

Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging

THE MOTIVATING PROBLEM

- Develop nonlinear mixed effects models for responses (Y) that lie on curved spaces such as the manifold of symmetric positive definite (SPD) matrices.
- Characterize complex morphological longitudinal brain changes using Cauchy deformation tensors (CDTs) derived from MRI data.
- Capture subject-specific progression rate and disease onset time using non-linear mixed effects models on CDTs

Figure: Benefits of mixed effects models comparing to fixed effects models (GLM). Each subject has a different progression rate of brain atrophy (acceleration) and has a different onset for atrophy.

EUCLIDEAN MIXED EFFECTS MODELS

Euclidean linear mixed effects model

$$\mathbf{y}_{[ij]} = \beta^{0} + \beta^{1} \mathbf{x}_{[ij]}^{1} + \dots + \beta^{p} \mathbf{x}_{[ij]}^{p} + \mathbf{u}_{i}^{1} \mathbf{z}_{[ij]}^{1} + \dots + \mathbf{u}_{i}^{q} \mathbf{z}_{[ij]}^{q} + \epsilon_{[ij]},$$

(OR) $\boldsymbol{y}_i = X_i \boldsymbol{\beta} + Z_i \boldsymbol{u}_i + \epsilon$,

where
$$\boldsymbol{x}_{[ij]} \in \mathbf{R}^{p}$$
, $\boldsymbol{y}_{[ij]} \in \mathbf{R}^{m}$ and $\boldsymbol{z}_{[ij]} \in \mathbf{R}^{q}$

 \boldsymbol{u}_i and ϵ are normally distributed.

Euclidean nonlinear mixed effects model

 $\mathbf{y}_{[ij]} = eta_0 + \mathbf{\beta}\psi_i(\mathbf{x}_{[ij]}) + \mathbf{u}_i\mathbf{z}_{[ij]}, \text{ where } \psi_i(\mathbf{x}) := \alpha_i(\mathbf{x} - \tau_i - t_0) + t_0.$

 $(\alpha_i, \tau_i, \boldsymbol{u}_i)$ are subject-specific random effects related to acceleration, onset time (time shift), and intercept (spatial shift).

CVPR 2017

REGRESS	SION ON MAI	NIFOLDS:	BASIC OPE	RATIONS	
Operation	Subtraction	Addition	Distance	Mean	Covariance
Euclidean	$\overrightarrow{x_i}\overrightarrow{x_j} = x_j - x_i$	$x_i + \overrightarrow{x_j x_k}$	$\ \overrightarrow{x_ix_j}\ $	$\sum_{i=1}^{n} \overrightarrow{\overline{x}x_i} = 0$	$\mathbb{E}\left[(x_i-\bar{x})(x_i-\bar{x})^T ight]$
Riemannian	$\overrightarrow{x_ix_j} = Log(x_i, x_j)$	$\operatorname{Exp}(x_i, \overrightarrow{x_j x_k})$	$\ \text{Log}(x_i, x_j)\ _{x_i}$	$\sum_{i=1}^{n} \operatorname{Log}(\bar{x}, x_i) = 0$	$\mathbb{E}\left[Log(\bar{x}, x_i)Log(\bar{x}, x_i)^T\right]$
	$\begin{array}{c} p \\ x_1^2 \\ x_2^2 \\ y_2 \\ y_2$	$x_1^1 x_2^1 v_1$	is n in 7	nultiplied by v ₁	vectors. Each entry iables $(x^1, x^2) \in \mathbf{R}^2$, and v_2 respectively lenotes <i>j</i> -th entry of
RIEMANNIAN MIXED EFFECTS MODELS					
Manifold-	alued MGLM	[1]			
$y = \exp\left(\exp\left(p, v^{1}x^{1} + v^{2}x^{2} + \ldots + v^{n}x^{n}\right), \epsilon\right),$ where $\epsilon \sim \frac{1}{Z(\mu,\sigma)} \exp\left(-\frac{d(y,\mu)^{2}}{2\sigma^{2}}\right)$ and $Z(\mu,\sigma) = \int_{\mathcal{M}} \exp\left(-\frac{d(y,\mu)^{2}}{2\sigma^{2}}\right)$ is the normalization factor.					
Riemannia	an linear mixe	d effects m	odel		
$\boldsymbol{y}_{[\![\boldsymbol{i}\boldsymbol{j}]\!]} = Exp(Exp(\boldsymbol{B}_{\boldsymbol{i}}(\boldsymbol{r}), \boldsymbol{\Gamma}_{\boldsymbol{B} \rightarrow \boldsymbol{B}_{\boldsymbol{i}}(\boldsymbol{r})}(\boldsymbol{V})(\boldsymbol{x}_{[\![\boldsymbol{i}\boldsymbol{j}]\!]} - \tau_{\boldsymbol{i}}(\boldsymbol{r}))), \epsilon).$					
Riemannia	an nonlinear n	nixed effect	s model (RN	LMM)	
$\begin{split} y_{\llbracket ij \rrbracket} &= Exp(Exp(B_i, \Gamma_{B \to B_i}(V) \alpha_i(x_{\llbracket ij \rrbracket} - \tau_i - t_0), \epsilon_{ij}))) \\ \text{where } B_i &= Exp(B, U_i), \epsilon \sim \frac{1}{Z(\mu, \sigma)} exp\left(-\frac{d(y, \mu)^2}{2\sigma^2}\right) \\ \text{and } Z(\mu, \sigma) &= \int_{\mathcal{M}} exp\left(-\frac{d(y, \mu)^2}{2\sigma^2}\right) \text{ is the normalization factor.} \end{split}$					
ESTIMATION OF CDTS AND PARALLEL TRANSPORT [2]					
Figure: Schematic for generating least biased global coordinate system for the longitudinally acquired maging data. Visits V1-V4 are averaged first which are then used to estimate the global average.					

