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Abstract

Probability density functions (PDFs) are fundamental

objects in mathematics with numerous applications in com-

puter vision, machine learning and medical imaging. The

feasibility of basic operations such as computing the dis-

tance between two PDFs and estimating a mean of a set of

PDFs is a direct function of the representation we choose

to work with. In this paper, we study the Gaussian mix-

ture model (GMM) representation of the PDFs motivated

by its numerous attractive features. (1) GMMs are arguably

more interpretable than, say, square root parameterizations

(2) the model complexity can be explicitly controlled by the

number of components and (3) they are already widely used

in many applications. The main contributions of this pa-

per are numerical algorithms to enable basic operations on

such objects that strictly respect their underlying geometry.

For instance, when operating with a set of K component

GMMs, a first order expectation is that the result of simple

operations like interpolation and averaging should provide

an object that is also a K component GMM. The litera-

ture provides very little guidance on enforcing such require-

ments systematically. It turns out that these tasks are impor-

tant internal modules for analysis and processing of a field

of ensemble average propagators (EAPs), common in dif-

fusion weighted magnetic resonance imaging. We provide

proof of principle experiments showing how the proposed

algorithms for interpolation can facilitate statistical anal-

ysis of such data, essential to many neuroimaging studies.

Separately, we also derive interesting connections of our al-

gorithm with functional spaces of Gaussians, that may be of

independent interest.

1. Introduction
Gaussian mixture models (GMM) are a fundamental sta-

tistical tool deployed in a broad spectrum of applications in
computer vision. These include modeling the foreground
scribbles for segmentation [22], tracking [12], discriminant
analysis [29], registration [15], action recognition [21], im-
age indexing [26] and computing motion features [5]. Their

properties are well studied and efficient implementations
are available as part of popular software libraries in com-
puter vision, machine learning and statistics.

A K component GMM (K-GMM for short) is a proba-
bility density function given as a weighted sum of K Gaus-
sian densities,

p(x|⇥) =

KX

j=1

⇡jN (x|µj ,⌃j

) (1)

where the mean and covariance of the mixing components
are given by µj and ⌃

j respectively, ⇡j gives the cor-
responding weight and ⇥ = {µj ,⌃j}K

j=1. Let G =

{GK

1 , · · · ,GK

N

} denote a set of N K-GMMs. This paper
studies the problem of interpolating between GK

1 , · · · ,GK

N

to derive an interpolant, ˆG. Our main requirement on ˆG is
that it should correspond to a K-GMM for a given K. In ad-
dition to this constraint, based upon the needs of the specific
application, the interpolation task may correspond to an av-
eraging operation over G or alternatively, when |G| = 2,
we may ask for a continuous interpolation �(GK

i

, t) such
that �(GK

i

, 0) = GK

i

and �(GK

i

, 1) = GK

j

for any i, j and
for any offset, t 2 [0, 1]. The question of whether this prob-
lem permits efficient solution schemes is interesting enough
in its own right to merit careful investigation. It turns out
that such an algorithm, if available, will be immediately
applicable to (or facilitate) a variety of tasks in computer
vision, machine learning and medical imaging with minor
changes. Below, as motivation, we provide a sampling of
such applications.

Problem 1: Spatial transformations of diffusion PDFs

[10, 7, 8]. An important scientific frontier today is to es-
tablish a connectome of the human brain [23]. Diffusion
weighted magnetic resonance (MR) is one of the tools be-
ing used to help answer the underlying analysis questions.
It exploits the physical phenomenon of diffusion of water
to image the microstructure of the white matter pathways in
the brain [7]. An object estimated from such MR measure-
ments is the so-called ensemble average propagator (EAP),
a PDF describing the diffusivity profiles of water molecules
on spheres of varying radii at the micrometer scale. The
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EAP can be conveniently represented as a K-GMM which
can help resolve up to K crossing of white matter pathways
at a voxel. Now, given two images (source and target) where
each voxel has a K-GMM, the registration task involves ap-
plying a spatial transform to the source image to align it
with the target image. Recall that the most basic routine
needed in applying such a transformation is a way to esti-
mate a ‘value’ for each voxel in the transformed image via
interpolation (e.g., bi-linear). Since both the source and tar-
get images are a field of K-GMMs, an interpolation routine
for K-GMMs is essential – in contrast, a naı̈ve interpola-
tion here will output a (NK)-GMM if |G| = N , clearly
blowing up the model complexity.

Problem 2: Matching point sets [15]. Consider the prob-
lem of matching one point set to another where we seek
the best alignment between the transformed “model” set
and the target “scene” set — common in shape matching
and model-based segmentation. In contrast to identifying
point-to-point correspondence, a class of fairly successful
recent approaches [18] statistically model each of the two
point sets by a PDF. Then, a suitable distance measure be-
tween the two distributions, d(·, ·) is minimized over the
transformation parameters, ⌧ . Kernel density based and
GMM based representations are quite popular. Assume
that the two point sets are defined as S and T . To align
K-GMM(⌧(S)) and K-GMM(T ), the optimization pro-
ceeds by taking incremental steps along r

⌧

d, until conver-
gence. However, right after the first gradient update, we
leave the feasibility region of K component GMMs. As
a result, most methods are unable to provide intermediate
evolution steps along the transformation that are members
of the same set as the source and the target models, i.e., a K-
GMM. In contrast, with a minor modification (i.e., plugging
in our method), this ability can be obtained with a nominal
additional cost.

Problem 3: Statistical compressed sensing [27]. Let
f 2 Rp be a function (or signal) and � 2 RN⇥p denote
the so-called sensing matrix. We are provided measure-
ments y = �f . The recovery of f from �f is ill-posed
in general when N ⌧ p. Compressed sensing significantly
generalizes the regime under which such recovery is possi-
ble based on incoherence between the sensing and a certain
‘representation’ basis, see [9]. Statistical compressed sens-
ing (SCS) takes this argument further by considering the
situation where one is interested in reconstructing not just
one but an entire sequence of signals, f1, f2 · · · . Here, SCS
assumes that f

i

is drawn from a GMM — which enables
additional improvements in recovery. When deployed in a
‘streaming’ setup, the current GMM prior in SCS (say, at
time t) is incrementally updated based on the current mea-
surement (t + 1). Our proposed algorithm offer a potential
improvement: by providing a moving average version of the
to-be-updated GMM prior by constructing a weighted (or

unweighted) mean of the previous t GMMs. This will likely
be immune to local fluctuations or noise in the streaming
measurements.

