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ABSTRACT

In modern data analysis, we frequently need to analyze objects such as
directional data, special types of matrices, probability distributions, and
so on. Such structured data are becoming increasingly common in various
disciplines. It turns out that many of these data lie on manifolds, which
are a natural generalization of Euclidean spaces. The geometry of such a
data space (and resulting model space) is crucial to develop more accurate
and effective learning models especially when the data space does not
exhibit Euclidean geometry. The key focus of this dissertation is to develop
statistical machine learning algorithms for the structured data motivated
by applications in vision and neuroimaging. The thesis is motivated by
some distinct demands of structured data analysis applications covering
several scientific domains:

1. How can we model “structured” data in a way that respects the
underlying geometry of the data spaces?

2. How can we estimate such models with structured parameters effi-
ciently without leaving the structured data/model spaces?

3. How can we improve statistical power of statistical machine learning
models in cross-sectional and longitudinal analysis that involve
structured data spaces?

Using geometrical reasoning, this thesis provides effective statisti-
cal learning models for structured data in the context of interpolation,
dimensionality reduction and parametric/nonparametric regression for
cross-sectional and longitudinal analysis and demonstrates their effective-
ness on a broad range of problems motivated from neuroimaging.
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1 INTRODUCTION

In modern data analysis, we frequently must operate on objects such
as graphs, trees, special types of matrices, probability distributions, the
unit sphere and so on. Such “structured data” are becoming increasingly
common in various disciplines including physics, psychology, health and
social sciences. For example, directional data is common in applications
that analyze measurements from antennas (Mammasis and Stewart, 2010),
whereas time series data (i.e., curves) are widely used in finance (Tsay,
2005) and health sciences (Dominici et al., 2002). Surface normal vectors
on the unit sphere (for computer vision or graphics) (Straub et al., 2015),
probability density functions (in functional data analysis) (Srivastava
et al., 2007), covariance matrices (for use in conditional independences,
image texture descriptors) (Tuzel et al., 2006a), rigid motions (registration)
(Park and Ravani, 1995), shape representations (shape space analysis)
(Kendall, 1984), tree-based data (parse tree in natural language processing)
(Quirk et al., 2005), subspaces (videos, segmentation) (Xu et al., 2013;
Elhamifar and Vidal, 2009), low-rank matrices (Candes and Recht, 2012;
Vandereycken, 2013), and kernel matrices (Schölkopf and Smola, 2002)
are structured data, see Fig. 1.1. In neuroimaging, a brain image has a
structured measurement at each voxel to describe water diffusion (Basser
et al., 1994; Leow et al., 2009; Özarslan and Mareci, 2003; Aganj et al., 2009;
Cheng, 2012) or local structural change (Hua et al., 2008; Zacur et al., 2014).

It turns out that the data in many of these example problems do not
exhibit Euclidean geometry. In other words, the data spaces are curved
and the standard arithmetic operations (e.g., addition, subtraction, and
multiplication) may not be available. For example, directional data are
on the unit sphere and the addition of two unit vectors is not on the
unit sphere anymore. The addition cannot be defined in the same way
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(a) Shapes (b) Lie body manifolds (c) Directional data

(d) Covariance matrix (e) Brain atlas

ODFs

EAPs

DTIs

(f) Diffusion Measurements

Figure 1.1: Examples of structured data. (a) A shape (a set of landmarks) in the
Kendall’s shape space is invariant to translation, scale, and rotation (Kilian et al.,
2007; Kendall, 1984) (b) Three-dimensional (human body) shapes are studied in
the context of Riemannian structures (Freifeld, 2013) (c) Directional data can be
viewed as a point on the unit sphere Sn(Hamelryck et al., 2006) (d) Covariance
matrices can be be viewed as a point on a SPD(n) manifold (Kim et al., 2016c) (e)
Estimation of atlases in the large deformation diffeomorphic setting (Joshi et al.,
2004) and (f) Diffusion process of water molecules in brain images is represented
by structured measurements such as diffusion tensor (DTI), orientation density
function (ODF), and ensemble average propagator (EAP) (Goh et al., 2011).

without leaving the space of interest. Many traditional machine learning
and statistical models are defined with these operations assuming that
data lie on a vector space. Therefore, even basic/fundamental statistical
models (e.g., linear models defined by additions as y = ax + b) may not
be directly applicable to data in a non-Euclidean space.

Forcibly enforcing Euclidean structure on such data is problematic.
This may yield poor goodness of fit and/or weak statistical power. One
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reason is that Euclidean distance is often less accurate distance metric for
structured data. In the example of directional data, Euclidean models
measure the prediction errors using the Euclidean distance between two
unit vectors whereas the quantity of interest is the distance measured
along the surface of the unit sphere. Further, Euclidean models may not
yield valid predictions (or syntheses). It is easy to see that predictions
from Euclidean linear models are not on the unit sphere. So, artificial
post processing is required to get a valid prediction. This leads to a gap
between the desired predictions and predictions attainable by the chosen
learning model.

Driven by these motivations, there is a rapidly developing body of the-
oretical and applied work which generalizes classical tools from Euclidean
spaces to manifolds. To this end, this thesis provides new statistical ma-
chine learning algorithms for manifold-valued data which commonly
occur in various problems in computer vision and neuroimaging. We
discuss shortly why the geometry of data space is a key ingredient to
develop more effective statistical learning models for structured data and
generate valid predictions in the structured data space without additional
preprocessing and post processing.

1.1 Why data spaces matter for inference?

An increasingly large number of problems in data analysis today rely on
the use of statistical inference methods to drive one or more stages of the
overall workflow. Consider a statistical inference algorithm L within an
image analysis application, it seeks an appropriate model q̂ from a model
space Q based on observations e.g., images or pixel measurements, {xi}

N
i=1

that live in a data space X , i.e., q̂ = L(Q, {xi}
N
i=1). To do so, the algorithm

invariably makes some explicit or implicit assumptions on the geometry
of models space Q such as smoothness, convexity, sparsity and so on.
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Figure 1.2: Geometrically inspired
learning models

In some sense, such an inductive
bias is crucial to achieve efficiency
and computational tractability of
the estimation procedures. A sim-
ilar motivation applies to the other
input to the learning algorithm,
i.e., the data space. Here, how-
ever, we typically transform the
data {xi}

N
i=1 to make them “eas-

ier” to work with — this yields
efficiency and often significantly
improves the performance/accu-
racy of the image analysis method.
These transformations may include
the Fourier transform, nonlinear
embedding, dimensionality reduc-
tion using subspaces and feature
extraction methods. Interestingly, in some specific situations, we find that
the data space X is known a priori to have a nice mathematical structure
with well-studied properties. It makes sense that if algorithms were to
make use of this additional information, even more efficient inference
procedures can be developed. Motivated by this intuition, the analogous
expression for the inference task may be expressed as

q̂ = LX (QX , {xi}
N
i=1) (1.1)

where LX refers an inference algorithm which can adapt based on a well
characterized (possibly, analytical) structure of the data space X .

Note that not only is the inference algorithm exploiting the structure
of X but also QX corresponds to the model space determined by the
geometry of the data space X . This strategy is particularly appropriate
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when data {xi}
N
i=1 lie on an analytic manifold. Further, this framework

allows systematically generalizing classical image analysis methods to
manifolds using geometrical reasoning and defining an even abstract
model for a group of different data spaces. For example, one may define
an abstract model LX minimizing the squared geodesic errors on a class of
spaces (e.g., symmetric space) with some known properties (e.g., the exis-
tence of the minimizing geodesic and closed form solutions to Jacobi field
equations) and develop its inference algorithm with suitable operations
(e.g. exponential maps, logarithm maps, interpolation etc.) determined
by a concrete space X (e.g., Euclidean space, sphere, Grassmannian, and
Stiefel manifolds). We point out that utilizing specific knowledge of the
data space (e.g., manifold structure) to inform the choice of objection
function and/or hypothesis space is not novel to our research and goes
back at least several decades in computer vision, machine learning, and
optimization (Karcher, 1977; Chikuse, 2003; Pennec, 2006; Grenander and
Szegö, 2001; Mumford, 1994; Smith, 1994; Absil et al., 2009; Mardia and
Jupp, 1999). For instance, shape spaces have been heavily used in medical
imaging and Grassmannian have been studied for video analysis and
machine learning (Turaga et al., 2011; Hamm and Lee, 2008). Nonetheless,
there are many standard statistical formulations that are unavailable for
specific manifolds arising frequently in practice, and central in a variety
of image analysis tasks in applications. Enabling significantly improved
accuracy in these image analysis applications is the key motivation of this
dissertation.

1.2 Structured data

Data spaces in various recent scientific disciplines routinely correspond
to non-Euclidean spaces, while classical models commonly assume that
data live in Euclidean spaces. For example, in computer vision, one uses
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region covariance descriptors for texture analysis (Tuzel et al., 2006b, 2008),
rigid motions (including reflections, rotations, and translations) (Park
and Ravani, 1995) and surface normal vectors on a unit sphere (Straub
et al., 2015). In machine learning, we deal with subspaces, low-rank
matrices (Boumal and Absil, 2011; Vandereycken, 2013), kernel matrices
(Jayasumana et al., 2013; Feragen et al., 2015), normalized feature vectors
with cosine similarity, probability density functions (PDFs) (Srivastava
et al., 2007), and probability mass functions (PMFs) such as Dirichlet
distribution and multinomial distribution (Lebanon et al., 2005), and so
on. It turns out that many of these examples lie on manifolds which
are a natural generalization of Euclidean spaces. Even when performing
basic analysis on such datasets, in general, we cannot apply vector-space
operations directly.

Beyond the applications in computer vision and machine learning de-
scribed above, neuroimaging studies routinely acquire manifold-valued
data that are becoming increasingly important across a spectrum of ongo-
ing research studies. For example, diffusion tensor magnetic resonance
images (DTI) (Basser et al., 1994; Le Bihan et al., 2001) allow one to infer
the “diffusion tensor” characterizing the anisotropy of water diffusion at
each voxel in an image volume. This tensorial feature can be visualized
as an ellipsoid and represented by a 3 ⇥ 3 symmetric positive definite
(SPD) matrix at each voxel in the acquired image volume (Lenglet et al.,
2006). Neither the individual SPD matrices nor the field of these SPD ma-
trices lie in a vector space but instead are elements of a negatively curved
manifold where standard vector space operations are not valid. Classical
Euclidean models are not applicable in this setting. Separate from this
application, for T1-weighted Magnetic resonance images (MRIs) that are
commonly used in brain imaging studies, we are frequently interested in
analyzing not just the 3D intensity image on its own, but rather a quantity
that captures the deformation field between each image and a population
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template obtained via spatial registration methods. A registration between
the image and the template yields the deformation field required to align
the specific image with respect to a template. Quantities such as the
Cauchy deformation tensor (CDT) defined as

p
JT J have been reported

in literature for use in morphometric analysis (Hua et al., 2008). The
input to the statistical analysis is a 3D image of voxels, where each voxel
corresponds to a CDT matrix. Another important example is the diffu-
sion weighted images: here, a manifold-valued field is derived from high
angular resolution diffusion images (HARDI) (Tuch et al., 1999; Frank,
2002). These measurements can be used to compute the ensemble average
propagator (EAP) at each voxel of the given HARDI data. The EAP is
a probability density function that is related to the diffusion sensitized
MR signal via the Fourier transform (Callaghan, 1991). Since the EAP is a
probability density function (by using a square root parameterization of
this density function), it is possible to identify it with a point on the unit
Hilbert Sphere. Once again, to perform any statistical analysis of these
data derived features, it is inappropriate to apply standard vector-space
operations since the unit Hilbert sphere is a positively curved manifold.

1.3 Riemannian Manifolds for generalizing
Euclidean models

Fortunately, many manifold-valued data happen to be in one nice sub-
class of manifolds, so called Riemannian manifolds, which are smooth
manifolds (allowing calculus) equipped with a smoothly varying local
metric (allowing distance). Riemannian geometry offers elegant tools to
build models for manifold-valued data and generalize Euclidean models
to nonlinear spaces. For example, a Riemannian metric on a manifold
M, an inner product h·, ·ix , x 2 M in the tangent space at each point,
enables defining notions of distance, surface area, angle and curvature on
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manifolds. To be specific, the length of a smooth curve on the manifold
M parameterized by an interval [a, b], g : [a, b]!M can be defined as

L(g) =

Z b

a

q
hġ(t), ġ(t)i

g(t)dt.

Then, the distance between two points x, y 2 M is defined by the infimum
of the length of all smooth curves between two points given as

d(x, y) = inf
g2G

`(g), (1.2)

where G is a set of all smooth curves between two points. Then, the
notion of distance is extendable to nonlinear spaces. The so-called geodesic
distance is known to be more accurate than Euclidean distance in the
literature. This naturally enables more sensitive group difference analysis
for manifold-valued data via statistical tests such as Cramer’s method
(Cramér, 1928; Baringhaus and Franz, 2004; Zacur et al., 2014).

Further, within a Riemannian framework, a quotient space with an
equivalence relation and a metric with some invariances are useful to
define a specialized space for specific problems. For example, in shape
analysis, a common approach is to use a shape manifold which is a Rie-
mannian manifold (Klassen et al., 2004). It is the quotient space of a
finite number of landmarks by the equivalence classes defined by shape
invariant transformations: rigid rotations, translations, and scaling. In
other words, the same shapes transformed by rigid motions are mapped
to the same point on the shape manifold. Also difference of shapes can
be measured via a Riemannian metric (e.g., the Procrustean metric) on
the shape manifold. Hence, we can draw a considerable body of research
from differential geometry to develop more powerful and accurate mod-
els. Using (or inspired by) tools from differential geometry, a variety of
statistical data analysis have been studied in literature. We now briefly
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introduce a body of work describing ideas related to this thesis.

1.4 Examples of structured data analysis

This dissertation addresses structured data analysis motivated by applica-
tions in computer vision and neuroimaging. We study new generalization-
s/extensions of standard statistical learning models from the following
perspectives: interpolation (of structured probability density functions),
regression that involves structured response variables (i.e., f : Rd !M)
including both parametric and nonparametric models, dimensionality
reduction on Riemannian manifolds, and longitudinal analysis for struc-
tured measurements or structural changes of objects (e.g., morphometric
changes of brains). We will provide an overview of each topic one by one
with related works in this section.

1.4.1 Interpolation of structured data

Interpolation is a fundamental operation in a variety of statistical inference
procedure has been studied for structured data as well. On Riemannian
manifolds, the center of mass was studied by (Karcher, 1977) and the main
idea are widely used directly/indirectly in a variety of applications. Let
{y1, . . . , yN} be structured measurements. The interpolation is the same as
finding a minimizer to the following problem in a structured data space
M.

y = arg min
y2M

NX

i=1

wid(y, yi)
2. (1.3)

where d(·, ·) is a distance metric and {w1, . . . , wN} are weights. The in-
terpolant on a manifold is often referred as an intrinsic mean. Since the
optimization problem in (1.3) may have multiple solutions on manifolds,
numerical procedures may find a local minimum (a Karcher mean) or a
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Figure 1.3: Interpolation of shapes (Kilian et al., 2007)

global minimum (Fréchet mean).
Interpolation of shapes has been studied in computer vision, graphics,

and medical imaging. Shapes can be treated as points on a Riemannian
manifold, called shape spaces pioneered by (Kendall, 1984). Multiple
Riemannian frameworks have been proposed to interpolate shapes along
geodesics with respect to useful Riemannian metrics Klassen et al. (2004);
Kilian et al. (2007) as in 1.3. These can be viewed as finding a weighted
mean with respect to (w.r.t) Riemannian metrics. Besides shapes, the
means of structured matrices (Lie groups) have been studied (Manton,
2004; Moakher, 2006). Further, inductive/recursive intrinsic mean esti-
mators have been studied on the hypersphere (Salehian et al., 2015), the
Grassmannian manifold (Chakraborty and Vemuri, 2015), non-positively
curved Riemannian manifolds (Cheng et al., 2016), and the SPD manifold
(Cheng et al., 2012; Ho et al., 2013) for more computationally efficient
estimation.

