Duke

Experimental Designs for Heteroskedastic Variance Justin Weltz, Tanner Fiez, Alexander Volfovsky, Eric Laber, Blake Mason, Houssam Nassif, and Lalit Jain **Duke University and Amazon**

Introduction

In many problems, there is a set of items, \mathcal{Z} , with underlying structure, and the goal is to find which items are best using a set of noisy probes, \mathcal{X} . It is natural that some of these probes are noisier than others.

Drug Discovery: $\mathcal{Z} \subset \mathcal{X} \subset \mathbb{R}^d$

FDA-approved drugs Experimental drugs

How do we adaptively select probes to measure?

Problem Setup

Given: items $\mathcal{Z} \subset \mathbb{R}^d$, probes $\mathcal{X} \subset \mathbb{R}^d$

Measure: At each time t, observe $y_t = x_t^{\mathsf{T}} \theta^* + \eta_t$ where

$$\eta_t \sim \mathcal{N}(0, \sigma_t^2) \text{ and } \sigma_t^2 = x_t^{\mathsf{T}} \Sigma^* x_t,$$

and $\theta^* \in \mathbb{R}^d$ and $\Sigma^* \in \mathbb{R}^{d \times d}$ are unknown.

Find: $z^* = \operatorname{argmax}_{z \in \mathbb{Z}} z^T \theta^*$ or $\mathcal{Z}_{\alpha} = \{ z \in \mathbb{Z} : z^T \theta^* > \alpha \}$ with $1 - \delta$ probability

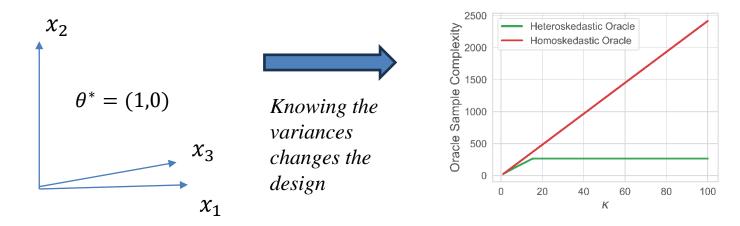
Problem Intuition

Consider a learner that selects a fixed design $\{x_t\}_{t=1}^T$, observes outcomes $\{y_t\}_{t=1}^T$, and constructs the weighted least squares estimator with known heteroskedastic variances, $\hat{\theta}$:

$$\widehat{\theta} - \theta^* \sim \mathcal{N}\left\{\mathbf{0}_d, \left(\sum_{t=1}^T \frac{x_t x_t^{\mathsf{T}}}{\sigma_t^2}\right)^{-1}\right\}.$$

Goal: Reduce variance of $\hat{\theta}$ in the directions most advantageous for identifying z^* or Z_{α} .

Benchmark Example: Ignoring heteroskedasticity suffers a multiplicative dependency on $\kappa = \max \sigma_x^2 / \min \sigma_x^2$.



Learning Heteroskedastic Variances

Goal: Estimate heteroskedastic variances with error bounds that scale favorably in the problem dimension.

Intuition: After Γ samples, we estimate Σ^* with $\widehat{\Sigma_{\Gamma}}$ using an Mestimation approach and decompose the error as

$$\left|\sigma_{x}^{2} - \widehat{\sigma_{x}^{2}}\right| = \left|x^{\top} \left(\Sigma^{*} - \widehat{\Sigma_{\Gamma}}\right)x\right| < K$$

Controlled by...

Algorithm 1: HEAD (Heteroskedasticity Estimation by Adaptive Designs)

- **Result:** Find $\widehat{\Sigma}_{\Gamma}$
- 1 Input: Arms $\mathcal{X} \in \mathbb{R}^d, \Gamma \in \mathbb{N}$
- 2 //Stage 1: Take half the samples to estimate $heta^*$
- 3 Determine λ^* according to $\lambda^* = \arg \min_{\lambda \in P_{\mathcal{X}}} \max_{x \in \mathcal{X}} x^\top \left(\sum_{x' \in \mathcal{X}} \lambda_{x'} x' x'^\top \right)^{-1} x$
- 4 Pull arm $x \in \mathcal{X} \left[\lambda_x^* \Gamma/2\right]$ times and collect observations $\{x_t, y_t\}_{t=1}^{\Gamma/2}$
- 5 Define $A^* = \sum_{t=1}^{\Gamma/2} x_t x_t^{\mathsf{T}}$ and $b^* = \sum_{t=1}^{\Gamma/2} x_t y_t$ and estimate $\hat{\theta}_{\Gamma/2} = A^{*-1}b$
- 6 //Stage 2: Take half the samples to estimate Σ^* given $\widehat{ heta}_{\Gamma/2}$
- 7 Determine $\lambda^{\dagger} \leftarrow \lambda_x^{\dagger} = \arg \min_{\lambda \in P_{\mathcal{X}}} \max_{x \in \mathcal{X}} \phi_x^{\top} \left(\sum_{x' \in \mathcal{X}} \lambda_{x'} \phi_{x'} \phi_{x'}^{\top} \right)^{-1} \phi_x$, where ϕ_x is a de-duplicated version of $vec(xx^{\perp})$
- 8 Pull arm $x \in \mathcal{X} \left[\lambda_x^{\dagger} \Gamma/2\right]$ times and collect observations $\{x_t, y_t\}_{t=\Gamma/2+1}^{\Gamma}$