The main contributions of this paper are to develop a
systematic framework for performing interpolation on the
manifold of K component GMMs. It will take in as input a
set of GMMs and a specific interpolation task and provide
a K-GMM as an output that optimizes the interpolation ob-
jective. While the primary focus of this work is theoretical,
we provide experiments demonstrating the expected behav-
ior of the algorithm. Separately, we highlight some interest-
ing connections of this formulation with functional spaces
of Gaussians. Next, section 2 introduces some basic con-
cepts relevant to K-GMMs. Sections 3 and 4 present our
core algorithms followed by experimental results and con-
clusions in sections 5 and 6 respectively.

2. Preliminaries
To our knowledge, there are no existing algorithms for

interpolating a set of K-GMMs; on the other hand, there is

a mature body of research for tackling the setting where the
objects to be interpolated are probability density functions
(PDFs) [24, 4, 19, 17]. So one might ask, why not simply
use PDFs? We will present several specific reasons in the
section below.

Observe that the actual formulation for interpolation will
depend on the specific parameterization we choose to rep-
resent the PDF as well as the distance metric. To make
this point concrete, let us review a few example parame-
terizations and distance metrics. With these two pieces, the
corresponding interpolation/averaging operation is simple
to derive. Evaluation of their advantages or limitations in
the K-GMM setting will then become apparent.

2.1. PDF parameterizations and distances
Parameterization. First, let us consider a simple ex-

pression for computing the mean of probability densities
{f

i

}N
i=1,

ˆf = argmin

f2F

NX

i=1

w
i

d(�(f),�(f
i

))

2 (2)

where �(·) is a mapping function for parameterizing the
given probability densities, d(·, ·) is a distance metric and
w

i

is a weight for f
i

. Some parameterizations will allow
using tools from differential geometry for deriving efficient
algorithms [24]. Clearly, there are multiple options for pa-
rameterization but some specific ones form a set (the so
called unit Hilbert sphere in `2-space) and are mathemat-
ically convenient. We can parameterize a given set of PDFs
so that they lie in this set. The mapping is bijective when
restricted to non-negative functions i.e., every element in
the unit Hilbert sphere can be mapped back to a PDF. For



example, the square root parameterization simply takes the
square-root of the PDF value. If, for example, the PDF was
parameterized using a K-GMM then,

f(x|⇥) =

p
p(x|⇥) =

vuut
KX

j=1

⇡jN (x|µj ,⌃j

) (3)

By inspection, the `2-norm of f is always 1 sinceqR
f(x)f(x)dx =

R
p(x)dx = 1. Notice that this is a re-

parameterization of the original PDF (which was provided
as a K-GMM).

Normalization. Alternatively, we can normalize the
PDFs by dividing by the `2-norm, which only changes the
scale and not the shape of the model.

p0(x) = p(x)/kp(x)k2, (4)

where k · k2 is the standard `2-norm for functions. For the
special case of GMMs, we have

kG
i

k22 =

KX

j

KX

j

0

⇡j⇡j

0
N (µj |µj

0
,⌃j

+ ⌃

j

0
), (5)

where G
i

denotes a representative GMM.
Distances. Let us now consider the calculation of dis-

tances. Let p0
i

(x) = p
i

(x)/kp
i

(x)k2. Recall that for two
different functions, the `2-distance is given as

kf1 � f2k2 =

✓Z

X

|f1(x)� f2(x)|2dµ(x)
◆1/2

. (6)

Then, the normalized `2-distance (d
n-`2 ) is simply the `2-

distance between the normalized PDFs [13],

d
n-`2(p1, p2) =

Z
(p01(x)� p02(x))

2dx (7)

= 2(1�
Z

X
p01(x)p

0
2(x)dx).

Geodesics and Divergences. Instead of the `2-distance,
we can also calculate the geodesic distance on the unit
Hilbert sphere. Let p0

i

(x) = p
i

(x)/kp
i

(x)k2. Then, the
geodesic distance between normalized PDFs is

d
n-geo(p1, p2) = cos

�1hp01, p02i2 = cos

�1
(

Z

X
p01(x)p

0
2(x)dx)

This is interesting because the geodesic distance here ad-
mits a closed form solution.

The KL-divergence [16] is another possibility, albeit not

a metric, that can be used as a information theoretic diver-
gence between probability density functions f(x) and g(x).
It is also known as relative entropy and given by

D(f ||g) :=
Z

f(x) log
f(x)

g(x)
dx. (8)

The KL-divergence between two GMMs cannot be obtained
analytically and so various approximations have been pro-
posed [11]. Shortly, we will discuss the relationship be-
tween the KL-divergence/cross entropy and the log likeli-
hood which will suggest natural EM style algorithms.

How many components? PDFs and K-GMMs. With
these concepts in hand, it is easy to verify what happens
when we seek to interpolate GMMs but the only tool we
have available is an interpolation routine for PDFs. In gen-
eral, given a set of GMMs, if we consider them simply as
PDFs, the mean derived from the geodesic distance (with
the square root parameterization) may not even be a GMM.
However, it turns out (proof given later), that the simple
arithmetic mean of PDFs, i.e., ¯f =

P
N

i

f
i

/N is optimal
with respect to the `2-metric for PDFs. Unfortunately, the
main difficulty is that when given N GMMs with K com-
ponents each, the arithmetic mean solution will not be a K
component GMM (instead, a GMM with N ⇥ K compo-
nents),

¯G =

nX

i

G
i

/N =

NX

i=1

KX

j=1| {z }
N⇥K components

⇡j

i

N
N (µj

i

,⌃j

i

).

If one needs the interpolation of K-GMMs to be a K-
GMM, to our knowledge, there are no existing solutions.
We address this problem in the later sections with a fo-
cus on `2-distance and KL-divergence/cross entropy which,
roughly speaking, corresponds to the least squares and log-
likelihood functions of a finite number of samples in the
classical GMM setting.

3. A gradient descent scheme for `2-distance
Let G(K) denote the manifold of K-GMMs. We will

first describe an optimization scheme to directly minimize
the `2-distance in G(K) which is used for the interpolation
objective.

Computing the `2-mean in G(K). First, we will de-
rive an algorithm for calculating the mean for a set F =

{F1, · · · ,Fn

} where 8j,F
i

2 G(K) w.r.t `2 metric. Sec-
ond, for the case where |F| = 2, we will derive a ‘path’
from F

i

to F
j

, which never leaves the feasibility region i.e.,
G(K). This construction will provide a meaningful distance
measure which respects the geometry of G(K).

The `2-mean (arithmetic mean) of {F
n

}N
n=1 minimizes

the sum of squared `2-distances to each F
i

2 F,

¯F = argmin

G

NX

n=1

kG � F
n

k22 (9)

As discussed in Section 2, we have ¯F 2 G(NK) (the
blowup in the number of components). Instead, we require



a GMM ˆG 2 G(K). Our algorithm has two steps. First, we
find ¯F and then find the closest K-component GMM to ¯F ,
i.e., we will minimize (10)

ˆG = arg min

G2G(K)
kG � ¯Fk22 (10)

This may seem like a very loose relaxation. That is, is
there a ˆG0 2 G(K) that is farther from ¯F but achieves a
lower objective function value for (9)? The following result
shows that this cannot be the case.