In neuroimaging, brain atlas estimation has been studied in the Rie-
mannian setting by (Joshi et al., 2004; Fletcher et al., 2009). Also, voxel
measurements in a brain image are often structured. So, transforma-
tion and manipulation of such brain images involve interpolations of
structured measurements. To this end, multiple frameworks have been
proposed, for instance, estimation and smoothing of diffusion tensor
fields (Wang et al., 2004), splines for interpolation of diffusion tensor
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(a) (b) (c) (d)

Figure 1.4: (a) Simulated EAP profiles. (b) EAP profiles with added
Wishart noise. (c) Gaussian filtering. (d) Anisotropic filtering.

fields (Barmpoutis et al., 2007), orientation density funcions (ODFs) for
high angular resolution diffusion images (Goh, 2010), ensemble average
propagators (EAP) reconstruction via spherical polar Fourier diffusion
MRI (Cheng et al., 2010), and a variety of EAP processing operiations
(Cheng et al., 2011). A EAP profile is a random density function in the
three dimensional space. EAPs are often represented by Gaussian mixture
models (GMMs). A naive interpolation of GMMs in an L2-space increases
the number of components of GMMs resulting in more complex EAP
profiles. Registration of brain images requires a non-trivial number of
iterations involved with transformations of images. So, it easily reaches a
huge number of model parameters after few iterations. Fig. 7.4 demon-
strates that Gaussian filtering and anisotropic filtering without increasing
the complexity of EAP profiles. We will study this problem in Chapter 7.

1.4.2 Regression for manifold-valued measurements

The notion of interpolation (or intrinsic mean) on manifolds naturally
allows defining nonparametric regression on manifolds, e.g., kernel re-
gression (Nadaraya-Watson kernel estimator) (Davis et al., 2007), and
spline (Jupp and Kent, 1987). These models use interpolation as a module
to perform regression.

Such regression models for structured data are useful in neuroimaging
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analysis since brain images often comprises manifold-valued voxel mea-
surements. For example, the DTI image in Fig. 1.5 has a 3 ⇥ 3 symmetric
positive definite (SPD) matrix at each voxel. The most common analy-
sis goal in neuroimaging is to associate a set of covariates such as age,
gender and pathology with voxel-wise measurements. The relationship
can be described as a function, i.e., y = f (Xage, Xgender, Xpathology). Since
the voxel-wise measurement in DTI images is a SPD matrix, it cannot be
directly handled by classical regression models. In the neuroimaging com-
munity, a simple solution (and still a widely used approach) is analysis
based on a scalar summary of the manifold-valued data, e.g., univariate
statistics from eigen values of diffusion tensors such as normalized stan-
dard deviation, mean, the first eigen value, and so on (Alexander et al.,
2007).

DTI

D =

0

@
1.53 1.38 0.65

1.38 1.33 0.70

0.65 0.70 1.06

1

A

x

T

Dx > 0, x 6= 0

GLM on scalar valued summariesGLM on scalar valued summaries

1

Figure 1.5: Diffusion tensor image with a structured measurement at each
voxel.

Tensor-based morphometry (TBM) (Freeborough and Fox, 1998; Chung
et al., 2001; Riddle et al., 2004; Frackowiak, 2004; Hua et al., 2008) is an-
other example in neuroimaging. TBM is a deformation-based image
analysis technique for measuring brain structural differences over differ-
ent populations (cross-sectional study) or over time (longitudinal study).
In cross-sectional studies, TBM is calculated with the spatial derivatives of
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Figure 1.6: An example panel of data generated in morphometric studies. (a,
d) The moving and fixed brain image respectively. (b) Warped spatial grid to
move (a) to (d). (c) Vector field of local deformations. (e, f) A map of scalar
features; det(J) of the deformation field. (g, h) The map of manifold-valued
features known as Cauchy deformation tensor (CDTs) (

p
JT J).

the transformations that align a set of subject images to a common anatom-
ical template. In longitudinal studies, TBM is computed via nonlinear
registration of multiple scans at different time points from the same indi-
vidual. The classical TBM analysis uses the determinant of the Jacobian J
(e,f) in Fig. 1.6, which is the spatial derivative matrix of the transformation.
Obviously, the disadvantage of the classical analyses using scalar sum-
maries of diffusion tensors and deformation tensors is that a significant
amount of information is lost relative to the full manifold-valued mea-
surements. So, any inference based on the summarized information about
manifold-valued measurements is likely to suffer from poor statistical
power.

To avoid the disadvantage of simple features derived from structured
data, statistical models have been extended to manifolds. One of the
simplest regression models in the Euclidean space is linear regression
and it is also preferred since the number of samples is often small in
neuroimaging study. But due to the technical difficulty in estimation
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of parameters, parametric regression models are relatively less studied.
Recently, generalizations of linear models on manifolds are studied using
geodesics for linearity of models (Fletcher, 2013). Also, parametric nonlin-
ear models are extended: polynomial regression (Hinkle et al., 2012) and
geodesic regression with a parametric time-warping function (Hong et al.,
2014). These models learn a regression function f : R!M so they allow
only one covariate, .e.g., association between age and voxel measurement
(Du et al., 2014). But these models are limited since the brain (and voxel
measurements) may change as a function of multiple covariates (e.g., age,
gender, and cognitive scores). To capture the association, linear regression
models must be extended for f : Rd !M. We study such an extension in
Chapter 3.

1.4.3 Multimodal analysis and dimensionality reduction

Independent of the regression analysis described above, one common
problem in image analysis is high-dimensionality of data. Specifically,
in neuroimaging, each voxel value is not high-dimensional data but the
number of voxels in a brain is large (⇡ 1M+). So most voxel-wise analy-
ses perform a large number of hypothesis tests simultaneously: as many
as the number of voxels. Therefore, as the number of voxels increases,
it is likely that we will see more tests with a significant p-value purely
by chance, which is known as the multiple comparison problem (Ben-
jamini and Hochberg, 1995; Hsu, 1996; Nichols and Hayasaka, 2003). To
counteract the problem, in voxel-wise analysis of brain images, we need a
multiple testing correction such as Bonferroni correction (Bonferroni, 1936;
Perneger, 1998). This procedure is usually too conservative, especially
when the number of voxels is large. It may remove the true positives
as well. Also, each voxel is not truly independent for multiple reasons:
spatial homogeneity of images, and preprocessing (smoothing). So based
on random field theory, which takes spatial correlation into account, less
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Figure 1.7: Canonical Correlation Analysis on manifolds.

stringent multiple comparison corrections have been proposed. Another
potential solution is cluster-level analysis. since the number of hypothe-
sis tests is much fewer than voxel-wise analysis. More systematically, a
unified method using a conjugate Dirichlet process mixture model has
been proposed in the literature and shown to be effective in the analysis
of gene expression measured by microarrays (Dahl and Newton, 2007).

One may also address this issue by filtering out some of the voxels to
reduce the number of hypothesis tests. However, filtering based on ROIs
selected by human may introduce a bias in the final discovery. So data-
driven filtering has been investigated by various authors. For example, a
few years back, (Bourgon et al., 2010) showed that the statistical power of
voxel-wise analysis (equivalently variable-by-variable statistical testing)
can be improved by a two-stage approach; first filter voxels (or variables)
by independent criterion of the test statistics and test hypothesis only over
voxels (or variables) which pass the filter (Zheng et al., 2017).

Alternatively, dimensionality reduction algorithms may also play a
filtering role. In various neuroimaging studies, for each participant, we
may acquire different types of images such as computed tomography (CT),
functional MRI (fMRI) and positron emission tomography (PET). Each
imaging modality may capture a unique aspect of the disease pathology.
Also, we may argue that the brain regions that are strongly correlated
between different types of images may be important and can be used in
downstream statistical analysis. For example, in a study of a large number
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of subjects, rather than performing a hypothesis test on all brain voxels
independently for each imaging modality, restricting the number of tests
only to the set of ‘relevant’ voxels can improve statistical power.

So canonical correlation analysis (CCA) is a natural solution for voxel
selections using multiple modalities of images. Since multivariate/man-
ifold approaches outperform the Euclidean methods with a single type
of images, multi-modal inference with manifold-valued measurements
is expected to be more effective. We extend the CCA on manifolds for
multi-modal neuroimaging data in Chapter 4, see in Fig. 1.7.

The related work for our construction, i.e., multi-modal inference for
manifold-valued data, is limited. Except the structured data analysis
aspect, multi-modal analysis has been studied by classical CCA and its
non-linear variants. These include various interesting results based on
kernelization (Akaho, 2006; Bach and Jordan, 2002; Hardoon et al., 2007),
neural networks (Lai and Fyfe, 1999; Hsieh, 2000), and deep architectures
(Andrew et al., 2013). The second line of work incorporates the specific
geometry of the data directly within the estimation problem. Among pro-
jective dimensionality reduction methods, Principal Components Analysis
(PCA) has been mainly generalized to Riemannian manifolds: PCA for
spherical data (Jung et al., 2010, 2012), the generalization of PCA to Rie-
mannian manifolds via the so-called Principal Geodesic Analysis (PGA)
(Fletcher et al., 2004), Geodesic PCA (Huckemann et al., 2010a), Exact PGA
(Sommer et al., 2014a), Horizontal Dimension Reduction (Sommer, 2013)
with frame bundles, and an extension of PGA to the product space of
Riemannian manifolds, namely, tensor fields (Xie et al., 2010). Separately,
PCA has been generalized for tress (Aydın et al., 2012) as well.

1.4.4 Longitudinal analysis of structured data

The goal of longitudinal analysis is to model the subject-specific change
over time as well as the population-level trajectories. This is a fundamental
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tool to study time dependent image data (e.g., medical images as in Fig.
1.8). A longitudinal analysis naturally involves multiple samples from
the same subject at multiple time points whereas cross-sectional analysis
assumes that data are collected at a time point (i.e., one sample from one
subject).

Figure 1.8: Trajectories of brain structures. Each subject (S1-S3) is ob-
served at multiple time points. To analyze a population level trend, the
structural changes need to be transported in a common coordinate system.

Samples from a particular subject are inherently not independent.
Also, the trajectories (e.g., speed of change and start of change) may vary
depending on subjects. This variability is called random effects, whereas
the population level pattern captured by classical regression models is
called fixed effects (Laird and Ware, 1982). Each subject has its own ran-
dom effects and the samples from the subject are assumed to be affected
by the random effects. So, a more accurate longitudinal analysis can
be achieved by proper handling the subject-specific random effects (de-
pendency between samples). To this end, in the literature, mixed effects
models, capturing fixed effects and random effects, have been extensively
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studied, for instance, linear mixed effects models (Laird and Ware, 1982),
generalized linear mixed effect models (Wolfinger and O’connell, 1993;
McCulloch and Neuhaus, 2001) and varying coefficient models (Hastie
and Tibshirani, 1993). However, the generalization of these models for
structured measurement is very limited. Recently, nonlinear mixed effects
models on a unit interval with a specific Riemannian metric was proposed
(Schiratti et al., 2015). But this model is not flexible enough to handle
general manifold-valued data.

Separate from the statistical literature, longitudinal image analysis
is an important topic in medical imaging as well. Modeling anatomi-
cal changes over time is crucial to study brain development, aging and
disease progression. A representation of structural changes is registra-
tion maps. In neuroimaging, the registration maps are assumed to be
diffeomorphisms (i.e, smooth, invertible and topology-preserving). For
time-varying structures, geodesic regression (Niethammer et al., 2011) and
age-specific brain atlas estimation (Yoon et al., 2009). But these methods
are agnostic to subject-specific trajectories (dependency of samples from
a particular subject). Most recent attempts estimate the population level
trajectory simply by averaging subject-specific trajectories (Durrleman
et al., 2009; Fishbaugh et al., 2012; Lorenzi et al., 2011a). These methods
use the sample dependency within a subject but it is not flexible enough to
consider general random effects. We will study more flexible mixed effects
models in the context of capturing anatomical changes over time to take
the dependency of samples (subject-specific random effects) into account
in Chapter 6. Additionally, the extended mixed effects models provide
interpretability, e.g., aging/disease progression with subject-specific time
shift, acceleration, and intercepts for structured measurements.
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1.5 Structure of the thesis

The rest of the thesis organized as follows:
Chapter 2 starts with the brief introduction of some concepts from

differential geometry that are relevant to most of the dissertation. Other
concepts that are used in a specific chapter will be introduced in that
chapter as needed.

Chapter 3 based on our work in (Kim et al., 2014b) studies Manifold-
valued Multivariate General Linear Models (MMGLMs), which are a
generalization of linear regression models on Riemannian manifolds. We
demonstrate that MMGLMs improves statistical power in statistical anal-
ysis of diffusion weighted images.

Chapter 4 based on our work in (Kim et al., 2014a, 2016b) extends
Canonical Correlation Analysis (CCA) on manifolds and identifies mean-
ingful correlations across diffusion tensor images (DTI) and Cauchy de-
formation tensor (CDT) fields. We develop efficient estimation schemes
with computationally efficient operations on SPD(n).

Chapter 5 based on our work in (Kim et al., 2015b) establishes a non-
parametric nonlinear regression model on manifolds. Using nonparamet-
ric Bayesian priors and MMGLMs, we develop the Dirichlet mixtures
of multivariate general linear models on SPD(n) and show that it cap-
tures more complex patterns than MMGLMs. Also, we derive an efficient
sampling methods for structured parameters.

Chapter 6 based on our work in (Kim et al., 2017a, 2016a) discusses
tensor-based longitudinal analysis with manifold-valued data that cap-
tures local deformation. It provides a new Nonlinear Mixed Effects Mod-
els on Riemannian manifolds. The estimated random effects can be used
for downstream analysis and offers interpretability of models at the level
of individual subjects.

Chapter 7 based on our work in (Kim et al., 2015a) studies the in-
terpolation on the manifold of K component Gaussian mixture models
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(GMMs) without increasing the complexity of resulting interpolant. We
also discuss the relationship of the proposed framework with functional
clustering of probability density functions.

Chapter 8 summarizes the contributions of the thesis and discusses
future directions.
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2 PRELIMINARY

The models in the thesis are mainly developed based on tools from Rie-
mannian geometry. We briefly summarize basic concepts and notations
that the remainder of the thesis will utilize. Riemannian manifolds are
very useful non-linear spaces to analyze data with nice mathematical
properties. While we introduce relevant concepts that are used later in
the thesis, additional details can be found in several excellent textbooks
(Do Carmo, 1992; Amari, 1985; Amari and Nagaoka, 2000; Spivak, 1981).

Riemannian manifolds consist of three structural concepts: topological
structure, differentiable structure and Riemannian metric. The topolog-
ical structure allows defining topological notions (e.g., continuity and
convergence). The differentiable structure (smooth manifolds) enables
generalizing calculus since the charts of the smooth manifolds are suit-
ably compatible (the transition between charts is differentiable). Lastly,
Riemannian metric defines geometric quantities, e.g., length of curves,
distance, angles, and curvature.

2.1 Topological manifolds

A Riemannian manifold is a topological manifold, which is a topological
space which locally resembles a n-dimensional Euclidean space. The
topological structure allows defining topological notions such as open
sets, continuity and convergence. We start with the basic definition of a
topological space.

Definition 2.1. Let X a set and T be a collection of subsets of X. A topological
space (X, T ) satisfies the following properties:

1. The empty set f 2 T and X 2 T
2. Any union of elements of T is in T
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3. The intersection of any finite number of elements of T is in T .

Definition 2.2. A topological space X is said to be Hausdorff if for any two
points x, y 2 X and x 6= y, there exist two open sets U and V such that
U \ V = f and x 2 U, y 2 V.

Definition 2.3. A homeomorphism between two topological spaces X and Y
is a bijective function f : X ! Y that both f and f-1 are continuous. If there
exist a homeomorphism between X and Y, we then say that X is homeomorphic
to Y.

Now using the notion of homeomorphism, we are able to locally map
the topological space (manifold) to the Euclidean space and generalize
well-defined concepts in Euclidean space to manifolds.

Definition 2.4. A n-dimensional topological manifold X is a Hausdorff
space where every point x 2 X has a neighborhood U 2 X homeomorphic to an
open set j(U) 2 Rd. The local homeomorphism j : U ⇢ X ! Rd is called a
coordinate chart on U, which is often denoted by (U, j), see Fig. 2.1.