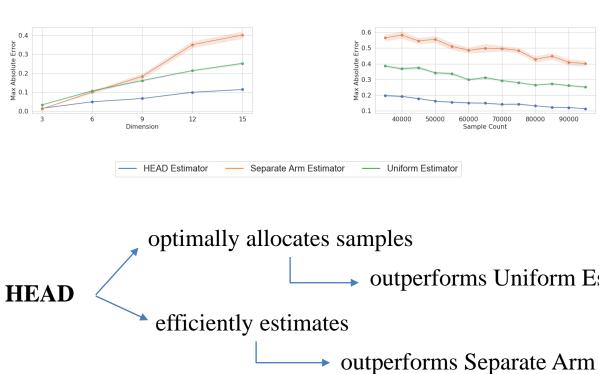
9 Let
$$A^{\dagger} = \sum_{t=\Gamma/2+1}^{\Gamma} \phi_{x_t} \phi_{x_t}^{\top}, b^{\dagger} = \sum_{t=\Gamma/2+1}^{\Gamma} \phi_{x_t} \left(10 \text{ Output: } \operatorname{vech}(\widehat{\Sigma}_{\Gamma}) = A^{\dagger^{-1}} b^{\dagger}. \right)$$

Theorem 3.1. Assume $\Gamma = \Omega \left[\max \left\{ \sigma_{max}^2 \log \left(\frac{|\mathcal{X}|}{\delta} \right) d^2, d^2 \right\} \right]$. For any $x \in \mathcal{X}$ and $\delta \in (0,1)$, Alg. 1 (HEAD) guarantees the following,

$$\mathbb{P}\left(\left|\sigma_{x}^{2} - \widehat{\sigma_{x}^{2}}\right| \le C_{\Gamma,\delta}\right) = 1 - \delta/2 \text{ and } C_{\Gamma,\delta} = \mathcal{O}\left[\left\{\frac{\log\left(\frac{|\mathcal{X}|}{\delta}\right)\sigma_{\max}^{2}d^{2}}{\Gamma}\right\}^{-\frac{1}{2}}\right].$$

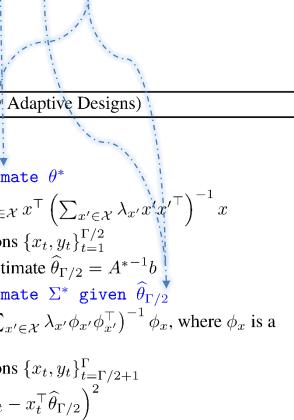
Scales with problem dimension, d²

Empirical Results



Duke

A+B+C



outperforms Uniform Est.

outperforms Separate Arm Est.

Best-arm and Level Set Identification

Goal: Efficiently identify $z^* = \operatorname{argmax}_{z \in \mathbb{Z}} z^T \theta^*$, BAI, or $\mathbb{Z}_{\alpha} = \{ z \in \mathbb{Z} \}$ $\mathcal{Z}: z^{\top} \theta^* > \alpha$ }, LS, with $1 - \delta$ probability.

Intuition: Use Alg. 1 to estimate the heteroskedastic variances. Leverage $\hat{\sigma}_x^2$ to **minimize** the variance of the weighted least squares estimator in the directions that help identify the objective. Eliminate from the set of uncertain items until \mathcal{Z}_{α} or z^* is identified.