Lemma 1. The mean of a finite number of functions {F
n

}N
n

with respect to `2 metric is the closest G⇤
to the `2-mean

¯F =

P
N

n

Fn
N

.

Proof.

G

⇤ = arg min
G2G(K)

NX

n

kFn � Gk

2
2

= arg min
G2G(K)

NX

n

kFnk
2
2 � 2

NX

n

hFn,Gi2 +NkGk

2
2

= arg min
G2G(K)

1

N

NX

n

kFnk
2
2 � 2

*PN
n Fn

N
,G

+

2

+ kGk

2
2

= arg min
G2G(K)

�2

*PN
n Fn

N
,G

+

2

+ kGk

2
2

= arg min
G2G(K)

k

1

N

NX

n

Fnk
2
2 � 2h

1

N

NX

n

Fn,Gi2 + kGk

2
2

= arg min
G2G(K)

k

1

N

NX

n

Fn � Gk

2
2

= arg min
G2G(K)

kF̄ � Gk

2
2

This result suggests that (10) is indeed equivalent to (9)
with the constraint G 2 G(K).

Optimization scheme. To optimize (10), we first initial-
ize the solution and then perform incremental gradient de-
scent steps. The main terms in the gradient update step are
described below and are computed using ¯F and G, the for-
mer has L(= NK) components and the latter has K com-
ponents.

Let L denote the objective function in (10). The three
main variables to optimize over are the component weights
⇡j

G , means µj

G and covariances ⌃

j

G , where i and j in-
dex components in ¯F and G respectively. Let cj,iG,F̄ :=

N (µj

G |µi

F ,⌃
j

G + ⌃

i

F ). The derivative w.r.t. ⇡j

G takes the
form,

@L
@⇡j

G
= 2

0

@
KX

j

0=1

⇡j

0

G cj,j
0

G,G �
LX

i=1

⇡i

F̄c
j,i

G,F̄

1

A

The derivative w.r.t. µj

G is given as

@L
@µj

G
= 2⇡j

G

0

@
KX

j

0 6=j

⇡j

0

G
@

@µj

G
cj,j

0

G,G �
LX

i=1

⇡i

F̄
@

@µj

G
cj,iG,F̄

1

A ,

whereas the derivative @L
@⌃j

G
is

⇣
⇡j
G

⌘2 @

@⌃j
G
cj,jG,G + 2⇡j

G

0

@
KX

j0 6=j

⇡j0

G
@

@⌃j
G
cj,j

0

G,G �
LX

i=1

⇡i
F

@

@⌃j
G
cj,iG,F̄

1

A .

The extended version of the paper includes the detailed
derivations. The gradient is calculated by putting together
the three terms above and the step size is determined us-
ing a standard line search procedure [20]. We repeat until
convergence.

Special case: Identifying a path in G(K)
between F

start

and F
end

. A special case for the interpolation scheme above
is when we want to interpolate between just two K com-
ponent GMMs, Fstart and Fend, and recover a shortest path
{G

t

}T
t=1 that does not leave the feasibility region, G(K) and

G0 = Fstart and G
T+1 = Fend. As can be expected, one can

identify such a path with a minor change of the algorithm
described above. Then, our objective function is,

min

{Gt}T
t=1

TX

t=0

kG
t

� G
t+1k22, s.t. G

t

2 G(K) 8t. (11)

Letting d
T

:=

P
T

t=0 kG⇤
t

�G⇤
t+1k2, we have lim

T!1 d
T

=

d(Fstart,Fend), the geodesic distance between Fstart and Fend
in G(K). Further details on the minimization are given in
the extended version.

4. An EM algorithm for KL-divergence
Our initial experiments reveal that minimizing `2-

distance via gradient descent with the constraint of stay-
ing on the G(K) manifold is technically correct but prone
to instability due to many local optima. For example, the
gradient descent method works well when the covariance
matrices are diagonally dominant (isotropic) but tends to
yield unsatisfactory results when the estimated covariances
matrices need to be projected back to satisfy the “⌫ 0” con-
straint. To address this issue, we describe an alternate al-
gorithm that avoids such a projection step. To motivate this
setup, observe that in the preceding section, the overall in-
terpolation task comprised of modules/steps for finding the
closest K-GMM to a given L component GMM, see (10).
So, any potential solution to the foregoing numerical issue
must be addressed at the level of this module.

Consider a very special case of the module above where
L is arbitrary but K = 1. Interestingly, it turns out that
if we use cross-entropy instead of the `2-distance between
GMMs, Lemma 2 suggests that that there is a closed form
solution which involves no numerical difficulties. Notice
that no such result exists for `2-distance. So, if we can ex-
tend this result to the case where K > 1, we can efficiently
solve the problem while ensuring that the procedure is nu-
merically stable. In fact, this idea will form the core of our



proposal described next where we first decouple the compo-
nents in the “E” step and use a closed form solution for each
component in the “M” step. In fact, our scheme optimizes
the KL-divergence which is equivalent to cross-entropy in
this case.

The interpolation of multiple GMMs is obtained by min-
imizing,

G⇤
= arg min

G2G(K)

NX

n=1

D(F
n

||G) (12)

We observe that the expression in (12) is equivalent to,

arg min

G2G(K)
D(

¯F||G)

= arg min

G2G(K)

Z
¯F(x) log

¯F(x)

G(x) dx

= arg min

G2G(K)
�
Z

¯F(x) log G(x)dx.

(13)

Letting G(x) =

P
K

j=1 wj

g
j

(x), the objective function is
given by

G⇤
= arg max

G2G(K)

Z
¯F(x) log

KX

j=1

w
j

g
j

(x)dx,

= arg max

g2G(K)
EF̄(x)[log

KX

j=1

w
j

g
j

(x)].

(14)

We note that this formulation can also be interpreted as find-
ing the best code book in G(K), namely, G⇤

(x) to represent
¯F(x).

The E and M steps are presented in Fig. 1. Detailed
derivations are provided in the extended version.

Lemma 2. Given GMM f(x) :=
P

L

i

⇡
i

f
i

(x), where f
i

(x)
is a Gaussian distribution, the minimum cross entropy / KL-

divergence between f(x) and an unknown single Gaussian

g := N (x;µ,⌃) is obtained by (µ⇤,⌃⇤
),

(µ⇤,⌃⇤
) = argmin

µ,⌃
H(f(x),N (x;µ,⌃)), (16)

where µ⇤
= E

f(x)[x] and ⌃

⇤
= E

f(x)[(x�µ⇤
)(x�µ⇤

)

T

].