M
U

V

�(U [ V )

�(U [ V )

� � �

�1
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�1�(U)

�(V )

Rn

Rn

�

�

Figure 2.1: Coordinate charts.



23

The Hausdorff space is important to prevent unusual and counterintu-
itive convergence behavior in analysis since a non-Hausdorff topological
space may have several distinct limit points. In addition to the Hausdorff
property, manifolds are assumed to be second-countable, i.e., it has a count-
able topological basis. Second-countability is relevant to partitions of unity
which is a theoretical tool to answer questions such as the existence of
a Riemannian metric and an affine connection. This abstract definition
of manifolds by Hausdorff and second countability is equivalent to the
definition of manifolds embedded in the ambient Euclidean space by
Whitney’s embedding theorem (Lee, 2012).

A manifold is connected if there exist no disjoint union of two nonempty
open sets. Equivalently, any two points in a connected (or path-connected)
manifold can be joined by a piecewise smooth curve segment (not geodesic
curves).

2.2 Differentiable manifolds

We now are ready to introduce the differentiable structure of manifolds.
Given two coordinate charts (f, U) and (y, V), the transition function is
defined as

f � y

-1 : y(U [ V) ⇢ Rn ! f(U [ V) ⇢ Rn. (2.1)

where U \ V 6= ∆.
Two charts (U, f) and (V, y) are called compatible if the transition maps

are smooth (differentiable), see Fig. 2.1. If every pair of charts of a manifold
M is compatible, then the manifold M is called a smooth (or differentiable)
manifold. Using charts, we can also generalize the differentiability of
real valued functions on manifolds f : M ! R and functions from one
manifold to another f : M ! N where N is a different manifold. A
continuous function f : M ! R is said to be differentiable if for every
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chart fU the function f � f

-1
U is differentiable. Further, a map between

differentiable manifolds, i.e., f : M ! N is said to be differentiable if
r � f is differentiable for any differentiable r : N ! R. The map f between
two differentiable manifolds is called diffeomorphism if it is a bijection
and both f and f-1 are differentiable. Basically, a diffeomorphism is
a differentiable homeomorphism. This differentiable structure allows
calculus with functions defined with differentiable manifolds.

Note that a diffeomorphism between two manifolds implies that two
manifolds have the same dimension due to the inverse function theorem.
While homeomorphism is used to show the topological equivalence be-
tween two topological spaces, diffeomorphism is used for equivalence
between two differentiable manifolds.

We have now defined the differentiable structure of manifolds. It
naturally leads to the definitions of tangent vectors and tangent spaces.
A tangent space TpM at point p 2 M is a vector space, which an n-
dimensional vector space TpM and isomorphic to Rn. The elements of
the tangent space are tangent vectors of smooth curves on M passing
through p 2 M.

Definition 2.5. Let g : [-e, e] ! M, g(0) = p 2 M be a smooth curve
passing through p on a differentiable manifold M. Let f be any differentiable
function defined in a neighborhood of p. Then the tangent vector to the curve g

at t = 0 is defined as the operator g

0
(0) that maps function f to its directional

derivative, i.e.

g

0
(0) f =

d f � g

dt

����
t=0

. (2.2)

The collection of all tangent vectors at p 2 M is the tangent space denoted by
TpM.

The tangent bundle of M, i.e., TM, is the disjoint union of tangent
spaces at all points of M, TM =

`
p2M TpM. There exists a natural

projection mapping p : TM!M defined by f(p, v) = p (Lee, 2012).
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2.3 Riemannian manifold

We finally define a Riemannian manifold by adding a notion of distance,
i.e., Riemannian metric g, to a smooth manifold. A Riemannian manifold
(M, g) is a differentiable manifold M equipped with a smoothly varying
inner product (Riemannian metric g).

Definition 2.6. A Riemannian metric g on a differentiable manifold M is a
smoothly varying inner product gp : TpM ⇥ TpM! R on each of the tangent.
In other words, for each p 2 M, gp satisfies the follows:

1. gp(u, v) = g(v, u) for all u, v 2 TpM; symmetric

2. gp (

Pn
i=1 ui,

Pn
i=1 vi) =

Pn
i=1
Pn

j=1 gp(ui, vj); bi-linear

3. gp(u, u) � 0 for all u 2 TpM; positive definite

4. gp(u, u) = 0, u = 0; positive definite

Also g is smooth in the sense that for any two smooth vector fields X and Y , the
function p 2 M! gp(Xp, Yp) is smooth (Pflaum, 2001; Lee, 2012).

The Riemannian metric allows measuring the length of a smooth curve
g : [a, b]!M on the manifold by

L(g) =

Z b

a

q
gx(ġ(t), ġ(t))dt (2.3)

where ˙
g(t) is the tangent vector of g at t. With this definition of the

length of a curve, a geodesic curve on a Riemannian manifold is a locally
length-minimizing path. The geodesic curve is a generalization of a
straight line to a curved space. Later in the thesis, we use geodesic curves
to generalize linear models, e.g., manifold-valued multivariate general
models (MMGLMs) in Chapter 3 and Riemannian canonical correlation
analysis (RCCA) in Chapter 4.
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• Tangent space            : vector space of the tangent vectors 

of all curves passing thru 

• Exponential map                : 
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Figure 2.2: The exponential map Exp(p, v) maps v to a point on manifold
M preserving the length of tangent vector v, i.e., the length of geodesic curve
parameterized by v from p is the same as the norm of v in TpM.

The notion of the length of a curve naturally defines the distance
between two points on manifolds given as

d(p, q) = inf
g2G(p,q)

Z1

0

q
g

g(t)(ġ(t), ġ(t))dt, (2.4)

where G(p, q) is a set of all piecewise smooth curves joining p = g(0) and
q = g(1). This distance is called the geodesic distance. If the infimum is
achieved by a smooth curve, it is a geodesic curve. But a geodesic curve
between two points may not achieve the minimum length in general since
the geodesic curve between two points may not be unique.

In a sufficiently small neighborhood where there exist a unique solu-
tion to geodesic equation (an ordinary partial equation) with initial point
g(a) = p and initial velocity ˙

g(a) = v, the solution defines a map from
a tangent vector v 2 TpM to a point q 2 M. This mapping is called the
exponential map Exp(yi, ·) : TyiM!M. It is defined formally as

Definition 2.7. (Spivak, 1981) If v 2 TpM is a vector for which there is a
geodesic

g : [0, 1]!M (2.5)
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• Logarithm map                : Log(p, ·)
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p

= kLog(p, q)k
p

Riemannian manifolds

M � T

p

M

50

Figure 2.3: The logarithm map Log(p, q) maps q 2 M to a tangent vector
v 2 TpM preserving the length of the geodesic curve between p and q.

satisfying

g(0) = p,
dg

dt
(0) = v, (2.6)

then we define the exponential of v to be

Exp(p, v) = g(1) (2.7)

In this thesis, we will often use multiple nested exponential maps. For
better readability, we use a slightly different notation, i.e., Exp(p, v) :=
Expp(v) := Exppv.

The exponential map is a local diffeomorphism (i.e., differentiable,
bijective, and continuous). So, the inverse map is well defined within a
small neighborhood. It is called the logarithm map.

Definition 2.8. Given two points p, q 2 M, if there exists v 2 TpM such that
Exp(p, v) = q, then the logarithm map Log(p, ·) : M! TpM is defined as

Log(p, q) = v. (2.8)

Since the logarithm map is the inverse of exponential map, we have
trivial identities, e.g., Log(p, Exp(p, v)) = v and Exp(p, Log(p, q)) = q.

The geodesic curve from yi to yj can be parameterized by a tangent
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• Intrinsic mean (Karcher mean or Fréchet mean): 
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Figure 2.4: Intrinsic mean (or Fréchet mean) ȳ is minimizing the sum of
squared geodesic distance to data points y1, . . . , y4 on manifold M.

vector in the tangent space at yi with an exponential map Exp(yi, ·) :
TyiM ! M. The inverse of the exponential map is the logarithm map,
Log(yi, ·) : M! TyiM. For completeness, Table 2.1 shows corresponding
operations in the Euclidean space and Riemannian manifolds. Separate
from the above notation, matrix exponential (and logarithm) are simply
given as exp(·) (and log(·)).
Intrinsic mean. Let d(·, ·) define the distance between two points. The
intrinsic (or Karcher) mean is the minimizer to

ȳ = arg min
y2M

NX

i=1

wid(y, yi)
2, (2.9)

which may be an arithmetic, geometric or harmonic mean depending
on d(·, ·), see Fig. 2.4. On manifolds, the Karcher mean with distance
d(yi, yj) = kLogyi

yjk satisfies
PN

i=1 Logȳyi = 0 . This identity means that
ȳ is a local minimum which has a zero norm gradient (Karcher, 1977),
i.e., the sum of all tangent vectors corresponding to geodesic curves from
mean ȳ to all points yi is zero in the tangent space TȳM. On manifolds, the
existence and uniqueness of the Karcher mean is not guaranteed unless
we assume, for uniqueness, that the data is in a small neighborhood.

The Karcher mean is obtained by Algorithm 1, where a denotes the
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step size (a = 1 was used in our experiments). Karcher mean can be

Algorithm 1 Karcher mean
Input: y1, . . . , yN 2 M, a

Output: ȳ 2 M
ȳ0 = y1
while kPN

i=1 Log(ȳk, yi)k > e do
Dȳ =

a

N
PN

i=1 Log(ȳk, yi)
ȳk+1 = Exp(ȳk, Dȳ)

end while

estimated by second-order methods as well. To do so, we need a notion
of a Hessian on manifolds. This naturally leads to the so-called affine
connection (Boumal, 2014)

Definition 2.9. (affine connection). Let X(M) and F(M) be the a set of smooth
vector fields on M and the set of smooth functions on M. An affine connection
r on M is a mapping

r : X(M) ⇥X(M)! X(M) : (X, Y) 7! rXY (2.10)

which satisfies the following:

1. F(M)-linearity in X: r f X+gYZ = f rXZ + grYZ

2. R-linearity in Y: rX(aY + bZ) = arXY + brXZ

3. Product rule (Leibniz’ law): rX( f X)Y + f rXY,

where X, Y, Z 2 X(M), f , g 2 F(M) and a, b 2 R.

The affine connection is a foundation to develop a notion of the Rie-
mannian Hessian (Boumal, 2014) for the second order optimization scheme.
For more details, we refer to (Absil et al., 2009; Boumal, 2014). In this
thesis, we mostly use the first order methods.
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Parallel transport. Let M be a differentiable manifold with an affine
connection r and I be an open interval. Let c : I !M be a differentiable
curve in M and let V0 be a tangent vector in Tc(t0)

M, where t0 2 I. Then,
there exists a unique parallel vector field V along c, such that V(t0) = V0.
Here, V(t) is called the parallel transport of V(t0) along c.

Convexity of sets and functions are useful tools for analysis and nu-
merical optimization. We briefly introduce generalized convexity on man-
ifolds. We will use the following concepts to reformulate optimization
problems.
Geodesically convex set. A subset C of M is said to be a geodesically
convex set if there is a minimizing geodesic curve in C between any two
points in C. This condition is commonly used for analysis (Corcuera
and Kendall, 1999; Papadopoulos, 2005) and essential to ensure that the
Riemannian operations such as the exponential and logarithm maps are
well-defined.
Geodesically convex function. Let A ⇢ M be a geodesically convex set.
Then, a function f : A! R is geodesically convex if its restrictions to all
geodesic arcs belonging to A are convex in the arc length parameter, i.e.,
if t 7! f (t) ⌘ f (Exp(x, tu)) is convex over its domain for all x 2 M and
u 2 TxM, where Exp(x, ·) is the exponential map at x (Moakher, 2005).

Operation Euclidean Riemannian

Subtraction !xixj = xj - xi
!xixj = Log(xi, xj)

Addition xi +
!xjxk Exp(xi,

!xjxk)

Distance k !xixjk kLog(xi, xj)kxi

Mean
Pn

i=1
!̄xxi = 0

Pn
i=1 Log(x̄, xi) = 0

Covariance E
⇥
(xi - x̄)(xi - x̄)

T⇤ E
⇥
Log(x̄, x)Log(x̄, x)

T⇤

Table 2.1: Basic operations in Euclidean space and Riemannian manifolds.
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Generalized normal distributions Let X 2 M and s 2 R
+

. One gener-
alization of the Gaussian distribution on Riemannian manifolds is given
by

f (X; X, s) =

1
Z(X, s)

exp
✓
-

d(X, X)

2

2s

2

◆
,

where Z(X, s) =

Z

M
exp

✓
d(X, X)

2

2s

2

◆
dX.

(2.11)

d(·, ·) denotes the geodesic distance between two manifold-valued data
points. On SPD(n), we use the affine-invariant Riemannian metric for
d(·, ·). X 2 M and s 2 R

+

corresponds to the mean and variance. The
notation s denotes dispersion of manifold-valued variables. Multiple
generalizations of Gaussian distributions are discussed in (Pennec, 2006;
Cheng and Vemuri, 2013; Fletcher, 2013). Z(µ, s) is the normalization
factor to make the integration of the PDF in the space of SPD(n) work. It
is known that Z(X, s) is independent from µ on Riemannian symmetric
spaces (Fletcher, 2013). However, it is difficult to calculate the normaliza-
tion factor in practice (Said et al., 2017). This may result in a challenging
maximum likelihood estimation of the dispersion (s).

2.4 Manifolds for diffusion weighted imaging

In this thesis, one of main application topics is the analysis of diffu-
sion weighted imaging (DWI). We now discuss some example manifolds,
which are used for diffusion weighted imaging analysis.

Note that an inner product is the first step in defining Riemannian man-
ifolds. To manipulate data, we also need the exponential map Exp(p, ·),
logarithm map Log(p, ·), and parallel transport Gp!q(·). Here, we provide
details specific to each manifold.
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2.4.1 Unit sphere

The unit sphere is a common manifold, and the first example demon-
strated here. Let Sn

= {p 2 Rn+1|pT p = 1} be the unit sphere in Rn+1. Its
tangent space is then,

TpSn
= {v 2 Rn+1|pTv = 0}

The inner product of two tangent vectors u, v 2 TpM is given by

hu, vip = uTv, (2.12)

and the norm at p is
kvkp =

q
hu, vip (2.13)

Since the inner product and the norm of tangent vectors are independent
of p, we omit p in the following expressions. The main operators we need
in this thesis on the unit sphere are,

Exp(p, v) = p cos(kvk) +

v
kvk sin(kvk)

Log(p, q) =

(I - ppT
)qp

1 - (pTq)2
acos(pTq)

Gp!q(w) = -p sin(kvk)vTw +

v
kvk cos(kvk)vTw

+ (I -
vvT

kvk2 )w, where v = Log(p, q)

(2.14)

2.4.2 Hilbert unit sphere

Probability density functions (PDFs) typically represent diffusion of water
molecules. Using the square root parameterization, PDFs form a unit
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Hilbert sphere (Cheng et al., 2009),

Y = {y : S2 ! R+|8s 2 S2, y(s) � 0;
Z

s2S2
y

2
(s)ds = 1} (2.15)

The inner product is given by

hxi, x jiyi =

Z

s2S2
xi(s)x j(s)ds, (2.16)

and coincides with the Fisher-Rao metric (Srivastava et al., 2007). All other
operations needed are the same as those shown for the unit sphere above.

2.4.3 Symmetric positive definite matrices

Symmetric positive definite (SPD) matrices are used for the so-called “dif-
fusion tensors” are at each voxel in the image (we will describe details
of such image data). Also, we will use SPD manifolds for the representa-
tions of image-to-image warps in Chapter 6 and covariance descriptor (for
texture) in Chapter 5. Let SPD(n) be a manifold for symmetric positive
definite matrices of size n ⇥ n. This forms a quotient space GL(n)/O(n),
where GL(n) denotes the general linear group (the group of (n ⇥ n) non-
singular matrices) and O(n) is the orthogonal group (the group of (n ⇥ n)

orthogonal matrices). The quotient space is, intuitively speaking, a space
equipped with an equivalence relation ⇠, i.e., a relation that is

• reflexive: x ⇠ x for all x 2 M

• symmetric: x ⇠ y, y ⇠ x for all x, y 2 M

• transitive: if x ⇠ y and y ⇠ z, then x ⇠ z for all x, y, z 2 M.
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The isomorphism SPD(n)

⇠
=

GL(n)/O(n) can be explained with the
following characterization. A matrix P 2 SPD(n) can be factorized as

P = ZZT
= (ZO)(ZO)

T, (2.17)

where Z 2 GL(n) and O 2 O(n). It is easy to see that the P is not affected
by orthogonal transformation Z 7! ZO and this defines the equivalence
relation and the quotient geometry (Bonnabel and Sepulchre, 2009).

