------------------------------------------------------------------------------------|-------------------|
| EXP4/ILTCB             | $rac{ \mathcal{A} \log( \Pi /\delta)}{\epsilon^2}$                                | Agnostic          |
| AdaCB [1]              | $\frac{ \mathcal{A} \log( \Pi )}{\epsilon \Delta_{\min}} \mathfrak{C}_{\Pi}^{pol}$ | Agnostic          |
| LinUCB/LinTS           | $\frac{d^2}{\epsilon \Delta_{\min}}$                                               | Linear Realizable |
| Reward-free LinUCB [2] |                                                                                    | Linear Realizable |
| This work              | $ ho_{\Pi,0}\log( \Pi /\delta)$                                                    | Linear Realizable |

low-regret algorithms are inefficient!

Table: Known sample complexity results

# Reduction to Linear Realizability

- $\exists \phi : C \times A \to \mathbb{R}^d$  such that  $r(c, a) = \langle \phi(c, a), \theta^* \rangle$  for  $\theta^* \in \Theta \subset \mathbb{R}^d$
- Let  $\phi_{\pi} := \mathbb{E}_{c \sim \nu}[\phi(c, \pi(c))] \Rightarrow V(\pi) = \langle \phi_{\pi}, \theta_* \rangle$  <u>Agnostic</u>:  $\theta^* \in \mathbb{R}^{|C| \times |A|}, [\theta^*]_{c,a} = r(c, a) \Rightarrow r(c, a) = \langle \operatorname{vec}(\mathbf{e}_c \mathbf{e}_a^{\mathsf{T}}), \theta^* \rangle$



Theorem [Li et al. 2022] Let  $\tau$  be the stopping time of the algorithm. Any  $(0,\delta)$ -PAC algorithm satisfies  $\mathbb{E}[\tau] \ge \rho_{\Pi,0} \log(1/2.4\delta)$  where

variance  $\rho_{\Pi,\epsilon} := \min_{\substack{p_c \in \triangle_A, \ \forall c \in C}} \max_{\pi \in \Pi \setminus \pi_*} \frac{\|\phi_{\pi} - \phi_{\pi_*}\|_{\mathbb{E}_{c \sim \nu}[\sum_{a \in A} p_{c,a}\phi(c,a)\phi(c,a)^{\top}]^{-1}}}{(\langle \phi_{\pi_*} - \phi_{\pi}, \theta_* \rangle \vee \epsilon)^2}$ 

#### Algorithm

Define the gap  $\Delta(\pi,\pi') := \langle \phi_{\pi'} - \phi_{\pi}, \theta_* \rangle$ . In round l, given  $\{(c_s, a_s, r_s)\}_{s=1}^n, \, \hat{\Delta}_l^{IPW}(\pi, \pi') := \frac{1}{n} A(p^{(l)})^{-1} \sum_{s=1}^n \phi(c_s, a_s) r_s$ 

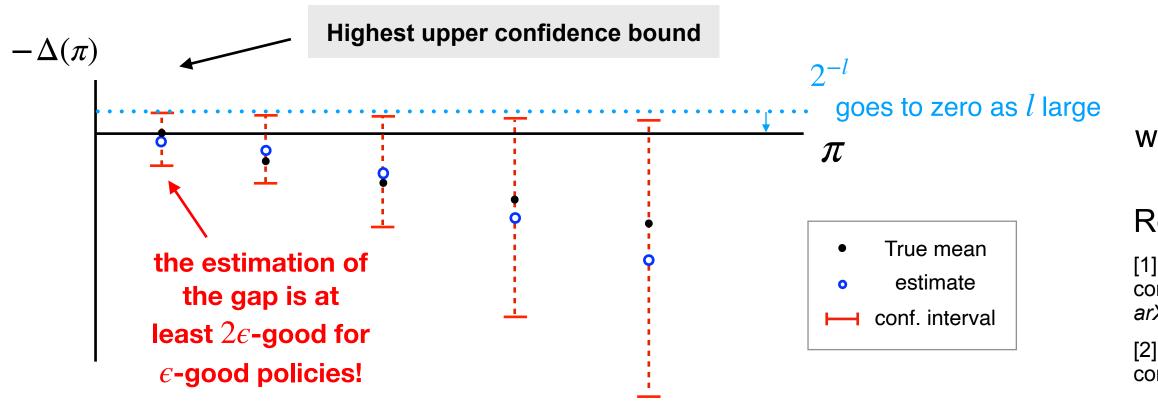
Input: 
$$\Pi$$
  
Initialize  $\Pi_1 = \Pi$ , estimate  $\hat{\pi}_0$   
for  $l = 1, 2, \cdots$   
1. Choose  $p_c^{(l)} \in \Delta_A$ ,  $\forall c \in C$  and  $n_l$  such that  

$$\min_{p_c \in \Delta_A, \forall c \in C} \max_{\pi \in \Pi} \left( -\hat{\Delta}_l(\pi, \hat{\pi}_{l-1}) + \sqrt{\frac{\|\phi_{\hat{\pi}_{l-1}} - \phi_{\pi}\|_{A(p)^{-1}}^2 \log(2l^2 |\Pi|/\delta)}{n_l}} \right) \le 2^{-l}$$
2. For  $t \in [n_l]$ , for each context  $c_t$ , sampling  $a_t \sim p_{c_t}^{(l)}$  and compute