The closed form of (µ⇤,⌃⇤
) is in (15). Proof is provided

in the extended paper.
In the case of EAPs (introduced in section 5), the GMMs

have a special property that all µ
j

s are zero. It is easy to
verify that if the input EAPs are comprised of zero mean
Gaussians, the algorithm in Fig. 1 does yield a valid EAP
(k-GMM with zero means). However, our goal is not to
merely obtain ‘valid’ EAPs but to minimize the potential
change in anisotropy (of the EAPs) using our interpolation.
EAPs (with zero mean Gaussians) imply that their compo-
nents overlap significantly at their modes. We found that

E-step: Let ⇥ = {w
j

, µ
j

,⌃
j

}K
j=1, ¯F(x) =

P
NK

i=1 ⇡
i

f
i

(x)
and X

i

be a set of points with density function f
i

(x). Then
we have,

�
ij

:= p(z
i

= j|X
i

,⇥) =

w
j

exp [�H(f
i

, g
j

)]

P
K

j

0 w
j

0
exp[�H(f

i

, g
j

0
)]

Note that �
ij

is the likelihood that the ith component of ¯F
corresponds to jth in G†. H(f

i

, g
j

) is analytically obtained
as,

1

2

{k log 2⇡+ log |⌃j |+ tr[⌃�1
j ⌃i] + (µi �µj)

T
⌃

�1
j (µi �µj)}

M-step:

w
j

=

P
NK

i=1 ⇡
i

�
ijP

K

j

0=1

P
NK

i

0=1 ⇡i

0�
i

0
j

0

µ
j

= EF̄ 0(x)[x] =

NKX

i=1

⇡0
i

µ
i

⌃

j

= EF̄ 0(x)[(x� µ
j

)(x� µ
j

)

T

]

=

NKX

i=1

⇡0
i

⌃

i

+

NKX

i=1

⇡0
i

(µ
i

� µ
j

)(µ
i

� µ
j

)

T

(15)

where ¯F 0
=

P
NK

i=1 ⇡0
i

f
i

(x), and ⇡0
i

=

⇡i�ijP
i ⇡i�ij

, for fixed j.

†It is probably more natural to write p(zi = j|fi, ✓) rather than p(zi =
j|Xi, ✓). We choose the latter notation because it is closer to how an EM
procedure for classical GMMs is typically explained and better shows the
relationship between log-likelihood and cross-entropy.

Figure 1: EM algorithm minimizing cross entropy.

their differences are much less accurately captured by cross-
entropy. In practice, this may lead the algorithm towards
inaccurately big ellipsoids since it averages different Gaus-
sians (in the EAPs) with relatively similar responsibility �

ij

.
This problem is directly addressed by our modified EM

algorithm in Fig 2. First, we use the `2 distance for the
E-step to capture the differences. In addition, by introduc-
ing the simplest covariance function C

j

for each compo-
nent, we allow each component to have different densities
in the functional space. In other words, even though some
Gaussians within an EAP may overlap substantially, if C

j

is
small enough, our algorithm is still able to distinguish them
nicely and assign significantly different responsibility. This
makes our approach very robust.

This modified algorithm, which estimates four parame-
ters for each component (w

j

, µ
j

,⌃
j

, C
j

), drives the EAP
experiments presented in this paper. Note that as a by-
product of EM algorithms, all our EM-algorithms described



E-step: Estimate the responsibilities of data PDFs to com-
ponents of our model,

�ij =

wjC
�1
j exp

✓
� 1

2C2
j
kfi � gjk22

◆

PK
k=1 wkC

�1
k exp

⇣
� 1

2C2
k
kfi � gkk22

⌘ (17)

M-step: Maximize cross entropy given assignments over
model parameters (a weight w

j

, mean function N (µ
j

,⌃
j

)

and a covariance function C
j

).

C2
j =

NKX

i=1
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NKX
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0
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w
j

and µ
j

,⌃
j

are updated using Eqs. (15).

Figure 2: Modified EM for operations on EAPs.

in this section clusters Gaussian distributions f
i

of ¯F in the
functional space.

5. Experiments

In this section, we introduce the diffusion PDF of inter-
est (EAP) and demonstrate the results of various operations
such as upsampling resolution, denoising, spatial transfor-
mations on the EAP field where the basic underlying mod-
ule is interpolation. We also show experiments showing that
interpolation on the K-GMM manifold provides benefits in
terms of controlling the number of components when one
needs to perform repeated interpolations. Controlling the
number of components has a direct impact on our ability
to resolve the peaks in the EAP profiles which is crucial in
generating tractography, a key component in deriving brain
connectivity information from such imaging data [2].

Ensemble average propagator (EAP). White matter ar-
chitecture can be probed by analyzing thermal diffusivity
profiles of water molecules in the brain. Thermal diffusion
of water causes signal decay in the measured MR signal.
The decay, under certain assumptions of the MR pulse se-
quencing used to acquire the signal satisfies the following
relationship

E(qu) =

Z

R3

P (Rr)exp(2⇡iqruT r)dRr, (19)

where u, r are unit vectors in R3, q is proportional to the
amplitude of the magnetic field gradient along u and P (Rr)
is called the ensemble average propagator (EAP) describing
the diffusion displacements of water molecules [25, 3]. As-
suming antipodal (radial) symmetries for the signal decay
(i.e., E(qu) = E(�qu)) and EAP (P (Rr) = P (�Rr)),

the following relationship holds [7]

P (Rr) =

Z

R3

E(qu)cos(2⇡qruT r)dqu. (20)

The EAP is a PDF whose domain is R3. In our experi-
ments, we use a K-GMM representation of the EAP [14].
We would like to note that our approach is also applicable
to such operations on the so called orientation distribution
functions (ODFs) [10, 6].

Upsampling and denoising. Signal to noise ratio (SNR)
of the MR signal is proportional to the volume size of a
voxel. Diffusion weighted MRI faces challenges in terms
of achieving high SNR due to rapid acquisitions and hence
the voxel resolution acquired on typical scanners is usu-
ally 8 mm3. For applications like tractography, recent in-
vestigations recommend a resolution of 1.95313 mm3[23].
But acquiring such a scan requires drastic improvements to
the scanner gradient capabilities and adds significant scan-
ning time (⇠55 mins. vs. ⇠10 mins.) [23]. Hence pro-
viding an upsampling algorithm and a denoising modules
that can reconstruct the EAPs respecting its native geome-
try can be practically very useful. We simulate EAP profiles
at R = 15µm in voxels at the four corners of a 6 ⇥ 6 grid as
shown in Fig. 3(a) and fill in such severely undersampled
data in the remainder of the grid with our algorithm. We
perform a simple bi-linear interpolation to fill in the grid as
shown in Fig. 3(b) using the operations introduced in Sec-
tion 3. We can observe that the diffusion PDFs are smoothly
interpolated respecting the geometry of the crossing fibers.
To demonstrate the denoising capabilities of our algorithm
we add Wishart noise to the EAPs (Fig. 3(c)). The denoised
EAPs using Gaussian filtering and anisotropic filtering are
shown in Figs. 3(d) and (e).