The inner product of two tangent vectors u, v 2 TpM is given by

hu, vip = tr(p-1/2up-1vp-1/2
), (2.18)

where tr(·) denotes the trace of a square matrix. This plays the role of
the Fisher-Rao metric in the statistical model of multivariate distributions
(Petz, 2005). Here, TpM is a tangent space at p (which is a vector space) is
the space of symmetric matrices of dimension (n + 1)n/2. The geodesic
distance is,

d(p, q)2
= tr(log2

(p-1/2qp-1/2
))

The exponential map and logarithm map are,

Exp(p, v) = p1/2 exp(p-1/2vp-1/2
)p1/2

Log(p, q) = p1/2 log(p-1/2qp-1/2
)p1/2

(2.19)

Let p, q be in P(n) and a tangent vector w 2 TpM, the tangent vector
in TqM which is the parallel transport of w along the shortest geodesic
from p to q is given by (Ferreira et al., 2006)

Gp!q(w) = p1/2rp-1/2wp-1/2rp1/2

where r = exp
⇣

p-1/2 v
2

p-1/2
⌘

and v = Log(p, q).
(2.20)
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2.5 Optimization on manifolds

Optimization on (Riemannian) manifolds is important to estimate statisti-
cal machine learning models for structured data, especially when the data
belong to Riemannian manifolds. Even if data are in a vector space, we
encounter optimization on manifolds due to certain types of constraints
on parameters (e.g., Orthogonal Procrustes problem (Gower and Dijkster-
huis, 2004) and generalized eigenvalue problem (Jae Hwang et al., 2015)).
This is a fast growing research topic (Absil et al., 2009; Boumal et al., 2014;
Boumal, 2014).

The main goal of optimization on manifolds is to provide efficien-
t/stable numerical algorithms to find local/global minimum to

min
x2M

f (x) (2.21)

without leaving the feasible region M, which is a manifold.
Early attempts to address optimization on manifolds (Gabay, 1982;

Udriste, 1994; Yang, 2007) introduced a gradient descent, Newton meth-
ods, and quasi-Newton methods with convergence analysis. Also, trust
Region algorithms (Absil et al., 2007; Boumal and Absil, 2011), and Nedler-
Mead method (Dreisigmeyer, 2006) have been studied.

In this section, we briefly introduce a simple first order method on
manifolds. Let us first revisit a gradient descent method in Euclidean
space. The main update rule at the kth step is given as

xk+1 = xk + akhk, (2.22)

where ak is a step size, hk is a gradient or descent direction.
We can naturally extend the update in (2.22) to manifolds. The update

indeed is to find a solution along a straight line parameterized by hk.
It can be generalized by substituting the straight line with a geodesic
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curve parameterized by a tangent vector i.e., hk 2 TxkM. Exponential map,
Exp(x, ·) : M ! TxM, maps the geodesic curve given a tangent vector
and allows staying within a manifold after the update.

Another approach is to search solutions on manifolds along more
general paths using retraction R. The retraction R at x is denoted by Rx and
it is also a mapping from TxM to M. These mappings (exponential map
and retraction) can be viewed as projections to get the feasible solutions.
Then the update on manifolds is given by

xk+1 = Exp(xk, akhk), (2.23)

or with a retraction
xk+1 = Rxk(akhk). (2.24)

Note that with the canonical notations, (2.23) is written as xk+1 = Expxk
(akhk).

So (2.24) is very similar to (2.23) except the fact that it uses a general path.
The retraction Rx is formally defined with a local rigidity and it preserves
gradients at x.

Definition 2.10. (Absil et al., 2009) A retraction on a manifold M is a smooth
mapping R from the tangent bundle TM onto M with the following properties.
Let Rx denote the restriction of R to TxM.

• Rx(0x) = x, where 0x denotes the zero element of TxM.

• With the canonical identification T0x TxM ' TxM, Rx satisfies

DRx(0x) = idTxM,

where idTxM denotes the identify mapping on TxM and this is called local
rigidity condition.

Here is an example to compare a retraction and exponential map. The
unit sphere Sn-1 can be considered a Riemmanian manifold embedded in
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Rn. A retraction is given by

Rx(v) =

x + v
kx + vk (2.25)

where x 2 Sn-1 ⇢ Rn and v 2 TxM. This addition is performed in the
ambient space (Rn). The exponential map in Sn-1 is given as

Exp(x, v) = x cos(kvk) +

v
kvk sin(kvk). (2.26)

Retractions are often preferred since they have a lower computational
cost.

We discussed the mappings to search along a path on manifolds. Now,
we discuss how to choose the direction hk in (2.24) and (2.23) on manifolds.
The search direction can be a gradient or a descent direction. We define
such directions on manifolds. Let us revisit the directional derivative in
the Euclidean space. It is given by

D f (x)[h] = lim
t!0

f (x + th)- f (x)

t
(2.27)

where f is a real function. On manifolds, the directional derivative can be
defined as the following.

Definition 2.11. (Boumal, 2014) (directional derivative) The directional deriva-
tive of a scalar field f on M at x 2 M in the direction v 2 TxM is the
scalar:

D f (x)[v] :=
d
dt

f (c(t))
����
t=0

= ( f � c) 0
(0), (2.28)

where c(t) is a smooth curve on M and � denotes the function composition.

Now, with the definition of directional derivative on manifolds, we
can define the gradient on manifolds as the following.
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Definition 2.12. (Boumal, 2014) (gradient) Let f be a scalar function defined on
a Riemannian manifold M. The gradient of f at x 2 M denoted by grad f (x),
is defined as the unique element of TxM satisfying:

D f (x)[v] = hgrad f (x), vix, 8v 2 TxM.

Since f maps a scalar value at each x 2 M, f is a scalar field defined
on M. Similarly, grad f : M ! TM is a vector field on M. Note that
the grad f depends on the Riemannian metric since it is defined by the
Riemannian metric h, ix.

Algorithm 2 Line search minimization on manifolds.
1: Input f , Rx, k = 0, x0 2 M,
2: while until convergence do
3: choose a descent direction or gradient vk 2 TxkM
4: choose a step length ak 2 R

+

5: xk+1 = Rxk(akvk)
6: k k + 1
7: end while

In Alg. 2, the update step with a retraction in line 5 can be replaced
with the update step with the exponential map as xk+1 = Exp(xk, akvk).
For models in the thesis, we will use a variant of Alg. 2 for accurate itera-
tive methods. For faster estimation, we adopted log-Euclidean framework
as well for approximation in the tangent space.

What if we have decision variables in both a manifold and its tangent
space?

min
x2M,v2TxM

f (x, v)

We will see this case in the thesis. In this case, to have tangent vector v in
the tangent space at x, we need an extra step to ensure that the tangent
vector is in the right tangent space during updates. The step is obtained by
parallel transport, which is a generalization of parallel translation. Detailed
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algorithms will be introduced in Chapter 3.
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3 MANIFOLD-VALUED MULTIVARIATE GENERAL

LINEAR MODELS (MMGLMS)

A general linear model (GLM) is widely used in many scientific disciplines
since it is simple, robust to noise and easy to estimate. Despite the simplic-
ity of the model, it may not be universally applicable. In modern image
analysis, the response variables in many applications live on Riemannian
manifolds where standard GLM is not directly applicable because of the
absence of an additive structure. Some simple solutions (and still widely
used approaches) are to perform standard GLM with scalar summaries
of manifold-valued data or to run multivariate regressors imposing the
Euclidean topology forcibly. However, sometimes these schemes can
lead to poor estimation due to the coarse description of measurements
and inaccurate distance metrics. To address this problem, we study a
Manifold-valued Multivariate General Linear Models (MMGLMs) regress-
ing a manifold-valued dependent variable against multiple independent
variables, i.e., f : Rn !M. In our neuroimaging experiments, our pro-
posed methods improved statistical power in the statistical analysis of
diffusion weighted images, based on both diffusion tensors for DTI and
Orientation Distribution Functions (ODFs) from High Angular Resolution
Diffusion-weighted Imaging (HARDI).

3.1 General linear model in Euclidean spaces

Regression is essential in scientific analysis to identify how a dependent
variable, y 2 Y relates to an independent variable, x 2 X . Here, we
are provided training data in the form, (xi 2 X , yi 2 Y)

N
i=1 ⇢ X ⇥ Y ,

and seek to find the best model that explains these observations, given
an appropriate loss function. The classical setting typically makes an
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assumption on the geometric structure of the data by capturing the notion

of distance between points a and b by the expression,
⇣P

j=1...n(aj - bj
)

2
⌘ 1

2 ,
which holds whenever the data are real vectors. In the Euclidean setting,
a simple parametric model, yi = a + bxi + ei, suffices to identify the
linear relationship between scalar-valued xi 2 X and the dependent (i.e.,
response) variable yi 2 Y with error ei. The least squares estimate is,

(â, b̂) = arg min
(a,b)

NX

i=1

kyi - a - xibk2, (3.1)

and the closed form solution to (3.1) is obtained as,

b̂ =

Cov[x, y]

Var[x]

=

E
[

(x - x̄)(y - ȳ)

]

E
[

(x - x̄
)

2
]

, â = ȳ - b̂x̄. (3.2)

If x, and y are multivariate variables, one can easily replace the multiplica-
tion and division operations with an outer product of vectors and matrix
inversion respectively, and obtain an analytical solution.

General linear models (GLMs) have been used as a core module in
a standard analysis of structural/functional MRI analysis since it is a
simple model and requires a small number of samples. GLM is available
in popular neuroimaging analysis softwares such as FSL (Jenkinson et al.,
2012), and SPM (Friston et al., 2007). A GLM is given by

y = a + b

1x1
+ b

2x2
+ . . . + b

nxn
+ e (3.3)

where a, xi, b

i and the error e are in R and the superscript i of xi denotes
the coordinate (or dimension) not the power of x. One common goal
of neuroimaging analysis is to identify some regions of a brain that are
associated with a disease or risk factors (e.g., age, gender, and phenotypes).
To do so, since all brains have different sizes and shapes, we first register
brains in a standard space. This is also called spatial normalization. Now,
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we can safely map the anatomically same location across all subjects. After
the registration, we perform a regression (or GLM) at each voxel with
covariates (e.g., group information, risk factors) and a response (e.g., a
voxel value in the image). This is called voxel-wise analysis.

We now identify some brain regions that are significantly correlated
with covariates by evaluating the quality of the estimated regression
coefficients. This is called analysis-of-variance (ANOVA). For example,
let us assume that we learned y = b0 + b1x. Then, we can identify the
brain regions by testing the following hypothesis

H0 : b1 = 0 vs. H1 : b1 6= 0, (3.4)

which means that the null hypothesis says the response variable y is
independent from covariates x. To test the hypothesis above, we compute

F =

SSR/1
SSE/(n - 2)

, (3.5)

where SSR :=
NX

i=1

(ŷi - ȳi)
2 (3.6)

SSE :=
NX

i=1

(yi - ŷi)
2. (3.7)

Under the conditions of the null hypothesis, regression sum of squares
(SSR) and error sum of squares (SSE) of (3.4) have 1 and N - 2 degree
of freedom1. So, we reject H0 at the a-level of significance when F >

f
a

(1, n- 2) and we conclude that there is a significant amount of variation
in the response accounted for by the model. The particular voxel of brains
is correlated with the covariate. This is called F-test, or F-ratio test. For

1The degree of freedom (df) in statistics is the number of values that vary freely
in the final calculation of a statistic, e.g., the sample variance has N - 1 df, since it is
calculated from N random scores minus the one parameter (the sample mean) estimated
in an intermediate step.
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more details and other hypothesis tests, we refer to (Larsen et al., 1986;
Wackerly et al., 2007; Montgomery et al., 2015; Walpole et al., 2016).

To perform the same analysis with manifold-valued response variables,
we will extend the linear model to Riemannian manifolds and provide
the analogous hypothesis test with multiple nuisance variables.

3.2 Related work: geodesic regression for a
univariate covariate

The basic geodesic regression model in (Fletcher, 2013) extends a special
case of linear regressions to the Riemannian manifold setting. It is given
as

y = Exp(Exp(p, xv), e), (3.8)

where e is the error (a tangent vector), x 2 R and y 2 M are the inde-
pendent and dependent variables respectively, p 2 M is a ‘base’ point on
the manifold, and v 2 TpM is a tangent vector at p. For consistency with
Euclidean space, we use m for the dimensionality of TpM. Comparing
(3.8) and Table 2.1, observe that p and v correspond to the intercept a and
the slope b in (3.1). Given N pairs of the form (xi, yi), (Fletcher, 2013)
solves for (p, v) 2 TM to fit one geodesic curve to the data,

E(p, v) :=
1
2

NX

i=1

d(Exp(p, xiv), yi)
2, (3.9)

providing the estimate ŷi = Exp(p, xiv). Here, errors are measured by the
geodesic distance on M, i.e., d(a, b) =

phLog(a, b), Log(a, b)ia. Rewrit-
ing (3.9) in the form of a minimization problem using the definition of
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d(·, ·), we obtain

min
(p,v)2TM

1
2

X

i

hLog(ŷi, yi), Log(ŷi, yi)iŷi (3.10)

To minimize E, one first needs to specify rpE(p, v) and rvE(p, v). This
requires computing derivatives of the exponential map with respect to
p and v. The gradients are derived in terms of Jacobi fields (which are
solutions to a second order equation subject to certain initial conditions
(Fletcher, 2013)) or via introducing small perturbations (Du et al., 2013).
To express this in a computable form, we need to find the so-called adjoint
derivative. The adjoint of an operator is defined as the operator T† such
that hTu, vi = hu, T†vi. The adjoint derivative is the adjoint operator of a
derivative. In other words, let dpExp(p, v) be the derivative of the expo-
nential map with respect to p. Then, its adjoint derivative is the operator
dpExp(p, v)

† such that hdpExp(p, v)u, wi = hu, dpExp(p, v)

†wi, where w
is a tangent vector. Putting these pieces together, the gradient descent
scheme (Fletcher, 2013) can optimize (3.10) in a numerically stable manner
and obtain the estimates of p and v.
Can we extend this idea to multiple linear regression? Given the precise form
of the scheme above, it is natural to ask if a similar idea will work for
the MMGLM. It turns out that there are certain conceptual and technical
difficulties in attempting such an extension. Observe that geodesic regres-
sion in (3.9) works on a scalar independent variable in R (and thereby, a
single geodesic). For multiple linear regression, one must invariably make
use of a subspace instead. It is easy to see that a multiple linear model
y = Bx seeks a subspace since all (x, y) form a subspace. On manifolds, a
subspace can be generalized as a geodesic submanifold (or geodesic sub-
space) used in dimensionality reduction methods on manifolds (Fletcher
et al., 2004; Sommer et al., 2014b; Huckemann et al., 2010a) and Rieman-
nian CCA in Chapter 4.2. It is defined as S = Exp(p, span({vi}) [ U),
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Figure 3.1: Manifold-valued multivariate general linear model (MMGLM). v1, v2 are
tangent vectors. Each entry of independent variables (x1, x2

) 2 R2, is multiplied by v1

and v2 respectively in TpM. Here, xj
i denotes j-th entry of the i-th instance.

where U ⇢ TpM, and vi 2 TpM. So, a linear regression from Rn to M
(MMGLM) can be learned by searching a geodesic subspace in the product
space Rn ⇥ M. Alternatively, a MMGLM can be estimated by identifying
multiple geodesic curves which correspond to ‘basis’ vectors in Euclidean
space, see Fig. 3.1.

Let us now look at some of the technical difficulties by writing down
the form of the gradients in geodesic regression.