Hyunwoo J. Kim, Nagesh Adluru, Heemanshu Suri, Baba C. Vemuri, Sterling C. Johnson, Vikas Singh

http://pages.cs.wisc.edu/~hwkim/projects/riem-mem/

Figure: Representative acceleration (α_i) maps from RNLMM. (a) Female, APOE-. (b) Female, APOE+. (c) Figure: An example panel of data generated in morphometric studies. (a, d) The moving and fixed brain image respectively. Male, APOE-. (d) Male, APOE+. The male with no APOE risk shows slower progression (blue regions) (b) Warped spatial grid to move (a) to (d). (c) Vector field of local deformations. (e, f) A map of the det(J) of the deformation field. compared to the population average. (g, h) The Cauchy deformation tensor field (CDTs) ($\sqrt{J^T J}$). Among the different features of brain morphology that can be analyzed, CDTs are the focus of this paper.

ALGORITHM

- 1: Calculate the Fréchet mean $\bar{y} \in \mathcal{M}$ of population.
- 2: Calculate the Fréchet mean for each subject $\bar{y}_i \in \mathcal{M}$.
- 3: Estimate the main longitudinal change direction η
- 4: Calculate subject-specific base points (random effects) $B_i = \text{Exp}(B, U_i^*)$, where $U_i^* = \text{argmin}_{U_i} d(\bar{y}_i, \text{Exp}(B, U_i))^2 + \lambda_{U_i} ||U_i||_B^2$. 5: $y_{ii}^{\wr} = \Gamma_{B_i \rightarrow I} \text{Log}(B_i, y_{ij}).$
- 6: while until convergence do
- Calculate the common speed of change $V = c\eta$ and common time intercept $t_0 = b/c$ with fixed all other variables by

$$\begin{bmatrix} \sum_{ij} q_i^T q_i & \sum_{ij} p_{ij}^T q_i \\ \sum_{ij} p_{ij}^T q_i & \sum_{ij} p_{ij}^T p_{ij} \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} \sum_{ij} q_i^T y_{ij}^2 \\ \sum_{ij} p_{ij}^T y_{ij}^2 \end{bmatrix},$$

where $\boldsymbol{b} := \boldsymbol{t}_0 \boldsymbol{c}, \, \boldsymbol{q}_i := \eta (\boldsymbol{1} - \alpha_i), \boldsymbol{p}_{ij} := \eta (\alpha_i \boldsymbol{x}_{ij} - \alpha_i \tau_i).$

Given V, t_0 , calculate the subject-specific acceleration α_i , and time-shift τ_i by generalized least square estimation with the priors for α_i and $\tau_i = d_i / \alpha_i$

$$\begin{bmatrix} \sum_{j} \boldsymbol{W}_{ij}^{T} \boldsymbol{W}_{ij} & -\sum_{j} \boldsymbol{W}_{ij}^{T} \boldsymbol{V} \\ \sum_{j} \boldsymbol{W}_{ij}^{T} \boldsymbol{V} & -\sum_{j} \boldsymbol{V}^{T} \boldsymbol{V} \end{bmatrix} \begin{bmatrix} \alpha_{i} \\ \boldsymbol{d}_{i} \end{bmatrix} = \begin{bmatrix} \sum_{j} \Upsilon_{ij}^{T} \boldsymbol{W}_{ij} \\ \sum_{j} \Upsilon_{ij}^{T} \boldsymbol{V} \end{bmatrix}$$

where $\Upsilon_{ij} := y_{ij}^{\wr} - Vt_0$, $W_{ij} := V(X_{ij} - t_0)$ and $d_i = \alpha_i \tau_i$. 9: end while

CAUCHY DEFORMATION TENSORS VS. DET(J)

Figure: Results of Cramér's test showing voxels that are different between middle and old age groups (p < 0.01) from (a) CDTs and (b) det(J).

Research supported by NIH grants AG040396, AG021155, BRAIN Initiative R01-EB022883, UW ADRC AG033514, UW ICTR 1UL1RR025011, Waisman IDDRC U54-HD090256, UW CPCP AI117924, and NSF grants: CAREER award 1252725 (VS), IIS 1525431 (BCV).

UF UNIVERSITY of FIORIDA

GROUP DIFFERENCE IN SUBJECT-SPECIFIC SPATIAL SHIFTS

Figure: P-value maps of group differences in random effects (U_i). Left: Gender. Right: APOE group {APOE+ APOE-}. Group differences can be effectively captured by RNLMM based on CDT.

GROUP (GENDER) DIFFERENCE IN U_i **AVERAGED IN ROIS**

Gender difference. RNLMM based on CDTs (left) found significant difference from 29 ROIs whereas RNLMM based on determinants (right) found 9 ROIs.

REFERENCE

- 1] H.J. Kim et al., "Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images." CVPR, 2014.
- [2] M. Lorenzi and X. Pennec, "Efficient parallel transport of deformations in time series of images: from Schilds to pole ladder." JMIV, 2014.
- [3] Schiratti et al., "Learning spatiotemporal trajectories from manifold-valued longitudinal data." NIPS, 2015.