Since EAP profiles are affected by the architecture of the
white matter pathways we additionally simulate EAP data
to reflect crossing and curving pathways [7] and demon-
strate Gaussian and anisotropic filtering as shown in Fig.
4(a). We can observe that the anisotropic filtering does
near perfect recovery of the underlying signal. The red
boxes in (c) highlight the differences between Gaussian and
anisotropic filtering.

Spatial transformations. One of the key steps in statis-
tical analysis of neuroimaging data is to spatially normal-
ize the images from different subjects i.e., transform/warp
each of the individual subject’s image data onto a group-
level standard grid. Although spatial transformations of dif-
fusion tensor images (single component GMMs) is widely
studied and used in clinical studies [28], currently there are
no widely available tools for advanced diffusion PDFs such
as EAPs. Note that there are Riemmannian interpolation
schemes available [10, 6, 8] in the literature but not specif-
ically for K-GMMs. Using our algorithm, we rotate two
EAP fields by 30� and also apply affine transformations.



(a) (b) (c) (d) (e)

Figure 3: (a) Input data with just four voxels in the foreground, (a)-(e) are all at the same scale. The color mapping scheme
used to visualize the profiles is shown in the box overlaid on the background voxels which are set to have isotropic diffusivity.
(b) Result of upsampling with bi-linear interpolation. (c) Noisy EAPs. (d) Gaussian filtering. (e) Anisotropic filtering.

(a) (b) (c) (d)

Figure 4: (a) Simulated EAP profiles. (b) EAP profiles with added Wishart noise. (c) Gaussian filtering. (d) Anisotropic
filtering.

The results are shown in Fig. 5. When performing non-
orthonormal transformations on the EAP fields, one needs
to extract the rotation transformation to reorient the profiles.
To do so, we use the finite strain method [1]. We observe
that even in cases of really complex architecture our inter-
polation and reorientation preserve the organizational fea-
tures (crossing and circular nature of the profiles) of the
profiles. The shearing effects where the crossing fiber re-
gion stretches increasing the number of crossing fibers and
the circular organization becomes elliptical.

Peak preserving complexity reduction. In this experi-
ment, we demonstrate that model complexity can interfere
with simple peak finding algorithms and hence it is advan-
tageous to operate on a fixed K-GMM manifold. The error
in peak detection is computed as follows,

Let K⇤ be the true number of peaks in the simulated
EAP field. Then, the error at each voxel in an esti-
mated/interpolated EAP field is measured by

✏ = min

⇧

K

⇤X

i=1

cos

�1 |V T

i

U⇧(i)|. (21)

where V
i

and U
i

are eigen vectors of the K⇤ largest weight
components of ground truth and estimated EAP, respec-

Figure 5: Top row: Rotated EAP profiles. Bottom row:
Results of affine transformation of the EAP fields.

tively. ⇧(i) is the best permutation which has the mini-
mum error, i.e., when K⇤

= 2, ✏ is the minimum of an-
gular errors between {V1, V2} and {U1, U2} with all pos-
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Figure 6: The distributions of angular deviations of the peaks. Comparing projected and noisy data in (a) crossing fiber
phantom, and (b) curving and crossing phantom. Comparing anisotropic filtering with K-GMM (ours) and `2 interpolation
in (c) crossing fiber phantom, and (d) curving and crossing phantom.

sible permutations. Hence the range of ✏ in each voxel is
[0,K⇤⇥90

�
]. We first add Wishart noise to the numerically

simulated crossing and curving EAP profiles (see Fig. 5).
Figs. 6(a) and (b) show the deviations of the peaks detected
by projecting (without any filtering) from G(10) to G(2) the
noisy data for crossing and curving phantoms respectively.
The distribution corresponds to errors in all voxels in an im-
age. As we can see, the errors are reduced just by reducing
the number of components. Figs. 6(c) and (d) show the dis-
tributions of the angular deviations for crossing and curving
after anisotropic filtering with K-GMM and `2 method. We
can observe that the K-GMM method significantly outper-
forms the `2 method. The K-GMM method deviates on av-
erage about 10� while the errors with `2 are spread further
especially in crossing fiber regions (i.e. ✏ > 90

�).

6. Conclusions
This paper describes a numerically robust scheme for

performing interpolation on the manifold of K component
GMMs, where few solutions are available in the litera-
ture today. Such operations are needed to perform theo-
retically sound processing of a field of EAPs, fundamen-
tal objects in diffusion weighted Magnetic resonance imag-
ing. We first derive a gradient descent scheme and then
use those ideas towards an efficient and numerically stable
EM style method. The algorithm is general and applica-
ble to other situations where interpolation is needed for ob-
jects such as functions, probability distributions and so on
(though for some special cases, more specialized algorithms
are known). Separately, notice that operating directly on
the functional space of Gaussians (and their mixtures) sug-
gested insights that were useful in obtaining our numerical
procedures. Some of these issues are briefly mentioned in
passing in the paper (see last paragraphs of Section 2 and
Section 4) and described in more detail in the extended pa-
per for the interested reader. We believe that with the grow-
ing interest in using advanced image analysis and statistical
techniques for analyzing and making sense of rich datasets
being collected worldwide (e.g., the Human Connectome
project), algorithms such as the one proposed here will be

valuable in ensuring that the underlying processing remains
faithful to the geometry/structure of the data. Doing so will
not only improve the statistical analysis but put us in the
best position to extract scientifically interesting hypotheses
from such images.
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Interpolation on the manifold of k component GMMs (supplement)

0. Summary

In this supplement, we provide proofs, detailed deriva-
tions, additional discussion and experiments. This includes
1) Full derivation of the gradient of the objective function
(9) in the main 2) More details on identification of a path
in G(K) 3) Proof of Lemma 2 4) Derivation of the EM al-
gorithm 5) Discussion of the relationship between our EM
algorithms and functional clustering (or Gaussian process
mixture models) 6) Visualization, AF weights and internal
representation of EAP.

1. Derivation of the gradient of (9) and imple-

mentation

We begin with the Gaussian distribution and its deriva-
tives and using this result, we derive gradient of (9) in the
main text.