-
NX

i=1

dpExp(p, xiv)

†
vyi

| {z }
rpE(p,v)

, and -
NX

i=1

xidvExp(p, xiv)

†
vyi

| {z }
rvE(p,v)

where vyi = Log(Exp(p, xiv), yi) and dpExp(p, xiv)

† is the adjoint deriva-
tive (Fletcher, 2013). The derivative of the exponential map, dExp(p, v),
is obtained by Jacobi fields along a geodesic curve parameterized by a
tangent vector v. Here, this idea works because the prediction is a single
geodesic curve. In multiple linear regression, predictions do not corre-
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spond to one geodesic curve; so, expressing the corresponding tangent
vector is problematic. Next, a key property of the adjoint derivative above
is that the result of applying the operator, d(p, v)

†, on w should lie in
a tangent space. But for manifolds like GL(n)/O(n), the tangent space
corresponds to symmetric matrices (Cheng and Vemuri, 2013). This re-
quires designing a special adjoint operator which guarantees this property,
which is not trivial.

3.3 Manifold-valued Multivariate General
linear models (MMGLMs)

Let x and y be vectors in Rn and Rm respectively. The multivariate multi-
linear model in Euclidean space is.

y = a + b

1x1
+ b

2x2
+ . . . + b

nxn
+ e

(3.11)

where a, b

i and the error e are in Rm and x = [x1 . . . xn
]

T are the indepen-
dent variables. Just as (3.11) uses a vector for each independent variable,
MMGLMs use a geodesic basis, which corresponds to multiple tangent
vectors, one for each independent random variable. Our formulation with
multiple geodesic bases is

min
p2M,8j,vj2TpM

1
2

NX

i=1

d(Exp(p,
nX

j=1

vjxj
i), yi)

2, (3.12)

where Vxi :
=

Pn
j=1 vjxj

i .
Variational gradient descent method for MMGLMs. To address the

technical issues pertaining to the adjoint derivatives which are needed
for geodesic regression with a univariate covariate (Fletcher, 2013), we
will attempt to obtain a similar effect to that operator, but via different
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means. First, observe that in the geodesic regression, to enable summing
up the individual terms d(p, xiv)

†Log(Exp(p, xiv), yi)’s which give the
gradient, rE, a necessary condition is that these terms should lie in TpM.
Here, Exp(p, xiv) gives the predicted ŷi for yi, and so Log(Exp(p, xiv), yi)

is the error and must lie in TExp(p,xiv)

M, i.e., TŷiM. By this argument,
d(p, xiv)

† actually plays a role of parallel transport to bring each error
Log(Exp(p, xiv), yi) from TŷiM to TpM. Since we hope to avoid con-
structing a special adjoint operator, we will instead perform parallel
transport explicitly and derive approximate gradient terms, as outlined
below.

Let us consider a slight variation of the objective function in (3.12).
Let Gp!q(w) be a parallel transport of w from TpM to TqM. Recall that
parallel transport does not change the norm of tangent vectors, so the
measurement of an error vector remains accurate. This ensures that the
following modification preserves equivalence

E(p, v) =

X

i

hLog(ŷi, yi), Log(ŷi, yi)iŷi

=

X

i

hGŷi!pLog(ŷi, yi), Gŷi!pLog(ŷi, yi)ip, (3.13)

where ŷi = Exp(p,
P

j xj
iv

j
). Comparing two objective functions in (3.13),

we see that in the first objective function, the inner product occurs at
each tangent space TŷiM, whereas the second objective function in (3.13)
expresses all inner products in a tangent space TpM, after applying a
parallel transport. For an object u on a manifold, let uo denote the cor-
responding object in tangent space of u at TpM. To derive our gradient
expression, we will use the model in the tangent space as a temporary
placeholder, to keep notations simple. Let us first define a few useful
terms. Below, E is the error from (3.9) and Eo gives the Log-Euclidean
error in TpM. Let po :

= Log(p, p) and yo
i :

= Log(p, yi). We are searching
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for not only tangent vectors but also the tangent space itself. To do so, by
introducing a zero-norm tangent vector po which corresponds to the origin
of the tangent space TpM, the direction to move the origin is obtained. So,
the estimate, ŷi

o is Log(p, ŷi) = Log(p, Exp(p, Vxi)) = Vxi + po, where
V = [v1 . . . vn] is a m-by-n matrix, vj is the m-dimensional tangent vector.
The model in tangent space TpM is given as

Eo
(po, v) = min

p,v

X

i

k(

X

j

vjxj
i + po

)- yi
ok2 (3.14)

Its gradient is expressed as

rpo Eo
=

X

i

(ŷi
o - yo

i), rvj Eo
=

X

i

xj
i(ŷi

o - yo
i), (3.15)

where ŷi
o

=

P
j vjxj

i + po. Note that this gradient is the ‘approximate’
gradient in the linearized (tangent) space. Of course, we are actually
interested in minimizing the parallel transported error on the manifold.
So, we will substitute the parallel transported form for the linearized
expression, (ŷi

o - yo
i) in (3.15) above and obtain,

rpE ⇡ -
X

i

Gŷi!pvyi , rvj E ⇡ -
X

i

xj
iGŷi!pvyi , (3.16)

where vyi = Log(ŷi, yi) and ŷi = Exp(p, Vxi). Using this gradient and
a line search algorithm on manifolds (Absil et al., 2009), the variational
gradient descent scheme can optimize (3.12).

Remarks. Consider the Euclidean setting where xi and xj are large. The
optimal intercept, p⇤, will be far from yi and yj which is not a problem
since we can explicitly solve for any value for the intercept. However,
parametric models for Riemannian manifolds are based on the assump-
tion that data are distributed in a sufficiently small neighborhood where
exponential and logarithm maps are well-defined. In addition, x should
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not have “large” entries (relative to the variance of x) otherwise p⇤ might
be too far from the data and there is no well-defined exponential map to
represent y = Exp(p⇤, Vx). Thus, we may explicitly solve for a parameter
to translate the x variables, y = Exp(p, V(x - b)) where b 2 Rn. However,
it may lead to many local minima. A simple fix to this problem is to first
“center” the x variables which makes the optimization scheme stable (see
pseudocode in Alg. 3).

Log-Euclidean framework for MMGLMs. We here outline an approx-
imate algorithm that is simpler and offers more flexibility in analysis at
the cost of a few empirically derived assumptions. To motivate the formu-
lation, let us take a manifold perspective of (3.2): we see that analytical
solutions can be obtained using the difference of each point from its mean
both in X and Y space — that is, the quantities !̄xxi and !̄yyi calculated in
the tangent space, Tp⇤M. Note that in (3.2), b corresponds to tangent vec-
tors and a corresponds to p⇤. Our scheme in (3.12) explicitly searches for
p⇤, but in experiments, we found that p⇤ frequently turns out to be quite
close to ȳ. This observation yields a heuristic where rather than solve for
p, we operate entirely in TȳM. With this assumption, using the Karcher
mean as ȳ in (3.2) and the Log-Euclidean distance as a substitute for !̄xxi

Algorithm 3 Iterative method for MMGLM
Input: x1, . . . , xN 2 Rn, y1, . . . , yN 2 M
Output: p 2 M, v1, . . . , vn 2 TpM,

Initialize p, v, a, amax and center x
while termination condition do

pnew = Exp(p,-arpE)

Vnew = Gp!pnew(V - arV E)

if E(pnew, Vnew) < E(p, V) then
V  Vnew and P Pnew
a = min(2a, amax)

else
a = a/2

end if
end while
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and !̄yyi, we can derive a faster approximate procedure. This scheme has
the additional benefit that it allows analyzing multiple manifold-valued
independent variables, i.e., f : M!M 0, if desired.

The Log-Euclidean MMGLM estimates a linear relationship between
centered variables {xo

i}
N
i=1 and {yo

i}
N
i=1 where xo

i = xi - x̄ and yo
i = Log(ȳ, yi),

where the number of tangent vectors we estimate is exactly equal to the
number of independent variables, x. Our basic procedure estimates the
set of vectors V = [v1 . . . vn] in tangent space TȳM and p a point on M
using the relation Yo

= VXo. Yo ⌘ [yo
1 . . . yo

N ] and Xo ⌘ [xo
1 . . . xo

N ] are
respectively the mean centered data. Here, p⇤ is given by the Karcher
mean ȳ. The target V⇤ is given by the least squares estimation with respect
to the Log-Euclidean metric and can be computed using the closed form
solution, YoXoT �XoXoT�-1.

The following analysis shows that under some conditions, heuristically
substituting ȳ for p⇤ is justifiable beyond empirical arguments alone. In
particular, if the y observations come from some geodesic curve, then all
of the data can be parameterized by one tangent vector in the tangent
space at ȳ. More specifically, we show that a Karcher mean exists on a
geodesic curve. Therefore, if the Karcher mean is unique, then the Karcher
mean must lie on the geodesic curve. By the definition of the exponential
map and since the data are in sufficiently small neighborhood, it becomes
possible to parameterize the observations by Exp(ȳ, vx).

Prop. 1 shows the existence of the Karcher mean on a geodesic curve
when the data lies on the unique geodesic curve, W, between two points.

Proposition 1. Let Y = {y1, . . . , yN} be a subset of a manifold M. Suppose that
Y is in a sufficiently small open cover B such that the exponential and logarithm
maps are bijections. Suppose that all y 2 Y are on a curve W that is the unique
geodesic curve between some yi and yj in Y. Then there exists ȳ in W such that
P

y2Y Logȳy = 0 (the first order condition for Karcher mean).

Proof. Let v 2 TyiM be the tangent vector v = Logyi
yj. Since all points
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of Y are a subset of a geodesic curve W between yi, and yj, for each
yk 2 Y, there exists an xk 2 [0, 1] such that yk = Exp(yi, vxk). So, let
x̄ =

1
N
PN

k=1 xk and ȳ = Exp(yi, vx̄). Then, ȳ satisfies
P

k Logȳyk = 0 and
it is in W since the arithmetic mean x̄ is in [0, 1].

With this result in hand, we next show that the data can be parameter-
ized by V.

Proposition 2. If ȳ is the unique Karcher mean of Y ⇢ W, and it is obtained in
B, then ȳ 2 W. Further, for some v 2 TȳM and each y, there exists x 2 R such
that y = Exp(ȳ, vx).

Proof. If ȳ is a unique Karcher mean of Y on M and it is obtained in a
sufficiently small neighborhood B ⇢ M of data, then

PN
k=1 Logȳyk = 0

holds by the first order optimality condition of (2.9). The uniqueness of ȳ
and Prop. 1 imply that ȳ is in W. In a small neighborhood, by definition
of exponential map, there must exist an appropriate x.

3.4 Experimental results

Here, we show the application of our models for statistical analysis of
diffusion weighted imaging (DWI) data. Most neuroimaging studies
acquire DWI data to perform statistical analysis. Assume that the images
are already registered to a common template. The scientific question may
be to identify which regions of the brain vary across two groups of subjects:
diseased and healthy. This can be answered by performing a hypothesis
test at each voxel over the entire brain, and reporting the statistically
significant ones as different across groups. Separately, one may want
to identify regions which have a strong relationship with disease status.
Independent of the specific setting, the classical analysis makes use a
scalar-valued summary measure at each voxel: fractional anisotropy FA
for DTI or generalized fractional anisotropy GFA for HARDI (Tuch, 2004).
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But this simplification, which makes the differential signal harder to detect,
can be avoided. To do so, we used manifold-valued measurements that are
richer representations and introduced in Chapter 2.4. In DTI, the diffusion
tensors are represented as a point on a SPD(3) manifold (i.e., the quotient
space GL(3)/O(3)). In HARDI, the square root parameterization of the
ODF is represented as a point on a unit Hilbert sphere (S) (Cheng et al.,
2009), which in practice, is expressed as a l-th order spherical harmonics:
we use l = 4 implying the S14 setting. With the appropriate statistical
models in hand, we may regress the manifold data directly against one
or more independent variables. On synthetic simulations and real data
analysis from two distinct neuroimaging studies, the experiments evaluate
whether (and to what extent) general linear model (GLM) analysis on
diffusion weighted images in neuroimaging can benefit from (a) the ability
to deal with manifold-valued data and (b) allowing multiple explanatory
(including nuisance) variables.

3.4.1 Synthetic setting

We first artificially generate ODF and DTI data via a generative multiple
linear model. We then estimate using our MMGLM framework and the
model in (Du et al., 2013) (certain adjustments to (Du et al., 2013) were
needed for the SPD(3) manifold). The results in Fig. 3.2 give strong
evidence that when the characteristics of the data depend on multiple
independent variables (e.g., disease and age), MMGLM significantly out-
performs (single) linear geodesic regression (SLGR) which regresses y 2 Y
against x 2 R. In Fig. 3.2, GR1 and GR2 refer to the estimates from SLGR
using variables x1 and x2 individually. MMGLM is able to estimate the
true signal far more accurately compared to both GR1 and GR2. Fig.
3.3 shows the quantitative results of regression using four independent
variables as a function of sample sizes. As expected, we see that the fit
improves significantly with MMGLM.
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Figure 3.2: MMGLM and SLGR results using synthesized ODF and DTI. First
two rows give the values for x1 and x2 of the generative model.

Figure 3.3: Plots showing the effect of sample size on mean squared error
(MSE) and R2 for the MMGLM as well as SLGR using the individual variables.
GR{1, · · · , 4} refer to the estimates from SLGR using the individual variables
x{1,··· ,4} individually.
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3.4.2 Neuroimaging data evaluations

We now present experiments using DWI data from two real neuroimaging
studies. The first study investigates the neuroplasticity effects of medita-
tion practice (e.g., for emotional well-being) on white matter. Meditators
were trained in Buddhist meditation techniques, which lead to emotion
regulation and attention control. An example scientific question here may
be: what is the relationship between the number of years of meditation
training and white matter when conditioned on age? Here, diffusion
images in 48 non-collinear diffusion encoding directions were acquired,
which after a sequence of pre-processing steps, provide the ODF represen-
tations for 23 long-term meditators (LTM) and 26 control (WLC) subjects.
In the second study, we investigate the effect of a genotype risk factor (i.e.,
APOE4 positive or negative) in Alzheimer’s disease (AD) on white matter
integrity in the brain. A representative scientific question here may be:
what is the effect of age on white matter when we control for genotype
and gender? Here, 40 encoding directions were acquired and diffusion
tensor images were obtained after pre-processing. The dataset covers 343
subjects (123 with APOE4+ and 220 with APOE4-).
DWI acquisition and processing. The data was acquired using a diffusion-
weighted, spin-echo, single-shot, echo planar imaging radio-frequency
(RF) pulse sequence. For the meditation study, diffusion data in 48 non-
collinear diffusion encoding directions with diffusion weighting factor
of b = 1000s/mm2 and eight non-diffusion weighted (b = 0) images
was acquired. For each of the 23 long-term meditators (LTM) and 26
control (WLC) subjects, ODFs were estimated and the square-root param-
eterization was obtained via linear spherical harmonic transform (Goh
et al., 2011). For the AD-risk study, images with 40 encoding directions at
b = 1300s/mm2 and eight b = 0 images were acquired for each of the 343
subjects (123 with APOE4+ and 220 with APOE4-, where APOE denotes
the Apolipoprotein E genotype). The diffusion tensors were estimated
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from DWI data from both the studies, using non-linear estimation using
the Camino library (Cook et al., 2006). The images for both studies were
normalized spatially before statistical analysis using DTI-TK (Zhang et al.,
2006a).

GLM results. We estimate the following model at each voxel for both
studies,

GLMFull : y = Exp(p, v1Group + v2Gender + v3Age), (3.17)

GLMAge : y = Exp(p, v2Gender + v3Age),

GLMGroup : y = Exp(p, v1Group + v2Gender),

where y 2 S14, Group 2 {LTM, WLC} for meditation study, and y 2
SPD(3), Group 2 {APOE4+, APOE4-} for AD-risk study.