E	stimate	Minimize	Eliminate	
Algorithm 2: (H-RAGE) Heteroskedastic Randomized Adaptive Gap Elimination				
Result: Find $z^* := \arg \max_{z \in \mathbb{Z}} z^\top \theta^*$ for BAI or $G_\alpha := \{z \in \mathbb{Z} : z^\top \theta^* > \alpha\}$ for LS 1 Input: $\mathcal{X} \in \mathbb{R}^d$, $\mathcal{Z} \in \mathbb{R}^d$, confidence $\delta \in (0, 1)$, OBJ $\in \{BAI, LS\}$, threshold $\alpha \in \mathbb{R}$ 2 Initialize: $\ell \leftarrow 1$, $\mathcal{Z}_1 \leftarrow \mathcal{Z}$, $\mathcal{G}_1 \leftarrow \emptyset$, $\mathcal{B}_1 \leftarrow \emptyset$ 3 //Variance estimation 4 Call Alg. 1 such that $\left \widehat{\sigma}_x^2 = \min \left\{ \max\{x^\top \widehat{\Sigma}_{\Gamma} x, \sigma_{\min}^2\}, \sigma_{\max}^2 \right\} - \sigma_x^2 \right \le \sigma_x^2/2$				
5 while $(\mathcal{Z}_{\ell} > 1 \text{ and } OBJ=BAI) \text{ or } (\mathcal{Z}_{\ell} > 0 \text{ and } OBJ=LS)$ do 6 //Determine the design <				
			I and $q(\lambda, \mathcal{Z}_{\ell})$ if OBJ=LS where	
	$q(\mathcal{V}) = \inf_{\lambda \in P_{\mathcal{X}}} q(\lambda; \mathcal{V}) = \inf_{\lambda \in P_{\mathcal{X}}} \max_{z \in \mathcal{V}} z ^{2}_{(\sum_{x \in \mathcal{X}} \widehat{\sigma}_{x}^{-2} \lambda_{x} x x^{\top})^{-1}}$			
8 Set ϵ_{ℓ}	Set $\epsilon_{\ell} = 2^{-\ell}, \tau_{\ell} = 3\epsilon_{\ell}^{-2}q(\mathcal{Z}_{\ell})\log(8\ell^2 \mathcal{Z} /\delta)$ //Determine stepsize			
	Pull arm $x \in \mathcal{X}$ exactly $[\tau_{\ell} \widehat{\lambda}_{\ell,x}]$ times for n_{ℓ} samples and collect $\{x_{\ell,i}, y_{\ell,i}\}_{i=1}^{n_{\ell}}$			
10 Defin	Define $A_{\ell} \coloneqq \sum_{i=1}^{n_{\ell}} \widehat{\sigma}_i^{-2} x_{\ell,i} x_{\ell,i}^{\top}, \ b_{\ell} = \sum_{i=1}^{n_{\ell}} \widehat{\sigma}_i^{-2} x_{\ell,i} y_{\ell,i}$ and construct $\widehat{\theta}_{\ell} = A_{\ell}^{-1} b_{\ell}$			
	<pre>//Eliminate arms fightharpoonup of the second secon</pre>			
	$ \mathcal{Z}_{\ell+1} \leftarrow \mathcal{Z}_{\ell} \setminus \{ z \in \mathcal{Z}_{\ell} : \max_{z' \in \mathcal{Z}_{\ell}} \langle z' - z, \widehat{\theta}_{\ell} \rangle > \epsilon_{\ell} \} $			
15 G	$\mathcal{G}_{\ell+1} \leftarrow \mathcal{G}_\ell \cup \{z \in \mathcal{Z}_\ell : \langle z, \widehat{ heta_\ell} angle - \epsilon_\ell > lpha \}$			
	$ \begin{array}{ } \mathcal{B}_{\ell+1} \leftarrow \mathcal{B}_{\ell} \cup \{z \in \mathcal{Z}_{\ell} : \langle z, \widehat{\theta}_{\ell} \rangle + \epsilon_{\ell} < \alpha \} \\ \mathcal{Z}_{\ell+1} \leftarrow \mathcal{Z}_{\ell} \setminus \{\{\mathcal{G}_{\ell} \setminus \mathcal{G}_{\ell+1}\} \cup \{\mathcal{B}_{\ell} \setminus \mathcal{B}_{\ell+1}\}\} \end{array} $			
$\begin{array}{c c} 18 & \mathbf{end} \\ 19 & \ell \leftarrow \ell + 1 \end{array}$				
20 end 21 Output: Z_{ℓ} for BAI or \mathcal{G}_{ℓ} for LS				

Matches lower bound up to log factors with an additive dependency on κ

Theorem 4.2. Consider objective, OBJ, of best-arm identification (BAI) or level-set identification (LS). The set returned from Alg. 2 (H-RAGE) achieves OBJ with probability $1 - \delta$ at time $\tau =$ $\mathcal{O}\left(\psi_{\text{OBJ}}^* \log(\Delta^{-1}) \left[\log\left(\frac{|\mathcal{Z}|}{\delta}\right) + \log\{\log(\Delta^{-1})\} \right] + \log(\Delta^{-1}) d^2 + \log(\Delta^{ \log\left(\frac{|\chi|}{\delta}\right)\kappa^2 d^2$, where ψ^*_{OBJ} is such that $\mathbb{E}(\tau) \ge 2\log(\frac{1}{24\delta})\psi^*_{\text{OBJ}}$, and Δ is the minimum gap for the objective.

Multivariate Testing Simulation Example

We divide an advertisement into natural locations or features, each of which has different content options.

