A Data-Driven State Aggregation Approach for Dynamic Discrete Choice Models

Sinong Geng ${ }^{1}$, Houssam Nassif ${ }^{* 2}$, Carlos A. Manzanares ${ }^{3}$
Computer Science Department, Princeton University ${ }^{1}$, Meta ${ }^{2}$, Amazon ${ }^{3}$, *Work done at Amazon

Abstract

SAmQ

We propose state aggregation minimizing Q error (SAmQ).

Q error

$$
\begin{equation*}
\varepsilon_{Q}(\Pi):=\max _{(s, a) \in \mathscr{\mathscr { S }} \times \mathscr{A}}\left|Q^{\theta^{*}}(s, a)-Q^{\theta^{*}}(\Pi(s), a)\right| . \tag{4}
\end{equation*}
$$

Minimize the \mathbf{Q} error by clustering Consider a clustering problem with a distance function defined as

$$
\begin{equation*}
d\left(s, s^{\prime}\right):=\max _{a \in \mathscr{A}}\left|Q^{\theta^{*}}(s, a)-Q^{\theta^{*}}\left(s^{\prime}, a\right)\right| . \tag{5}
\end{equation*}
$$

Procedure

Step 1 Estimate $Q^{\theta^{*}}$ using IRL [2].
Step 2 Aggregate states by clustering.
Step 3 Estimate structural parameters using NF-MLE with aggregated states.

Algorithm SAmQ
1: Input Dataset: \mathbb{X}, n_{s}.
2: Output $\hat{\theta}$
3: $\hat{Q} \leftarrow \operatorname{DeepPQR}(\mathbb{D})$
4: $\hat{\Pi} \leftarrow$ Clustering $\left(\mathbb{D}, \hat{Q}, n_{s}\right)$
5: $\hat{\theta} \leftarrow \operatorname{NF}-\operatorname{MLE}(\mathbb{D}, \hat{\Pi})$
6: Return $\hat{\theta}$

Theory

Theorem 1 Under some assumptions

$$
\varepsilon_{a s y}(\Pi) \leq \frac{4}{C_{H}(1-\gamma)} \varepsilon_{Q}(\Pi)
$$

Theorem 2 Non-asymptotic error bounds are provided demonstarting the trade-off between variance and bias, with

$$
\begin{aligned}
& \text { BiasBound }:=\frac{4}{C_{H}(1-\gamma)}\left(\frac{R_{\max }+1}{1-\gamma} \frac{4}{n_{s}^{\frac{1}{n_{s}}}-1}+\varepsilon_{P}\right), \\
& \text { VarianceBound }:=\frac{4\left(R_{\max }+1\right)}{(1-\gamma) C_{H}} \sqrt{\frac{\log \left(\frac{4|\Theta|}{\delta}\right)}{2 N}} \\
& +\frac{R_{\max }+1}{(1-\gamma)^{2} C_{H}} \sqrt{\frac{\log \left(\frac{8 n_{s} n_{a}|\Theta|}{\delta}\right)}{2 N}} \frac{4}{C_{\text {uni }}-\sqrt{\frac{\log \left(\frac{4 n s n_{a} \Theta|\Theta|}{\delta}\right)}{2 N}}}
\end{aligned}
$$

Experiments

Table: Considered methods		
Methods	Category	State Aggregation Scheme
SAmQ	Proposed method	SAmQ
NF-MLE	DDM	No aggregation
PQR	IRL	No aggregation
NF-MLE-SA	DDM	By state values
PQR-SA	IRL	By state values
PQR-SAmQ	IRL	SAmQ

Table: MSE for structural parameter estimation

	Number of aggregated states n_{S}				
Methods	5	10	50	100	1000

NF-MLE 0.199 ± 0.020

PQR

(a) SAmQ

Figure: Aggregated states for a simple example with 2-dimensional states. A good aggregation ignores the dummy state, and aggregates by column.

References

[1] John Rust. Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher. Econometrica, pages 999-1033, 1987.
[2] Sinong Geng, Houssam Nassif, Carlos Manzanares, Max Reppen, and Ronnie Sircar. Deep PQR: Solving inverse reinforcement learning using anchor actions. In International Conference on Machine Learning, pages 3431-3441, 2020.