As a baseline, we present regression results using FA as the measure
of interest. We note that regressing y against one independent variable as
in Fig. 3.3 is a possible baseline but because it is restricted, it cannot fit
the full model in (3.17). Therefore, FA is a better baseline for comparisons.
The null hypothesis, H0 here is that the linear combination of ‘group’,
‘gender’ and ‘age’ has no effect on the y measurement. Therefore, (3.17)
serves as the “full” model and the intercept alone serves as the nested
model. Then, an F-statistic can yield voxel-wise p-value maps when we
regress on FA. However, for manifold-valued variables, a parametric null
distribution of F-statistics is not available. So, to obtain p-values, we use
20, 000 permutations to characterize the Null distribution of the R2-fit.
Then, the unpermuted R2 is used to calculate the p-values. This is called
the permutation test. Comparing the two p-values maps (FA vs. ODF)
shows which procedure is successfully picking up more differential signal
in a statistically sound manner. Fig. 3.4 shows the p-value maps, for
FA and ODF based regression. We can observe the improved statistical
sensitivity using the MMGLM framework.
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Figure 3.4: (Left panel) Uncorrected p-value maps obtained using FA (smoothed)
based GLM as well as ODF based MGLM frameworks. The voxels that pass the
threshold of p  0.05 are spatially more contiguous when performing MGLM.
(Right panel) The thresholded p-value maps showing that the spatial extents
in the brain stem (axial-left and sagittal-middle) and cerebellar (coronal-right)
white matter are reduced when using MGLM.

Fig. 3.5 shows p-value maps and histograms for GLMFull for the AD-
risk study. Figs. 3.6 and 3.8 show p-value maps and histograms for
specific effect of Age and Group. For MMGLMs, we compute p-values by
simulating the null distribution of the F ratio statistic again using 20,000
permutations. The F ratio statistic is defined for a pair of nested GLMs as,

F =

RSS1-RSS2
p2-p1
RSS2
N-p2

, (3.18)

where RSSj=
PN

i=1 d(ŷi j, yi)
2, ŷi js are estimated using GLMj and pj is the

number of independent parameters in GLMj. For obtaining the effect of
Age and Group, RSS1 is obtained using GLMAge and GLMGroup, respec-
tively. RSS2 is obtained using GLMFull in both the cases. The correspond-
ing maps and histograms are shown in respectively.
Main observations. In Fig. 3.5, we can observe that the thresholded re-
gions are spatially more contiguous when using MMGLM in the sagittal
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(middle) and coronal (right) slices compared to those obtained by perform-
ing exactly the same model on the univariate (smoothed) FA images (the
unsmoothed FA results are much worse). Note that a smoothing proce-
dure on the DTI data (i.e., the tensors) further improves the results but the
purpose here is to show that even the unsmoothed DTI (with MMGLM)
yields comparable (or better) results, as can be noticed in the histogram in
the right panel in Fig. 3.5. We see the same behavior in Fig. 3.6. The left
panel shows p-values obtained using the effect of age while the right panel
shows the effect of group variable i.e., APOE4+ vs. APOE4-. Note that
existing literature provides little guidance on algorithms for performing
such GLM models on the DTI data directly, as we show here. In the case
of age effect, MMGLM provides more spatially contiguous regions but in
the analysis of APOE4 vs. APOE4-,FA smoothed and MMGLM are com-
parable, as can also be noted in Fig. 3.8. In Fig. 3.7, axial (left-column) and
sagittal (middle-column) views in both panels show that our MMGLM
using ODF provides the improved statistical power in the age effect (left
panel) and meditation effect (right panel). Fig. 3.9 quantitatively shows
that our MMGLM using ODF rejected the null hypothesis (p < 0.05) at
more voxels rather than GLM using GFA and GLM using (smoothed) GFA
both when trying to detect the effect of age as well as the group. Our
experiments support that MMGLM based analysis provides comparable
or improved statistical power compared to the GLM based analysis.

3.5 Summary

This chapter extends multivariate general linear model (MGLM) to the
manifold setting. Such an extension allows regressing a manifold valued
dependent variable y 2 M against multiple independent variables, x 2
X . This extends the range of applicability of existing methods and will
allow practitioners to easily regress voxel measurements in diffusion



58

weighted imaging against clinical variables, while controlling for nuisance
parameters, thereby obtaining results which better reflect hypotheses
under study. The experiments give strong evidence of the improvements
we may expect over traditional alternatives. The chapter is accompanied
by an open source codebase 2, which will enable easy deployment in
practice. For large scale analysis on Amazon Web Service3 or HTCondor4,
our extended code is available as well.

2https://github.com/MLman/riem-mglm-cvpr2014
3https://github.com/MLman/MMGLMAWS
4https://github.com/MLman/MMGLM_HTCONDOR

https://github.com/MLman/riem-mglm-cvpr2014
https://github.com/MLman/MMGLMAWS
https://github.com/MLman/MMGLM_HTCONDOR


59

Figure 3.5: p-value maps obtained using FA (smoothed) based GLM as well
as DTI based MMGLM frameworks. Left panel shows thresholded (p  0.05)
p-values obtained using the full model. We can observe that the thresholded
regions are spatially more contiguous when using MMGLM. We can notice that
more clearly in the sagittal (middle) and coronal (right) slices. Right panel shows
distribution of p-values obtained using MMGLM using DTI and GLM using both
smoothed and unsmoothed FA images.

Figure 3.6: p-value maps obtained using FA (smoothed) based GLM as well as
DTI based MMGLM frameworks. Left panel shows p-values obtained using the
effect of age while the right panel shows the effect of group variable i.e. APOE4+
vs. APOE4-.
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Figure 3.7: p-value maps obtained using FA (smoothed) based GLM as well as
ODF based MMGLM frameworks. Left panel shows the effect of age while the
right panel shows the effect of group variable i.e. LTM vs. WLC.

Figure 3.8: Distribution of p-values obtained using MMGLM using DTI and
GLM using both smoothed and unsmoothed FA images. Left: Age effect. Right:
APOE4 effect. As discussed in Fig. 3.6, in case of APOE4 effect the smoothed FA
based GLM and DTI based MMGLM perform comparably.

Figure 3.9: Distribution of p-values obtained using MMGLM using ODF and
GLM using both smoothed and unsmoothed GFA images. Left: Age effect. Right:
Group effect (LTM vs. WLC).
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4 RIEMANNIAN CANONICAL CORRELATION

ANALYSIS (RCCA)

The aim of this chapter is to generalize Canonical Correlation Analysis
(CCA) to a manifold or the product of manifolds to identify meaningful
correlations across two different modalities. Our formulation results in a
multi-level optimization problem. We derive solutions using the first order
condition of projection and an augmented Lagrangian method. In addi-
tion, we also develop an efficient algorithm with approximate projections.
On the experimental side, we presented neuroimaging findings using
our proposed CCA on Diffusion tensor images (DTI) and T1-weighted
magnetic resonance images (T1W) on an Alzheimer’s disease (AD) dataset
focused on risk factors for this disease. SPD manifolds are used for dif-
fusion tensors in DTI and Cauchy deformation tensor (CDT) introduced
in Chapter 1.4.2. The CDTs are derived from T1W. Here, the proposed
methods perform well and yield scientifically meaningful results.

4.1 Canonical Correlation in Euclidean Space

First, we will briefly review the classical CCA in the Euclidean space
(Hotelling, 1936; Hardoon et al., 2004). Recall that Pearson’s product-
moment correlation coefficient is a quantity to measure the relationship
of two random variables, x 2 R and y 2 R. For one dimensional random
variables,

rx,y =

COV(x, y)

sxsy
=

E[(x - µx)(y - µy)]

sxsy
=

PN
i=1(xi - µx)(yi - µy)qPN

i=1(xi - µx)2
qPN

i=1(yi - µy)2

(4.1)
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Figure 4.1: Canonical Correlation Analysis (CCA) in Euclidean space. CCA
seeks the best subspaces to project data in each space to maximize the correlation
between pwx(X) and pwy(Y).

where µx and µy are the means of {xi}
N
i=1 and {yi}

N
i=1. For high dimensional

data, x 2 Rm and y 2 Rn, we cannot however perform a direct calculation
as above. So, we need to project each set of variables on to a special axis
in each space X and Y . CCA generalizes the concept of correlation to
random vectors (potentially of different dimensions). It is convenient to
think of CCA as a measure of correlation between two multivariate data
based on the best projection which maximizes their mutual correlation.
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Canonical correlation for x 2 Rm and y 2 Rn is given by

max
wx,wy

corr(pwx(x), pwy(y))

= max
wx,wy

PN
i=1 wT

x (xi - µx)wT
y (yi - µy)

qPN
i=1 (

wT
x (xi - µx))

2
r
PN

i=1

⇣
wT

y (yi - µy)
⌘2

.
(4.2)

where pwx(x) := arg mint2R d(twx, x)

2. We will call pwx(x) the projection
coefficient for x (similarly for y). Define Swx as the subspace which is
the span of wx. The projection of x onto Swx is given by PSwx

(x) :=

arg minx 02Swx
d(x, x 0

)

2
=

wT
x x

kwxk2 wx = pwx(x)wx.
In the Euclidean space, PSwx

(x) has a closed form solution. In fact, it
is obtained by an inner product, wT

x x. Hence, by replacing the projection
coefficient pwx(x) with wT

x x/kwxk2 and after a simple calculation, one
obtains the form in (4.2).

4.2 A Model for CCA on Riemannian
Manifolds

We now present a step-by-step derivation of our Riemannian CCA model.
Classical CCA finds the mean of each data modality. Then, it maximizes
correlation between projected data on each subspace at the mean. Sim-
ilarly, CCA on manifolds must first compute the intrinsic mean (i.e.,
Karcher mean) of each data set. It must then identify a ‘generalized’
version of a subspace at each Karcher mean to maximize the correlation of
projected data. The generalized form of a subspace on Riemannian man-
ifolds has been studied in the literature (Sommer et al., 2014b; Lebanon
et al., 2005; Huckemann et al., 2010b; Fletcher et al., 2004). The so-called
geodesic submanifold (Fletcher et al., 2004; Xie et al., 2010; Kim et al., 2014c)
which has been used for geodesic regression serves our purpose well
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Figure 4.2: CCA on Riemannian manifolds. CCA searches geodesic subman-
ifolds (subspaces), Swx and Swy at the Karcher mean of data on each manifold.
Correlation between projected points {PSwx

(xi)}
N
i=1 and {PSwy

(yi)}
N
i=1 is equiva-

lent to the correlation between projection coefficients {ti}
N
i=1 and {ui}

N
i=1. Although

x and y belong to the same manifold we show them in different plots for ease of
explanation.

and is defined as S = Exp(µ, span({vi}) \ U), where U ⇢ TµM, and
vi 2 TµM (Fletcher et al., 2004). When S has only one tangent vector v,
then the geodesic submanifold is simply a geodesic curve, e.g., Swx and
Swy in Figure 4.2.

We can now proceed to formulate the precise form of projection on
to a geodesic submanifold. Recall that when given a point, its projection
on a set is the closest point in the set. So, the projection on to a geodesic
submanifold (S) must be a function satisfying this behavior. This is given
by,

PS(x) = arg min
x 02S

d(x, x 0
)

2 (4.3)

In Euclidean space, the projection on a convex set (e.g., subspace) is
unique. It is also unique on some manifolds under special conditions,
e.g., quaternion sphere (Said et al., 2007). However, the uniqueness of
the projection on geodesic submanifolds in general conditions cannot
be ensured. Like other methods (Fletcher et al., 2004; Huckemann et al.,
2010a; Sommer et al., 2014a), we assume that given the specific manifold
and the data, the projection is well-posed.

Finally, the correlation of points (after projection) can be measured by
the distance from the mean to the projected points. To be specific, the
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projection on a geodesic submanifold corresponding to wx in classical
CCA is given by

PSwx
(x) := arg min

x 02Swx
kLog(x, x 0

)k2
x (4.4)

Swx := Exp(µx, span{wx} \ U) where wx is a basis tangent vector and
U ⇢ Tµx

Mx is a small neighborhood of µx. The expression for projection
coefficients can now be given as

ti = pwx(xi) := arg min
t 0
i 2(-e,e)

kLog(Exp(µx, t 0
i wx), xi)k2

µx (4.5)

where xi, µx 2 Mx, wx 2 Tµx
Mx, ti 2 R. The term, ui = pwy(y) is

defined analogously. ti is a real value to obtain the point PSwx
(x) =

Exp(µx, tiwx).
Notice that the projection coefficient is proportional to the length of

the geodesic curve from the base point µx to the projection of x, i.e.,
d(µx, PSwx

(xi)) = kLog(µx, Exp(µx, wxti))kµx
= tikwxkµx

. Correlation is scale
invariant, as expected. Therefore, the correlation between projected points
{PSwx

(xi)}
N
i=1 and {PSwy

(yi)}
N
i=1 reduces to the correlation between the

quantities that serve as projection coefficients here, {ti}
N
i=1 and {ui}

N
i=1.

Putting these pieces together, we obtain our generalized formulation
for CCA,

rx,y = corr(pwx(x), pwy(y)) = max
wx,wy,t,u

PN
i=1(ti - t̄)(ui - ū)qPN

i=1(ti - t̄)2
qPN

i=1(ui - ū)

2

(4.6)

where ti = pwx(xi), t := {ti}, ui = pwy(yi), u := {ui}, t̄ =

1
N
PN

i=1 ti and
ū =

1
N
PN

i=1 ui. Expanding out components in (4.6) further, it takes the
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form,

rx,y = max
wx,wy,t,u

PN
i=1(ti - t̄)(ui - ū)qPN

i=1(ti - t̄)2
qPN

i=1(ui - ū)

2

s.t. ti = arg min
ti2(-e,e)

kLog(Exp(µx, tiwx), xi)k2, 8i 2 {1, . . . , N}

ui = arg min
ui2(-e,e)

kLog(Exp(µy, uiwy), yi)k2, 8i 2 {1, . . . , N}

(4.7)

Directly, we see that (4.3.2) is a multilevel optimization and solutions from
nested sub-optimization problems (argmin in constraints) may be needed
to solve the higher level problem. It turns out that deriving the first order
optimality conditions suggests a cleaner formulation as

r(wx, wy) = max
wx,wy,t,u

f (t, u)

s.t. rti g(ti, wx) = 0, 8i 2 {1, . . . , N}

rui g(ui, wy) = 0, 8i 2 {1, . . . , N}

(4.8)

where f (t, u) :=
PN

i=1(ti-t̄)(ui-ū)pPN
i=1(ti-t̄)2

pPN
i=1(ui-ū)

2
, g(ti, wx) := kLog(Exp(µx, tiwx), xi)k2,

and g(ui, wy) := kLog(Exp(µy, uiwy), yi)k2.
Note. We use the first order optimality condition in (4.8). In general, the

first order optimality condition is necessary but not a sufficient condition.
So, is (4.8) a relaxed version of (4.3.2)? Interestingly, on SPD manifolds,
the first order condition is sufficient for the optimality of projection. To
see this, we need the concept of geodesic convexity (Rapcsák, 1991). The
following definitions are also introduced in Section 2.3.

Definition 4.1. A set A ⇢ M is geodesically convex (g-convex) if any two
points of A are joined by a geodesic belonging to A.

Definition 4.2. Let A ⇢ M be a g-convex set. Then, a function f : A! R is
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g-convex if its restrictions to all geodesic arcs belonging to A are convex in the arc
length parameter, i.e., if t f (t) ⌘ f (Exp(x, tu)) is convex over its domain for all
x 2 M and u 2 TxM, where Exp(x, ·) is the exponential map at x (Moakher,
2005).

Lemma 4.3. The function d(Exp(µ, tu), S) on SPD manifolds is convex with
respect to t where µ, S 2 M and u 2 T

µ

M.

Proof. This can be shown by the definition of the geodesic convexity of
the function and the fact that the real-valued function defined on SPD(n)

by P 7! d(P, S) is geodesically convex, where S 2 SPD(n) is fixed and
d(·, ·) is the geodesic distance (Mostow, 1973; Moakher, 2005).

Lemma 4.3 shows that the projection to a geodesic curve on SPD
manifolds is a convex problem and the first order condition for projection
coefficients is sufficient.

4.3 Optimization Schemes

We present two different algorithms to solve the problem of computing
CCA on Riemannian manifolds. The first algorithm is based on a numeri-
cal optimization for (4.8). Subsequently, we present the second approach
which is based on an approximation for a more efficient algorithm.