IPW estimate  $\Delta_l(\pi, \hat{\pi}_{l-1})$  for each  $\pi \in \Pi$ 

3. Update

$$\hat{\pi}_{l} = \arg\min_{\pi \in \Pi} \hat{\Delta}_{l}(\pi, \hat{\pi}_{l-1})$$





Definition (argmax oracle). Given contexts and cost vectors  $(c_1, v_1), \dots, (c_n, v_n) \in \mathbb{C} \times \mathbb{R}^{|\mathsf{A}|}$ , it returns  $\arg \max \sum v_t(\pi(c_t))$ .  $\pi \in \Pi$ t=1

```
min
p_c \in \triangle_A, \forall
```

```
= mi
  p_c \in \triangle_A
```

The dual problem is:

max mi  $\lambda \in \Delta_{\Pi} \gamma_{\pi} \geq 0$ 

 $= \max n$ λ∈∆Π

where t

To get a sparse solution of  $\lambda$ , we use the **Frank-Wolfe** subroutine. In each step *t* of Frank-Wolfe, we compute

which could be computed using an argmax oracle.

#### Reference

[1] Dylan J. Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent complexity of contextual bandits and reinforcement learning: A disagreement-based perspective. arXiv preprint arXiv:2010.03104 (2020).

[2] Andrea Zanette, Kefan Dong, Jonathan Lee, and Emma Brunskill. Design of experiments for stochastic contextual linear bandits. Advances in Neural Information Processing Systems, 34, 2021.







#### Computationally Efficient Algorithm and Upper Bound

**Theorem [Li et al. 2022]** The algorithm returns an  $(\epsilon, \delta)$ -PAC policy with at most  $O(\rho_{\Pi,\epsilon} \log(|\Pi|/\delta) \log_2(1/\epsilon))$  samples and poly( $|A|, e^{-1}, \log(1/\delta), \log(|\Pi|)$ ) calls to argmax oracle.

We start with the primal problem, which is the design itself:

$$\max_{\forall c \in C} \max_{\pi \in \Pi} - \hat{\Delta}_{l}(\pi, \hat{\pi}_{l-1}) + \sqrt{\frac{\|\phi_{\hat{\pi}_{l-1}} - \phi_{\pi}\|_{A(p)^{-1}}^{2} \log(1/\delta)}{n}} \frac{\operatorname{convex} \operatorname{in} p_{c}, \forall c \in C}{\$}$$

$$\max_{y,\forall c \in \mathsf{C}} \max_{\pi \in \Pi} \min_{\gamma_{\pi} \ge 0} - \hat{\Delta}_{l}(\pi, \hat{\pi}_{l-1}) + \gamma_{\pi} \|\phi_{\hat{\pi}_{l-1}} - \phi_{\pi}\|_{A(p)^{-1}}^{2} + \frac{\log(1/\delta)}{\gamma_{\pi} n}$$

agnostic setting 
$$\Rightarrow$$
 analytical solution!

$$\min_{\substack{0, p_{c} \in \Delta_{A}, \forall c \in C \\ \pi \in \Pi}} \sum_{\pi \in \Pi} \lambda_{\pi} \Big( -\hat{\Delta}_{l}(\pi, \hat{\pi}_{l-1}) + \gamma_{\pi} \| \phi_{\hat{\pi}_{l-1}} - \phi_{\pi} \|_{A(p)^{-1}}^{2} + \frac{\log(1/\delta)}{\gamma_{\pi}^{n}} \Big) \\
\min_{\gamma} \sum_{\pi \in \Pi} \lambda_{\pi} \Big( -\hat{\Delta}_{l}(\pi, \hat{\pi}_{l-1}) + \frac{\log(1/\delta)}{\gamma_{\pi}^{n}} \Big) + \mathbb{E}_{c \sim \nu} \Big[ \Big( \sum_{a \in A} \sqrt{(\lambda \odot \gamma)^{\mathsf{T}} t_{a}^{(c)}} \Big)^{2} \Big] =: \max_{\lambda \in \Delta_{\Pi}} \min_{\gamma} h_{l}(\lambda, \gamma) \\
\prod_{a \in A} \sum_{\alpha \in \Pi} \sum_{\alpha \in \Lambda} \sum_{\alpha \in \Lambda_{L-1}} \sum$$

concave in  $\lambda$  and locally strongly convex in  $\gamma$  $\Rightarrow$  can solve the saddle point problem!

$$\pi_t = \arg \max_{s \in \Delta_{\Pi}} s^{\top} \nabla_{\lambda} h_l(\lambda^t, \gamma^t) = \arg \max_{\pi \in \Pi} \left[ \nabla_{\lambda} h_l(\lambda^t, \gamma^t) \right]_{\pi}$$