1.1. Gaussian distribution and its derivatives

Suppose X 2 R

d⇥d. We have the following.

(i) det(cX) = cd

det(X), where A is a n ⇥ n matrix.

(ii) @ det(X)
@X

= det(X)X�T , see [2].

(iii) aT
X

�1b
@X

= �XT abT X�T , 8a,b 2 R

d, see [2].

(iv) @

@X

log | det(X)| = X�T

where for a matrix A, A�T denotes an inverse followed by a
transpose. We will use the facts above in derivations. Places

where they are used, appear over the equality e.g. “
(i)
= ”.

The density function of Gaussian is given by
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1.2. Complete derivation of (9) in the main text

In the main text, the loss function (9) consists of the
`2 norms of GMMs. We complete the derivation of
(9) in the main with the partial derivatives of cj,i

G,F :=

N (µj

G |µi

F̄ , ⌃i

G + ⌃

i

F ) w.r.t µG and ⌃G . The derivatives
are obtained by derivatives of Gaussian in (2) and (3).
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When j = j0, it is simplified as

@cj,jG,G

@⌃j

G
= �2

�(d/2+1)cj,jG,G(⌃
j

G)
�T

= �1

2

N (µ

j

G |µ
j

G , 2⌃
j

G)(⌃
j

G)
�1

(5)

2. Identifying a path in G(K)

between F
start

and F
end

w.r.t l-2 distance

Given two GMMs, Fstart and Fend, we seek to find the
shortest path which does not leave the feasibility region,
G(K). The result from such a procedure will directly pro-
vide a potentially more meaningful distance measure be-
tween two samples in G(K).

To do so, we will approximate it by a set of smaller paths
along other GMMs with K components. By minimizing the
sum of the squared distances between adjacent GMMs, we
will approximate the shortest path. It is similar to chordal
distance approximation on the sphere, see Figure 1. In the
limit, this will be the true shortest length.

On a Riemannian manifold M with metric tensor g, the
length of a continuously differentiable curve � : [a, b] !
M is defined by

L(�) =

Z
b

a

q
g

�(t)(�̇(t), �̇(t)) dt (6)

where L is its length and g
�(t)(�̇(t), �̇(t)) is the inner prod-

uct of �̇(t) at �(t) w.r.t g. When � is the shortest geodesic
curve, it is called geodesic distance.

The arc length L of � can be approximated by

L(C) = sup

a=t0<t1<···<tn=b

n�1X

i=0

d(�(t
i

), �(t
i+1)) (7)

where the supremum is taken over all possible partitions of
[a, b] and n is unbounded. Then, the objective is to mini-
mize the sum of squared distances of each chordal segment.

G0
G

T

d1

d4

d2

d

M = G(K)

Figure 1: `2 distance between G0 and G
T

is d1. Similar to chordal
distance, the geodesic distance between two GMMs can be approximated
by the sum of `2 distances between many intermediate GMMs. It con-
verges to the real path length as the number of chords t increases. Here
d1  d2  ...  d, where d is the true distance.

So, we square each term in the objective function and min-
imize their sum.

Let G0 (G
T+1 resp.) be Gstart (Gend resp.). Then, our ob-

jective function is given as

min L := min

{µt,⇡t,⌃t}T
t=1

TX
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kG
t
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t+1k2

2, (8)

using the shorthand notations ⇡
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j=1 and ⌃
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Again, to compute the gradient, we take the derivative

with respect to the relevant variables which include the
component weights, means and their covariances. Simi-
larly, define cj,j
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Recall that the inner product of two GMMs G
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given by

hG
t

,G
t

0 i2 =

KX

j=1

KX

j

0=1

⇡

j

t

⇡

j

0

t

0 N (µ

j

t

|µj

0

t

0 ,⌃
j

t

+ ⌃

j

0

t

0 ) =

KX

j=1

KX

j

0=1

⇡
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t

⇡
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t

0 c
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(10)

Then the derivatives w.r.t ⇡j

t

, µj

t

, ⌃

j

t

can be written with
cj,j

0

t,t

0 . The derivative w.r.t ⇡j

t

is given as
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The derivative w.r.t µj

t

is
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In G(2), our experimental result is shown in Fig 2.



3. Minimum cross entropy between a given

GMM and an unknown single Gaussian

Lemma 2. Given a GMM f(x) :=

P
L

i

⇡
i

f
i

(x), where

f
i

(x) is a Gaussian distribution, the minimum cross en-

tropy / KL-divergence between f(x) and an unknown single

Gaussian g := N (x; µ, ⌃) is obtained by (µ⇤, ⌃⇤
),

(µ⇤, ⌃⇤
) = arg min

µ,⌃
H(f(x), N (x; µ, ⌃)), (13)

where µ⇤
= E

f(x)[x] and ⌃

⇤
= E

f(x)[(x�µ⇤
)(x�µ⇤

)

T

].

Proof. One easily observes that

argmin

g

D(f ||g) = argmin

g

H(f, g) (14)

since f is fixed. Recall that cross entropy is given by

H(f, g) := E
f

[� log g(x)] = �
Z

f(x) log g(x)dx (15)

Take the derivative of objective function H(f, g) w.r.t µ
and set it to zero. Then we get,

� @

@µ

Z

f(x) log g(x)dx = 
@

@µ

Z

f(x)(x� µ)

T

⌃

�1
(x� µ)dx

= 0
Z

f(x)⌃�1
(x� µ)dx = c0⌃�1

(

Z

f(x)xdx� µ) = 0

, µ =

Z

f(x)xdx

 and 0 are some constants. Therefore µ⇤
=

R
f(x)xdx,

since ⌃ is invertible. Now take the derivative of objective
function H(f, g) w.r.t. ⌃ we get,

�
@

@⌃

Z
f(x)

 
log

 
2⇡

�d/2

det(⌃)

1/2

!
�

1

2

(x� µ)

T

⌃

�1
(x� µ)

!
dx

= c

Z
f(x)

@

@⌃

⇣
log det(⌃) + (x� µ)

T

⌃

�1
(x� µ)

⌘
dx

(iii & iv)
= c

Z
f(x)

⇣
⌃

�T � ⌃

�T

(x� µ)(x� µ)

T

⌃

�T

⌘
dx, * X � 0

Set the derivative to zero we get,

⌃

�T

=

Z

⌃

�T

(x� µ)T (x� µ)⌃�T f(x)dx

= ⌃

�T

Z

(x� µ)T (x� µ)f(x)dx⌃�T

(16)

Then,

⌃ =

Z

(x� µ)T (x� µ)f(x)dx, * ⌃ = ⌃

T (17)

4. Derivation of EM algorithms

4.1. Mean and covariance of samples from a GMM

Let f 0
(x) =

P
L

i=1 ⇡0
i

f
i

(x) be a GMM, namely, each
f

i

(x; µ
i

, ⌃
i

) is a Gaussian distribution and
P

L

i=1 ⇡0
i

= 1.
Then the mean and covariance of GMM f 0

(x) is given by

E
f

0
(x)[x] =

L

X

i=1

⇡0
i

µ
i

=: µ̄ (18)

E
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0
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⌃

i
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LX
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0
i

(µ

i

� µ̄)(µ

i

� µ̄)

T

(19)

The mean is obtained by

E
f

0(x)[x] =

Z

xf 0
(x)dx =

Z

x

x

L

X
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µ
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(20)

Now, the covariance is obtained by

E
f

0(x)[(x� µ̄)(x� µ̄)T ] =

Z

(x� µ̄)(x� µ̄)T f 0
(x)dx
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x
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L

X
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xxT f
i

(x)dx� 2⇡0
i

Z

xµ̄T f
i

(x)dx

!