4.3.1 An Augmented Lagrangian Method

Due to the nature of our formulation, especially the constraints, our
options for numerical optimization scheme are limited. In particular, to
avoid dealing with the second order derivatives of the constraints leads
us to first order methods. One option here is a gradient projection method
(Bertsekas, 1999). However, we will need to define distance metric over
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the decision variables and projection on the feasible set accordingly. In
this case, efficient projections on the feasible set may not be available.

The other option is a quadratic penalty algorithm. Given a constrained
optimization problem max f (x) s.t. ci(x) = 0, 8i, such an algorithm opti-
mizes the quadratic penalty function, i.e., max f (x)- n

kP
i ci(x)

2. Classi-
cal penalty algorithms iteratively solve a sequence of models above while
increasing n

k to infinity. Here, we chose a well known variation of the
penalty method called augmented Lagrangian technique (ALM) (Nocedal
and Wright, 2006b). It is generally preferred to the classical quadratic
penalty method since there is little extra computational cost. In particu-
lar, by avoiding µ ! 8, we reduce the possibility of ill conditioning by
introducing explicit Lagrange multiplier estimates into the function to
be minimized (Nocedal and Wright, 2006b). The augmented Lagrangian
method solves a sequence of the following models while increasing nk.

max f (x) +

X

i

lici(x)- n

k
X

i

ci(x)

2
(4.9)

The augmented Lagrangian formulation for our CCA formulation is given
by

max
wx,wy,t,u

LA(wx, wy, t, u, lk; n

k
) = max

wx,wy,t,u
f (t, u) +

NX

i

l

k
ti
rti g(ti, wx)+

NX

i

l

k
ui

rui g(ui, wy)-
n

k

2

 NX

i=1

rti g(ti, wx)
2
+ rui g(ui, wy)

2

!

(4.10)

The pseudocode for our algorithm is summarized in Algorithm 4.
Remarks. Note that for Algorithm 4, we need the second derivative of

g, in particular, for d2

dwdt g and d2

dt2 g. The literature does not provide a great
deal of guidance on second derivatives of functions involving Log(·) and
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Algorithm 4 Riemannian CCA based on the Augmented Lagarangian
method

1: x1, . . . , xN 2 Mx, y1, . . . , yN 2 My

2: Given n

0
> 0, t

0
> 0, starting points (w0

x, w0
y, t0, u0

) and l0

3: for k = 0, 1, 2 . . . do
4: Start at (wk

x, wk
y, tk, uk

)

5: Find an approximate minimizer (wk
x, wk

y, tk, uk
) of LA(·, lk; n

k
),

and terminate when krLA(wk
x, wk

y, tk, uk, lk; n

k
)k  t

k

6: if a convergence test for (4.8) is satisfied then
7: Stop with approximate feasible solution
8: end if
9: l

k+1
ti

= l

k
ti
- n

krti g(ti, wx), 8i
10: l

k+1
ui

= l

k
ui
- n

krui g(ui, wy), 8i
11: Choose new penalty parameter n

k+1 � n

k

12: Set starting point for the next iteration
13: Select tolerance t

k+1

14: end for

Exp(·) maps on general Riemannian manifolds. However, depending on
the manifold, it can be obtained analytically or numerically (see Section
A.2).

Approximate strategies. It is clear that the core difficulty in deriving
the algorithm above was the lack of a closed form solution to projections
on to geodesic submanifolds. If however, an approximate form of the
projection can lead to significant gains in computational efficiency with
little sacrifice in accuracy, it is worthy of consideration. The simplest
approximation is to use a Log-Euclidean model. But it is well known that
the Log-Euclidean is reasonable for data that are tightly clustered on the
manifold and not otherwise. Further, the Log-Euclidean metric lacks the
important property of affine invariance. We can obtain a more accurate
projection using the submanifold expression given in (Xie et al., 2010).
The form of projection is,
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Algorithm 5 CCA with approximate projection
1: Input X1, . . . , XN 2 My, Y1, . . . , YN 2 My
2: Compute intrinsic mean µx, µy of {Xi}, {Yi}

3: Compute Xo
i = Log(µx, Xi), Yo

i = Log(µy, Yi)

4: Transform (using group action) {Xo
i }, {Y

o
i } to the TIMx, TIMy

5: Perform CCA between TIMx, TIMy and get axes Wa 2 TIMx, Wb 2
TIMy

6: Transform (using group action) Wa, Wb to Tµx
Mx, Tµy

My

PS(x) ⇡ Exp(µ,
dX

i=1

vihvi, Log(µ, x)iµ ) (4.11)

where {vi} are orthonormal basis at TµM. The CCA algorithm with this
approximation for the projection is summarized as Algorithm 5.

Algorithm 5 finds a globally optimal solution to the approximate
problem, i.e., the classical version of CCA between two tangent spaces
TIMx and TIMy. It does not require any initialization. On the other hand,
Algorithm 4 is a first order optimization scheme. It converges to a local
minimum. Different initializations may lead to different local solutions. In
our experiments, for Algorithm 4, we initialized wx and wy by Algorithm
5. Further, t and u are are initialized by the corresponding projection
coefficients to wx and wy using the iterative method minimizing (4.5).

Finally, we provide a brief remark on one remaining issue. This relates
to the question of why we use the group action rather than other transfor-
mations such as parallel transport. Observe that Algorithm 5 sends the
data from the tangent space at the Karcher mean of the samples to the
tangent space at Identity I. The purpose of the transformation is to put
all samples at the Identity of the SPD manifold, to obtain a more accurate
projection, which can be understood by inspecting (4.11). The projection
and inner product depend on the anchor point µ. If µ is Identity, then
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there is no discrepancy between the Euclidean and the Riemannian inner
products. Of course, one may use a parallel transport. However, group
action may be substantially more efficient than parallel transport since the
former does not require computing a geodesic curve (which is needed for
parallel transport). Interestingly, Theorem 4.4 says that on SPD manifolds
with a GL-invariant metric, parallel transport from an arbitrary point p
to Identity I is equivalent to the transform via a group action. So, one can
parallel transport tangent vectors from p to I (or vice versa) using the
group action more efficiently.

Theorem 4.4. On SPD manifold, let Gp!I(w) denote the parallel transport of
w 2 TpM along the geodesic from p 2 M to I 2 M. The parallel transport is
equivalent to group action by p-1/2wp-T/2, where the inner product hu, vip =

tr(p-1/2up-1vp-1/2
).

Proof. Parallel transport G from p to q is given by (Ferreira et al., 2006)

Gp!q(w) = p1/2rp-1/2wp-1/2rp1/2,

where r = exp(p-1/2 v
2

p-1/2
)

and v = Log(p, q) = p1/2 log(p-1/2qp-1/2
)p1/2

Let us transform the tangent vector w at TpM to I by setting q = I.

Gp!I(w) = p1/2rp-1/2wp-1/2rp1/2 where r = exp(p-1/2 v
2

p-1/2
) and

v = Log(p, I) = p1/2 log(p-1/2 Ip-1/2
)p1/2

= p1/2 log(p-1
)p1/2

(a)
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Then r is given as,

r = exp(p-1/2 v
2

p-1/2
)

= exp(p-1/2p1/2 log(p-1
)p1/2p-1/2/2), by (a)

= exp(log(p-1
)/2)

= p-1/2 (b)

Also,

Gp!I(w) = p1/2rp-1/2wp-1/2rp1/2

= p1/2p-1/2p-1/2wp-1/2p-1/2p1/2, by (b)

= p-1/2wp-1/2

= p-1/2wp-T/2 since p-1/2 is SPD.

Theorem 4.5. On SPD manifolds, let GI!q(w) denote the parallel transport of
w 2 TIM along the geodesic from I 2 M to q 2 M. The parallel transport is
equivalent to a group action by q1/2wqT/2.

Proof. The proof is similar to that of Theorem 4.4. By substitution, the
parallel transport is given by GI!q(w) = rwr, where r = exp(

v
2 ) and v =

Log(I, q) = log(q). Then, r is q1/2. Hence, GI!q(w) = q1/2wq1/2
=

q1/2wqT/2 since q1/2 is SPD.

Remarks. Theorem 4.4 and Theorem 4.5 show that the parallel transport
from or to I is replaceable with group actions. However, in general,
the parallel transport of w 2 TpM from p to q is not equivalent to the
composition of group actions to transform from p to I and from I to q.
This is consistent with the fact that parallel transport from a to c may not
be same as two parallel transports: from a to b and then from b to c. The
following is an example for SPD(2) manifold.
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Example 4.3.1. When p and q are given as

p =

 
2 3
3 5

!
q =

 
2 1
1 1

!
w =

 
0 1
1 0

!

The parallel transport of w from p to q is

Gp!q(w) ⇡
 

-8 -1
-1 0

!

Transform of w by two group actions (p! I ! q) is

q1/2p-1/2wp-T/2qT/2 ⇡
 

-4 1
1 0

!

The transform by group actions above is identical to the composition of two
parallel transports GI!q(Gp!I(w)). However, it is different from Gp!q(w).

4.3.2 Extensions to the product Riemannian manifold

For applications of this algorithm, we study the problem of statistical
analysis of an entire population of images (of multiple types). For such
data, each image must be treated as a single entity, which necessitates
extending the formulation above to a Riemannian product space.

In other words, our CCA will be performed on product manifolds
given as

Mx := M1
x ⇥ . . . ⇥ Mm

x , and My := M1
y ⇥ . . . ⇥ Mn

y . (4.12)

We seek Wbx := (W1
x , . . . , Wm

x ) 2 Tµx
Mx, Wby := (W1

y , . . . , Wm
y ) 2

Tµy
My, where T

µxMx := T
µ

1
x
M1

x ⇥ . . . T
µ

m
x M

m
x , and T

µyMy := T
µ

1
y
M1

y ⇥
. . . T

µ

n
yM

n
y . We will discuss a Riemannian metric on the product space

and projection coefficients. Finally, we will offer the extended formulation
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of our method.
First, let us define a Riemannian metric on the product space M =

M1 ⇥ . . . ⇥ Mm. A natural choice is the following idea from (Xie et al.,
2010).

hX1, X2iP =

mX

j=1

hXj
1, Xj

2iPj (4.13)

where X1 =

�
X1

1, . . . , Xm
1
� 2 M, and X2 =

�
X1

2, . . . , Xm
2
� 2 M and

P =

�
P1, . . . , Pm� 2 M. Once we have the exponential and logarithm

maps, CCA on a Riemannian product space can be directly performed
by Algorithm 5. The exponential map Exp(P, V) and logarithm map
Log(P, X) are given by

(Exp(P1, V1
), . . . , Exp(Pm, Vm

)) and (Log(P1, X1
), . . . , Log(Pm, Xm

))

(4.14)
respectively, where V = (V1, . . . , Vm

) 2 TPM. The length of tangent
vector is kVk =

q
kV1k2

P1 + · · · + kVmk2
Pm , where Vi 2 TPiMi. The

geodesic distance between two points d(X1, X2) on Riemannian product
space is also measured by the length of tangent vector from one point to
the other. So, we have

d(µx, X) =

q
d(µ

1
x, X1

)

2
+ · · · + d(µ

m
x , Xm

)

2 (4.15)

From our previous discussion of the relationship between projection
coefficients and distance from the mean to points (after projection) in Section
4.2, we have ti = d(µx, PSW x

(X i))/kW xkµx
and tj

i = d(µ

j
x, PS

Wj
x
(Xj

i ))/kWj
xk

µ

j
x
.

By substitution, the projection coefficients on Riemannian product space are
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given by

ti = d(µx, PSW x
(X i))/kW xkµx

=

vuut
mX

j

✓
tj
i

���Wj
x

���
µ

j
x

◆2
/

mX

j=1

���Wj
x

���
2

µ

j
x

(4.16)

We can now mechanically substitute these “product space” versions
of the terms in (4.16) to derive a CCA on a Riemannian product space.

Our formulation is

rX,Y = max
W x ,Wy,t,u

PN
i=1(ti - t̄)(ui - ū)qPN

i=1(ti - t̄)2
qPN

i=1(ui - ū)

2

s.t. tj
i = arg min

tj
i2(-e,e)

kLog(Exp(µ

j
x, tj

iW
j
x), Xj

i )k2, 8i, 8j

uk
i = arg min

uk
i 2(-e,e)

kLog(Exp(µ

k
y, uk

i Wk
y ), Yk

i )k2, 8i, 8k (4.17)

ti =

r
Pm

j=1

⇣
tj
ikWj

xk
µ

j
x

⌘2

rPm
j=1 kWj

xk2
µ

j
x

, ui =

r
Pn

k=1

⇣
uk

i kWk
yk

µ

k
y

⌘2

qPn
k=1 kWk

yk2
µ

k
y

(4.18)

t̄ =

1
N

NX

i

ti, ū =

1
N

NX

i

ui8i

where i 2 {1, . . . , N}, j 2 {1, . . . , m}, and 8k 2 {1, . . . , n}. This can be opti-
mized by constrained optimization algorithms similar to those described
in Section 4.3.1 with relatively minor changes.

4.4 Experimental results

Diffusion tensors are symmetric positive definite matrices SPD(n) at each
voxel in a diffusion tensor image (DTI). We introduced SPD(n) and related
operations on that space in Chapter 2.4.3 including related operations.
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Recall that the exponential map and logarithm map in SPD(n) are
defined as,

Exp(p, v) = p1/2 exp(p-1/2vp-1/2
)p1/2, Log(p, q) = p1/2 log(p-1/2qp-1/2

)p1/2

(4.19)

and the first derivative of g in (4.8) on SPD(n) is given by

d
dti

g(ti, wx) =

d
dti

kLog(Exp(µx, tiWx), Xi)k2
=

d
dti

tr[log2
(X-1

i S(ti))]

= 2tr[log(X-1
i S(ti))S(ti)

-1Ṡ(ti)], by Prop. 2.1 in (Moakher, 2005)
(4.20)

where

S(ti) = Exp(µx, tiWx) = µ

1/2
x expti A

µ

1/2
x

Ṡ(ti) = µ

1/2
x A expti A

µ

1/2
x

A = µ

-1/2
x Wxµ

-1/2
x

(4.21)

Note that the derivative of the equality constraints in (4.8), namely d2

dWdt g,
d2

dt2 g, are calculated numerically. The numerical differentiation requires an
orthonormal basis of the tangent space.

4.4.1 Synthetic experiments

In this section, we provide experimental results using a synthetic dataset
to evaluate the performance of Riemannian CCA. To simplify presentation,
we introduce two operations vec(·) and mat(·) that will be used in the
following description. We use ‘vec’ to give the operation of embedding
tangent vectors in TIM into R6; ‘mat’ refers to the inversion of ‘vec’. By
construction, we have hS1, S2iI = hv1, v2i, where vi = vec(Si). In other
words, the distance from a base point/origin to each point is identical
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in the two spaces by the construction. Using group actions and these
subroutines, points can be mapped from an arbitrary tangent space TpM
to R6, or vice versa, where p 2 M. On SPD(3), the two operations are
given by

vec(S) := [s11,
p

2s12,
p

2s13, s22,
p

2s23, s33]
T, where S =

2

64
s11 s12 s13

s21 s22 s23

s31 s32 s33

3

75

and mat(v) :=

2

664

v1
1p
2
v2

1p
2
v3

1p
2
v2 v4

1p
2
v5

1p
2
v3

1p
2
v5 v6

3

775 , where v =

2

664

v1
...

v6

3

775

T

.

(4.22)

Our CCA algorithm with approximate projections, namely, Algorithm 5
can be implemented by these two subroutines with group actions.

We now discuss the synthetic data generation. The samples are gen-
erated to be spread far apart on the manifold M(⌘ SPD(3)) — observe
that if the data are closely clustered, a manifold algorithm will behave
similar to its non-manifold counterpart. We generate data around two
well separated means µx1 , µx2 2 X , µy1 , µy2 2 Y by perturbing the data
randomly in the corresponding tangent spaces, i.e., adding Gaussian-like
noise in each tangent space at cluster mean µxj and µyj , where j 2 {1, 2} is
the index for cluster. The procedure is described in Algorithm 6.

