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THE MOTIVATING PROBLEM

I Develop nonlinear mixed effects models for responses (Y ) that lie on curved spaces
such as the manifold of symmetric positive definite (SPD) matrices.

I Characterize complex morphological longitudinal brain changes using Cauchy
deformation tensors (CDTs) derived from MRI data.

I Capture subject-specific progression rate and disease onset time using non-linear
mixed effects models on CDTs
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Figure: Benefits of mixed effects models comparing to fixed effects models (GLM). Each subject has a
different progression rate of brain atrophy (acceleration) and has a different onset for atrophy.

EUCLIDEAN MIXED EFFECTS MODELS

Euclidean linear mixed effects model

yJijK =β0 + β1x1
JijK + · · · + βpxp

JijK + u1
i z1

JijK + · · · + uq
i zq

JijK + εJijK,

(OR) y i = Xiβ + Ziu i + ε,

where x JijK ∈ Rp, y JijK ∈ Rm and zJijK ∈ Rq

u i and ε are normally distributed.

Euclidean nonlinear mixed effects model

yJijK = β0 + βψi(x JijK) + uizJijK, where ψi(x) := αi(x − τi − t0) + t0.
(αi, τi,u i) are subject-specific random effects related to acceleration, onset time (time

shift), and intercept (spatial shift).

REGRESSION ON MANIFOLDS: BASIC OPERATIONS

Operation Subtraction Addition Distance Mean Covariance

Euclidean −→xixj = xj − xi xi +
−−→xjxk ‖−→xixj‖

∑n
i=1
−→̄
xxi = 0 E

[
(xi − x̄)(xi − x̄)T

]
Riemannian −→xixj = Log(xi, xj) Exp(xi,

−−→xjxk) ‖Log(xi, xj)‖xi

∑n
i=1 Log(x̄ , xi) = 0 E

[
Log(x̄ , xi)Log(x̄ , xi)

T
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ŷ2

v1, v2 are tangent vectors. Each entry
of independent variables (x1, x2) ∈ R2,
is multiplied by v1 and v2 respectively
in TpM. Here, x j

i denotes j-th entry of
the i-th instance.

RIEMANNIAN MIXED EFFECTS MODELS

Manifold-valued MGLM [1]

y = Exp
(
Exp

(
p, v1x1 + v2x2 + . . . + vnxn) , ε) ,

where ε ∼ 1
Z (µ,σ) exp

(
−d(y ,µ)2

2σ2

)
and Z (µ, σ) =

∫
M exp

(
−d(y ,µ)2

2σ2

)
is the normalization factor.

Riemannian linear mixed effects model

yJijK = Exp(Exp(Bi(r ), ΓB→Bi(r )(V )(x JijK − τi(r ))), ε).

Riemannian nonlinear mixed effects model (RNLMM)

yJijK = Exp(Exp(Bi, ΓB→Bi(V )αi(xJijK − τi − t0), εij)))

where Bi = Exp(B,Ui), ε ∼ 1
Z (µ,σ) exp

(
−d(y ,µ)2

2σ2

)
and Z (µ, σ) =

∫
M exp

(
−d(y ,µ)2

2σ2

)
is the normalization factor.

ESTIMATION OF CDTS AND PARALLEL TRANSPORT [2]

Figure: Schematic for generating least biased global coordinate system for the longitudinally acquired
imaging data. Visits V1-V4 are averaged first which are then used to estimate the global average.

FEATURES FOR MORPHOMETRIC CHANGES

Figure: An example panel of data generated in morphometric studies. (a, d) The moving and fixed brain image respectively.
(b) Warped spatial grid to move (a) to (d). (c) Vector field of local deformations. (e, f) A map of the det(J) of the deformation field.
(g, h) The Cauchy deformation tensor field (CDTs) (

√
JTJ). Among the different features of brain morphology that can be analyzed,

CDTs are the focus of this paper.

ALGORITHM
1: Calculate the Fréchet mean ȳ ∈M of population.
2: Calculate the Fréchet mean for each subject ȳi ∈M.
3: Estimate the main longitudinal change direction η
4: Calculate subject-specfic base points (random effects) Bi = Exp(B,U∗i ), where U∗i =argminUi

d(ȳi,Exp(B,Ui))2 + λUi‖Ui‖2
B.

5: y oij = ΓBi→ILog(Bi, yij).
6: while until convergence do
7: Calculate the common speed of change V = cη and common time intercept t0 = b/c with fixed all other variables by[∑

ij qT
i qi

∑
ij pT

ij qi∑
ij pT

ij qi
∑

ij pT
ij pij

] [
b
c

]
=

[∑
ij qT

i y oij∑
ij pT

ij y oij

]
,

where b := t0c, qi := η(1− αi),pij := η(αixij − αiτi).

8: Given V , t0, calculate the subject-specific acceleration αi, and time-shift τi by generalized least square estimation with the
priors for αi and τi = di/αi [ ∑

j W T
ij Wij −

∑
j W T

ij V∑
j W T

ij V −
∑

j V TV

][
αi

di

]
=

[ ∑
j ΥT

ij Wij∑
j ΥT

ij V

]
,

where Υij := y oij − Vt0, Wij := V (Xij − t0) and di = αiτi.
9: end while

CAUCHY DEFORMATION TENSORS VS. DET(J)

Figure: Results of Cramér’s test showing voxels that are different between middle and old age groups (p < 0.01) from (a) CDTs
and (b) det(J).

RELATIVE SPEED MAPS OF MORPHOMETRIC CHANGES

Figure: Representative acceleration (αi) maps from RNLMM. (a) Female, APOE-. (b) Female, APOE+. (c)
Male, APOE-. (d) Male, APOE+. The male with no APOE risk shows slower progression (blue regions)
compared to the population average.

GROUP DIFFERENCE IN SUBJECT-SPECIFIC SPATIAL SHIFTS

Figure: P-value maps of group differences in random effects (Ui). Left: Gender. Right: APOE group {APOE+,
APOE-}. Group differences can be effectively captured by RNLMM based on CDT.

GROUP (GENDER) DIFFERENCE IN Ui AVERAGED IN ROIS

Figure: Gender difference. RNLMM based on CDTs (left) found significant difference from 29 ROIs whereas
RNLMM based on determinants (right) found 9 ROIs.
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