+ µ̄µ̄T

=

 

L

X

i=1

⇡0
i

Z

x

xxT f
i

(x)dx

!

� µ̄µ̄T

=

 

L

X

i=1

⇡0
i

[⌃

i

+ µ
i

µT

i

]

!

� µ̄µ̄T
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X
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X
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� µ̄)(µ
i
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(21)

Remarks: our proposed method can be interpreted as a
functional clustering algorithm for a set of Gaussian dis-
tributions {f

i

}L

=1 whereas the classical GMM clusters a
set of points {x

i

}L

=1. In our case, �
ij

represents the soft
assignment of f

i

in ¯F to g
j

in G. M-step can be inter-
preted as searching parameters for one representative Gaus-
sian g

j

2 G (roughly speaking, a mean function restricted
to a Gaussian) for a set of assigned Gaussians {f

i

}L

i=1 2 ¯F
with {�

ij

}L

i=1.
Interestingly, our methods are applicable to ordinary vec-

tor data in R

d and offer some advantages in the following
cases.



Case 1) Weighted samples
Case 2) Noisy observations with known Gaussian errors
Case 3) Ill-conditioned covariance matrices, e.g., small

number of high dimensional samples d � L, or
many clusters K ⇠ L

Here, we show a simple construction. Suppose that a
set of ordinary vector samples {x

i

}L

=1 is given. Now, one
wants to utilize additional knowledge on the noise of ob-
servation (case 2). First, we perform kernel density estima-
tion (KDE) over samples with Gaussian kernels centered
at each data point with a known covariance ⌃. Then, we
have L Gaussians distributions. Our method allows to nat-
urally incorporate this knowledge in the model. Similarly,
for ill-conditioned covariance matrices (case 3), by treating
samples as a Gaussian with sufficiently small covariance,
this problem can be resolved in our framework. Weights of
samples (case 1) can be trivially exploited by ⇡

i

.
How can we impose a bias on the covariance matrices

to resolve the ill-conditioned problem of covariance ma-
trices? Observe that given the responsibilities �

ij

, the M
step in the proposed method differs by

P
L

=1 ⇡0
i

⌃

i

in (21)
from one in classical GMM. Considering the KDE case,
each instance corresponds to a Gaussian distribution with
mean µ

i

= x
i

and covariance ⌃. The covariance in clas-
sical GMM is ⌃ =

P
L

i=1 ⇡0
i

(x
i

� µ̄)(x
i

� µ̄)

T , where ⇡0
i

is a weight of x
i

and
P

L

i=1 ⇡0
i

= 1. This corresponds toP
L

i=1 ⇡0
i

(µ
i

� µ̄)(µ
i

� µ̄)

T in (19) in our method. Hence
KDE increases the covariance in (19) by

P
L

=1 ⇡0
i

⌃ = ⌃

which is exactly same as the covariance of Gaussian kernel
in KDE. This observation implies that by adding the co-
variances on each sample, we may have better conditioned
covariance matrices.

4.2. Cross entropy between two Gaussians

Cross entropy is the optimal code length given data p and
codebook q, which is as

H(p, q) := E
p

[� log q(x)] = �
Z

p(x) log q(x)dx. (22)

The cross entropy between two Gaussian distributions has
an analytic form. Let N

p

and N
q

be multivariate Gaussian
distributions with (µ

p

, ⌃
p

) and (µ
q

, ⌃
q

) respectively. Cross
entropy H(p, q) is given as

E
p

[� log q(x)] =
1

2

�

k log 2⇡ + log |⌃
q

|+ tr[⌃�1
q

⌃

p

]

+(µ
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� µ
q

)

T

⌃

�1
q

(µ
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� µ
q

)

o

(23)

Proof. First, Gaussian density function is given by

q(x) =
1

p

(2⇡)k|⌃
q

|
exp

✓

�1

2

(x� µ
q

)

T

⌃

�1
q

(x� µ
q

)

◆

(24)

Let us take the log of q(x).

log q(x) = �k

2

log 2⇡� 1

2

log |⌃
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|� 1

2

(x�µ
q

)

T

⌃

�1
q

(x�µ
q

)

(25)
Then, the cross entropy H(p, q) is

Z
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k

2

log 2⇡ +

1

2

log |⌃
q

|

+

1

2

[µT

q

⌃

�1
q

µ
q

� 2µT
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µ
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+
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⌃

�1
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xp(x)dx]

(26)

We know that tr(·) and E[·] are linear operators, so tr�E =

E � tr. Using this fact, we have

Z

xT

⌃

�1
q

xp(x)dx = E
p

[xT

⌃

�1
q

x] = E
p
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⌃

�1
q

x]]

= E
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xxT

]] = tr[E
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xxT
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= tr[⌃�1
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E
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]] = tr[⌃�1
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+ µ
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µT

p
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= tr[⌃�1
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] + µ
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(27)

Replacing
R

xT

⌃

�1
q

xp(x)dx in (26) with tr[⌃�1
q

⌃

p

] +

µ
p

⌃

�1
q

µT

p

completes the proof.

4.3. EM derivation

EM-algorithm w.r.t cross entropy. As EM-algorithm
for classical GMM, this proposed method comprises of two
steps: E-step and M-step. Our result shows that M-step
maximizes negative cross entropy between reweighted data
GMM

P
L

i=1 ⇡0f
i

and a Gaussian component in a model
GMM g

j

as the classical GMM increases the likelihood of
reweighted samples. Let us compare each step of classical
GMM and our proposed method.

E-step in classical GMM is given by

�
ij

:= p(z
i

= j|x
i

, ✓) =

p(z
i

= j|✓)g(x
i

|z
i

= j, ✓)
P

K

j

0 p(z
i

= j0|✓)g(x
i

|z
i

= j0, ✓)
(28)

where i is the index for instance and j is the index for com-
ponent in g (K-GMM).

