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Introduction

In many problems, there is a set of items, 𝒵, with underlying structure, 

and the goal is to find which items are best using a set of noisy probes, 𝒳. 

It is natural that some of these probes are noisier than others.
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Drug Discovery: 𝒵 ⊂ 𝒳 ⊂ ℝ𝑑 

How do we adaptively select probes to measure?

Given: items 𝒵 ⊂ ℝ𝑑, probes 𝒳 ⊂ ℝ𝑑

Measure: At each time 𝑡, observe 𝑦𝑡 = 𝑥𝑡
⊤𝜃∗ + 𝜂𝑡 where

 

𝜂𝑡 ∼ 𝒩 0, 𝜎𝑡
2  and 𝜎𝑡

2 = 𝑥𝑡
⊤Σ∗𝑥𝑡,

and 𝜃∗ ∈ ℝ𝑑 and Σ∗ ∈ ℝ𝑑𝑥𝑑 are unknown.

Find: z∗ =  argmaxz∈𝒵  𝑧𝑇𝜃∗ or 𝒵𝛼 = { 𝑧 ∈ 𝒵: 𝑧⊤𝜃∗ > 𝛼 } with 

1 − 𝛿 probability 

Benchmark Example: Ignoring heteroskedasticity suffers a multiplicative 

dependency on  𝜅 = max
𝑥
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𝜃∗ = (1,0) 

Consider a learner that selects a fixed design 𝑥𝑡 𝑡=1
𝑇 , observes 

outcomes 𝑦𝑡 𝑡=1
𝑇 , and constructs the weighted least squares estimator 

with known heteroskedastic variances, መ𝜃: 

෡𝜃 − 𝜃∗ ∼ 𝒩 𝟎𝑑 , σ𝑡=1
𝑇 𝑥𝑡𝑥𝑡

⊤

𝜎𝑡
2

−1

. 

Goal: Reduce variance of ෡𝜃 in the directions most advantageous for 

identifying z∗ or 𝒵𝛼. 

Goal: Estimate heteroskedastic variances with error bounds that scale 

favorably in the problem dimension.

Intuition: After Γ samples, we estimate Σ∗ with ෢ΣΓ using an M-

estimation approach and decompose the error as 

Controlled by…

𝜎𝑥
2  − ෢𝜎𝑥

2 = 𝑥⊤ Σ∗  − ෢ΣΓ 𝑥 < 𝑨 + 𝑩 + 𝑪.

Theorem 3.1. Assume  Γ = Ω max 𝜎𝑚𝑎𝑥
2 log

𝒳

𝛿
 𝑑2, 𝑑2 . For any 

𝑥 ∈ 𝒳 and 𝛿 ∈ 0,1 , Alg. 1 (HEAD) guarantees the following,
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2 ≤ 𝐶Γ,𝛿 = 1 − 𝛿/2 and 𝐶Γ,𝛿 = 𝒪
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Γ

−
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Empirical Results

HEAD

optimally allocates samples 

efficiently estimates  

outperforms Uniform Est. 

outperforms Separate Arm Est. 

Goal: Efficiently identify z∗ =  argmaxz∈𝒵  𝑧𝑇𝜃∗, BAI, or 𝒵𝛼 = { 𝑧 ∈
𝒵: 𝑧⊤𝜃∗ > 𝛼 } , LS, with 1 − 𝛿 probability.

Intuition: Use Alg. 1 to estimate the heteroskedastic variances. 

Leverage ෢𝜎𝑥
2 to minimize the variance of the weighted least squares 

estimator in the directions that help identify the objective. Eliminate 

from the set of uncertain items until 𝒵𝛼 or z∗ is identified.

Estimate Minimize Eliminate

Theorem 4.2. Consider objective, OBJ, of best-arm identification 

(BAI) or level-set identification (LS). The set returned from Alg. 2 

(H-RAGE) achieves OBJ with probability 1 − 𝛿 at time 𝜏 =

𝒪 ቀ

ቁ

𝜓OBJ
∗ log Δ−1 log

𝒵

𝛿
+ log log Δ−1 + log(Δ−1) 𝑑2 +

log
𝒳

𝛿
𝜅2𝑑2 , where 𝜓OBJ

∗  is such that 𝔼 𝜏 ≥ 2 log(
1

2.4𝛿
) 𝜓OBJ

∗ , 

and Δ is the minimum gap for the objective.

Matches lower bound up to log factors 

with an additive dependency on  𝜿

Multivariate Testing 

Simulation Example

We divide an advertisement into 

natural locations or features, 

each of which has different 

content options. 

Scales with problem 

dimension, 𝒅𝟐

Knowing the 

variances 

changes the 

design

More variance

Less variance
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