E-step with cross entropy, we estimate the responsi-
bilities between f

i

and g
j

rather than a point x
i

and g
j

in
the classical GMM. Let X

i

be a set of points which belong
to set i with density function f

i

(x). j is defined as above.



Then, the responsibilities �
ij

of f
i

to g
j

is given by

�
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(29)

Note that �
ij

means the membership of the i-th Gaussian
distribution in l-GMM to the j-th component in k-GMM.
H(f

i

, g
j

) is analytically obtained as (23).
M-step in classical GMM is,
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M-step with cross entropy is,

w
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where f 0
=

P
L

i=1 ⇡0
i

f
i

(x), and ⇡0
i

=

⇡i�ijP
i ⇡i�ij

, for fixed j.
M step in classical GMM can be interpreted as expec-

tations: x and (x � µ)(x � µ)

T over a discrete probability
distribution {�

ij

/�
j

}L

i=1, where �
j

:=

P
L

i=1 �
ij

. Similarly,
M-step in our proposed method also can be interpreted as
expectations over a reweighted GMM f 0, which is a contin-
uous probability distribution.

4.4. Detailed derivation of EM algorithm

In this section, we provide full derivation of EM algo-
rithm for our method. Let f =

P
i

⇡
i

f
i

and g =

P
j

⇡
j

f
j

be GMMs. Our EM algorithm maximizes the negative cross
entropy �H(f, g) :=

R
f(x) log g(x). First, we derive Q

function from the objective function.
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The inequality above is obtained by Jensen’s inequality.
Now, we define Q(✓|✓

n

) with the first term of the last equa-
tion as

Q(✓|✓
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) :=
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) logw
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(33)

Once we define Q(✓|✓
n

), we are ready to derive EM
algorithm. First, E step is merely to estimate P (z

i

=

j|X
i

, ✓) =: �
ij

by (29). Second, we derive M step. To
do so, we will maximize Q(✓|✓

n

) w.r.t. {w
j

,µ
j

, ⌃
j

}K

j=1.
The Q function can be rewritten as
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To maximize over µ
j

and ⌃

j

, one needs to maximize the
following.
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Q(✓|✓
n

)

= argmax

{µj}Kj=1,{⌃j}Kj=1

Z
LX

i=1

KX

j=1

⇡

i

�

ij

f

i

(x) log g

j

(x)dx

(35)

Since, given �
ij

, one can decompose the maximization into
for each component j, one has
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since dividing the objective function by a constant doesn’t
change the problem. Now, let ⇡

0

i

:=

⇡i�ijPL
i0=1

⇡i0�i0j
. Then

the maximization over µ
j

and ⌃

j

is reduced to Lemma 2



that maximizes the negative entropy between a reweighted
GMM f 0

(x) :=

P
L

i=1 ⇡
0

i

f
i

(x) and a Gaussian with µ
j

and
⌃

j

. The optimal solution µ⇤
j

, ⌃⇤
j

is given in (31).
To maximize over w

j

, one needs to maximize Q(✓|✓
n

)

with a constraint
P

K

j=1 w
j

= 1. So the objective function
with a Lagrange multiplier is defined by L := Q(✓|✓
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� 1). Now, take the derivative of L w.r.t w
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Let’s set the derivative above to zero. Then, one gets

w

j

= �
P

L

i=1 ⇡i

�

ij

�

. (38)

The primal feasibility
P
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j=1 w
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= 1 and the result above
yield � = �
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is given by
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This completes the derivation of our EM algorithm. For
more details on the theory of EM algorithms, we refer [1].

5. Functional clustering and construction of

modified EM for EAPs

In our main text and at the end of section 4.1 in this sup-
plementary material, we discussed the relationship between
functional clustering and our proposed EM method. In this
section, we compare our modified EM for EAPs (in Fig 2 in
the main) with EM algorithm originally proposed method
(in Fig 1 in the main) from the functional clustering per-
spective. For the rest of this supplementary, we denote algo-
rithm 1 and and algorithm 2 for EM algorithm and modified
EM algorithm respectively.

First, algorithm 1 seeks a representative Gaussian g
j

to
cover assigned Gaussians in ¯F . This is similar to functional
k-means algorithm with a restriction on the structure of
the representative function (roughly speaking, mean func-
tion). Algorithm 2 corresponds to the GMM in the func-
tional space. It learns the representative function for each
cluster and the deviation of members from the representa-
tive function as well.

More precisely, modified EM algorithm can be inter-
preted as a restricted Gaussian Process Mixture Model.

Each component in Algorithm 2 has four parameters
(w

j

, µ
j

, ⌃
j

, C
j

). As Algorithm 1, w
j

is a weight for a com-
ponent, µ

j

, ⌃
j

are for a Gaussian mean function. C
j

is a
constant for covariance function. In our algorithm 2, we use
the simplest covariance function K(x, x0

) = C2
j

if x = x0

and otherwise k(x, x0
) = 0. Let m

j

(x) := N (x|µ
j

, ⌃
j

) be
a mean function of GP. Then the GP is given by

f ⇠ N (m
j

(x),K
j

(x, x0
)) (40)

Using this observation, we modify E step for EAPs.
E-step in algorithm 2 estimates the responsibilities of f

i

2
¯F to component j in GPMM as

�
ij

=

w
j

C�1
j

exp

✓

� 1
2C2

j
kf

i

� g
j

k22
◆

P

K

k=1 wk

C�1
k

exp

⇣

� 1
2C2

k
kf

i

� g
k

k22
⌘ . (41)

M-step is same as Algorithm 1 except C
j

update as

C2
j

=

X

i

�
ij

⇡
i

kf
i

� g
j

k2/
X

i

0

�
i

0
j

⇡
i

0 (42)

w
j

and µ
j

, ⌃
j

are updated using Eqs.(15) in the main text.

6. Simulation experiments

Both Gaussian filtering and aniostropic filtering are
performed using a 3 ⇥ 3 neighborhood size kernel. For
Gaussian filtering, we use isotropic Gaussian weights. For
anisotropic filtering kernel, the weights were determined us-
ing the inner product of the EAP profiles evaluated at 321
tessellated points spread uniformly on a sphere. We would
like to note that we may also use the inner product of the
K-GMM models themselves. Since the visualization tool
only uses PDF values on a sphere, for our experiments, we
used the former approach.

Interpolation path is shown in Fig. 2. We show an
interpolation path between two 2-GMMs, which is obtained
by minimizing (8).
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Figure 2: Interpolation path along 2-GMM manifold show-
ing 10 steps from top (GMM0) to bottom (GMM11).