We plot data projected on to the CCA axes (PX and PY) and compute
the correlation coefficients. In our experiments, we see that the algorithm
offers improvements. For example, by inspecting the correlation coeffi-
cients rx,y in Fig. 4.3, we see that manifold CCA yields significantly better
correlation relative to other baselines.
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Algorithm 6 The procedure simulates truncated-Gaussian-like noise. The sec-
ond step (safeguard) in the pseudocode ensures that the data lives in a reasonably
small neighborhood to avoid numerical issues. We define subroutines mat for
mapping from Rn(n+1)/2 to SPD(n) and vec for the inversion.

1: e 0 2 Rn(n+1)/2 ⇠ N (0, sI)
2: e 0  e 0 min(ke 0k, c1)/ke 0k . c1 is a parameter for a safeguard
3: eI  mat(e 0

), . tangent vector at I
4: Transform (using group action) eI to T

µ

M
5: Perturb data X  Exp(µ, e

µ

), where e

µ

2 T
µ

M

4.4.2 CCA for multi-modal AD risk factor analysis

We collected multi-modal magnetic resonance imaging (MRI) data to in-
vestigate the effects of risk for Alzheimer’s disease (AD) on the white
and gray matter in the brain. One of the goals in analyzing this dataset
is to find statistically significant relationships between AD risk and the
brain structure. We can adopt many different ways of modeling these
relationships but a potentially useful way is to analyze multimodality
imaging data simultaneously, using CCA. CCA allows to identify im-
portant features (brain regions) based on the correlation between two
modalities.

In the current experiments, we include a subset of 343 subjects and
first investigate the effects of age and gender in a multimodal fashion
since these variables are also important factors in healthy aging. Brain
structure is characterized by diffusion weighted images (DWI) for white
matter and T1-weighted (T1W) image data for the gray matter. DWI data
provides us information about the microstructure of the white matter. We
use diffusion tensor (D 2 SPD(3)) model to represent the diffusivity in
the microstructure. T1W data can be used to obtain volumetric properties
of the gray-matter (Garrido et al., 2009). The volumetric information
is obtained from Jacobian matrices (J) of the diffeomorphic mapping
to a population specific template. These Jacobian matrices can be used
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Figure 4.3: Synthetic experiments showing the benefits of Riemannian CCA.
The left column shows the projected data using the Euclidean CCA and the right
column is obtained using Riemannian CCA. PX and PY denote the projected axes.
Each row represents a synthetic experiment with a specific set of {µxj , exj ; µyj , eyj }.
The first row has 100 samples while the last two rows have 1000 samples. The im-
provements in the correlation coefficients rx,y can be seen from the corresponding
titles.

to obtain the Cauchy deformation tensors (
p

JT J) which also belong to
SPD(3).

We first focus our analysis using two important regions called hip-
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Figure 4.4: Shown on the left are the bilateral cingulum bundles (green) inside a brain
surface obtained from a population DTI template. Similarly on the right are the bilateral
hippocampi. The full gray matter and white matter are shown on the right.

pocampus and cingulum bundle (shown in Fig. 4.4) which are signifi-
cantly affected by Alzheimer’s disease. However, the statistical power
of detecting changes in the brain structures before the memory/cognitive
function is impaired is difficult due to several factors such as noise in the
data, small sample and effect sizes. One approach to improving statistical
power in such a setting is to perform only a few number of tests using av-
erage properties of the substructures. This procedure reduces both noise
and the number of tests. However, taking averages will also dampen the
signal of interest which is already weak in certain studies. CCA can take
the multi-modal information from the imaging data and project the voxels
into a space where the signal of interest is likely to be stronger.

Experimental design: The main idea is to detect age and gender effects
on the gray and white matter interactions. Hence the key multimodal
linear relations we examine for the purpose are

YDTI = b0 + b1Gender + b2XT1W + b3XT1W · Gender + #,

YDTI = b

0
0 + b

0
1AgeGroup + b

0
2XT1W + b

0
3XT1W · AgeGroup + #,

where the AgeGroup is defined as a categorical variable with 0 (middle
aged) if the age of the subject  65 and 1 (old) otherwise. The sample
under investigation is between 43 and 75 years of age (see Fig. 4.5 for the
full distributions of age and gender). The statistical tests we ask are if
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the Null hypotheses b3 = 0 and b

0
3 = 0 can be rejected using our data at

a = 0.05. The gender and age distributions of the sample are shown in
Fig. 4.5.

Female Male
0

50

100

150

200

Gender

S
ub
je
ct
s

45 50 55 60 65 70 75
0

10

20

30

40

50

Age
S
ub
je
ct
s

Figure 4.5: The sample characteristics in terms of gender and age distributions.

We report the results from the following four sets of analyses: (i) Clas-
sical ROI-average analysis: This is a standard type of setting where the
brain measurements in an ROI are averaged. Here YDTI = MD i.e., the
average mean diffusivity in the cingulum bundle. XT1W = log |J| i.e., the
average volumetric change (relative to the population template) in the
hippocampus. (ii) Euclidean CCA using scalar measures (MD and log |J|)
in the ROIs: Here, the voxel data is projected using the classical CCA ap-
proach (Witten et al., 2009) i.e., YDTI = wT

MDMD and XT1W = wT
log |J| log |J|.

(iii) Euclidean CCA using D and J in the ROIs: This setting is an im-
provement to the setting in (ii) above in that the projections are performed
using the full tensor data (Witten et al., 2009). Here YDTI = wT

DD and
XT1W = wT

J J . (iv) Riemannian CCA using D and J in the ROIs: Here
YDTI = hwD, Di

µD and XT1W = hwJ , J i
µJ .

We first show the statistical sensitivities of the four approaches in
Fig. 4.6. We can see that the performance of CCA using the full tensor
information improves the statistical significance for both Euclidean and
Riemannian approaches. The weight vectors in the different settings for
both Euclidean and Riemannian CCA are shown in Fig. 4.7, top row. We
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Figure 4.6: Experimental evidence showing the improvements in statistical
significance of finding the multi-modal risk-brain interaction effects. Top row
shows the gender, volume and diffusivity interactions. Second row shows the
interaction effects of the middle/old age groups.

would like to note that there are several different approaches of using
the data from CCA and we performed additional experiments with full
gray matter and white matter regions in the brain. We only show and
discuss briefly the representative weight vectors in the bottom row of Fig.
4.7 bottom row and refer the interested reader to Appendix 2 for more
comprehensive details of the full brain experiments. Interestingly, the
weight vectors are spatially cohesive even without enforcing any spatial
constraints. What is even more interesting is that the regions picked
between the DTI and T1W modalities are complimentary in a biological
sense. Specifically, when performing our CCA on the ROIs, although the
cingulum bundle extends into the superior mid-brain regions, the weights
are non-zero in its hippocampal projections. In the case of entire white
and gray matter regions, the volumetric difference (from the population
template) in the inferior part of the corpus callosum seems to be highly
cross-correlated to the diffusivity in the corpus callosum. Our CCA finds
these projections without any a priori constraints in the optimization
suggesting that performing CCA on the native data can reveal biologically
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Figure 4.7: Weight vectors (in red-yellow color) obtained from our Riemannian
CCA approach. The weights are in arbitrary units. The top row is from applying
Riemannian CCA on data from the cingulum and hippocampus structures (Fig.
3) while the bottom row is obtained using data from the entire white and gray
matter regions of the brain. On the left (three columns) block we show the
results in orthogonal view for DTI and on the right for T1W. The corresponding
underlays are the population averages of the fractional anisotropy and T1W
contrast images respectively.

meaningful patterns.
We have presented in these experiments (including those in the ap-

pendix) evidence that CCA when performed using the intrinsic properties
of the MRI data can reveal biologically meaningful patterns without any
a priori biological input to the model. We showed that we can perform
various types of multi-modal hypothesis testing of linear relationships
using the projection vectors from the CCA, which can be easily extended
to discriminant analysis (predicting gender and age group using the multi-
modal brain data) using the CCA projection vectors. CCA can be applied
to settings beyond multi-modal imaging data, where one can try to di-
rectly maximize the correlation between imaging and non-imaging data
using a cross-validation technique (Avants et al., 2014). Our Riemannian
CCA can provide a starting point for such studies.
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4.5 Summary

The classical CCA assumes that data live in a pair of vector spaces. How-
ever, many modern scientific disciplines require the analysis of data which
belong to curved spaces where classical CCA is no longer applicable. Mo-
tivated by the properties of imaging data from neuroimaging studies,
we generalize CCA to Riemannian manifolds. We employ differential
geometry tools to extend operations in CCA to the manifold setting. Such
a formulation results in a multi-level optimization problem. We derive
solutions using the first order condition of projection and an augmented
Lagrangian method. In addition, we also develop an efficient single path
algorithm with approximate projections. Finally, we propose a generaliza-
tion to the product space of SPD(n), namely, tensor fields allowing us to
treat a full brain image as a point on the product manifold. Experiments
show the applicability of these ideas for the analysis of neuroimaging
data. The code is publicly available 1.

1https://github.com/MLman/Riem-CCA

https://github.com/MLman/Riem-CCA
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5 THE DIRICHLET MIXTURES OF

MANIFOLD-VALUED MULTIVARIATE GENERAL

LINEAR MODELS

The aim of this chapter is to develop a model to capture complex nonlinear
correlations (beyond geodesic relationship) between Euclidean covariates
and manifold-valued responses. To do so, we propose a new nonparamet-
ric model which is defined over multiple relevant tangent spaces, namely,
Dirichlet process mixtures of manifold-valued multivariate general lin-
ear models (DP-MMGLMs), see Fig. 5.1. For efficient estimation of the
model on manifolds, we propose a new Hamiltonian/Hybrid Monte Carlo
(HMC) algorithm and a new distribution to obtain a set of parameters
on the SPD manifold and its tangent space. Our experiments show that
a DP-MMGLM captures more complicated nonlinear correlation rather
than a MMGLM introduced in Chapter 3. Also, our model clusters sam-
ples based on nonlinear correlations between Euclidean covariates and
manifold-valued response variables. We demonstrate the clustering effect
by grouping voxels in a patch based on spatially-based covariates and
the shape of 3D tensors SPD(3). For real-world data, we investigate how
facial landmark appearances evolve with age using region covariance
descriptors.

5.1 DP-GLM in the Euclidean space

Recall that we studied the general linear model (GLM) and its gen-
eralization on Riemannian manifolds (MMGLMs) in Chapter 3. We
will extend these with Dirichlet Process. Let us revisit the well-known
multivariate general linear model (MGLM in Euclidean space). Given
pairs of covariates xi 2 Rd and response variables yi 2 Rd 0

, we solve,
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Figure 5.1: Comparison between MMGLM vs DP-MMGLM. MMGLM may not
be capable to capture highly nonlinear patterns whereas DP-MMGLM learns the
patterns with infinite mixtures of MMGLMs.

yi = b0
+ b1x1

i + . . . + bdxd
i + e, where {bj}dj=0 ⇢ Rd 0

are regression coeffi-
cients. It is known that the MGLM model assumes that xi the covariates
relate to yi the responses via a linear function. If desired, one may ap-
ply non-linearity to the output but this cannot be a direct function of
the covariates. To address this limitation and allow the response to be
non-linearly related to the covariates, we may write a modified version
as,

yi = b0
i + b1

i x1
i + b2

i x2
i + . . . + bd

i xd
i + e

(5.1)

where {b
j
i}

d
j=0 ⇢ Rd 0

are the unknown regression coefficients for each i. In
this formulation, we allow each instance to have its own regression pa-
rameters, which offers advantages but creates an overfitting problem. The
main flexibility offered by (5.1) is that the nonlinearity can be achieved
by a mixture of an infinite number of linear models. On the other hand,
fitting this model is ill-posed unless the regression parameters are con-
strained. Fortunately, the latter issue can be addressed by imposing a
Dirichlet process (DP) prior as in (Hannah et al., 2011; Zhang et al., 2014).
The DP mixture model is given by

(xi, yi)|qi ⇠ F(qi), qi|G ⇠ G, G ⇠ DP(G0, n). (5.2)
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where G0 is a base distribution and n is a concentration parameter. Using
(5.2), a DP mixture of multivariate general linear models (DP-MGLM)
is simply obtained by plugging in a d 0-dimensional response Y into a
DP mixture of generalized linear models (DP-GLM) studied in (Hannah
et al., 2011; Mukhopadhyay and Gelfand, 1997). Specifically, we assume
that the covariates X are modeled by a mixture of normal distributions,
and that the responses Y are modeled by MGLMs conditioned on the
covariates. The models are connected by associating a set of MGLM
coefficients qy with each mixture component qx. Let q = (qx, qy) be the
set of parameters over X and Y|X, and let G0 be a base distribution on
q. Then the DP-MGLM model, a special case of (Hannah et al., 2011), is
given by,

yi|xi, qyi ⇠ N (ŷi, s2
y), where ŷi = MGLM(xi, qyi)

xi|qxi ⇠ N (µxi
, s2

xi
), where qxi = (µxi

, s2
xi
)

qi|G ⇠ G, G ⇠ DP(G0, n), where qi = (qxi , qyi).

(5.3)

What if Y is manifold-valued? Observe that the MGLM in (5.3) as-
sumes that the response variable Y is in a vector space. It ignores the
underlying intrinsic geometry of the manifold-valued data. As earlier
chapters, we will provide intrinsic models and tailored schemes to esti-
mate/sample parameters respecting the intrinsic geometry of structured
data and parameter spaces.

5.2 DP-MMGLM on Riemannian manifolds

The basic component of DP-MMGLM is the manifold-valued multivariate
general linear model (MMGLM) introduced in Chapter 3 which is given
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by

y = Exp(Exp(B,
dX

j=1

Vjxj
), e), (5.4)

where B 2 M is an anchor (base) point and {Vj}dj=1 ⇢ TBM denote tan-
gent vectors. They correspond to b0 and {bj}dj=1 resp. in (5.1). As described
above for the Euclidean case, DP-MGLM on Riemannian manifolds also
allows each example i to have its own regression parameters. That is, each
example (xi, yi) 2 Rd ⇥ M has parameters (Bi, V i). To reduce notational
clutter, we will use the shorthand V x :=

Pd
j=1 V jxj, where x 2 Rd.

In this section, we specify an end-to-end model for DP-MMGLM on
the SPD manifold. To do this, we need a few key technical ingredients:

Step (a). First, we need to model the cluster of covariates, X which
follows from an adaptation of existing work on DP-GLM (Hannah et al.,
2011).

Step (b). Next, we need to characterize the conditional distribution
P(y|x) specifically for the case where y 2 SPD(n). This requires two key
steps. i) We need to specify the parameters for DP-MMGLM for the SPD
manifold setting. In particular, we should identify which space (i.e., the
manifold) each parameter corresponds to when y 2 SPD(n). ii) Then,
we must make appropriate distributional assumptions for the respective
spaces so that the follow-up inference scheme is both statistically sound
and computationally feasible.

We first discuss Step (a). To model the relationship between x and y, we
non-parametrically model the joint distribution P(x, y|q) = P(y|x, q)P(x|q),
using a Dirichlet process mixture (q is a cluster model parameter). Within
each cluster, the relationship between y and x is expressed using an
MMGLM. Note that the covariates X live in a Euclidean space Rd. The
parameters for X are qx = (µx, s2

x), same as in (5.3). So, we can model
a cluster of covariates X by a Gaussian distribution with parameters
(µx, s2

x). The prior for these parameters is given by a DP-prior.
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We now describe Step (b). For the Riemannian setting, we first give
the corresponding expression for (5.3) for parameters of the MMGLM, i.e.,
qy = (B, V), where B 2 SPD(n) and V 2 Sym(n)

d. Here, Sym(n) denotes
the space of n ⇥ n symmetric matrices and we have d separate V’s in V .
Recall that in a GLM, noise is modeled as a Normal distribution so that
the Maximum Likelihood estimate (MLE) minimizes the least squares
error. In the current setting, ideally, the MLE must minimize the geodesic
distance-based error. So, we need an analogous form (for the Normal
distribution) for manifold-valued y’s. The solution to this is to use the
“generalized Normal” distribution on the manifold (Cheng and Vemuri,
2013). Then, the maximum likelihood estimator of the MGLM turns out
to be equivalent to the minimization of a least squares geodesic-distance
error, given the covariance parameter s

2
y . In the next section, we will

discuss explicit forms of the density function of the generalized Normal
distribution and the equivalence between the log likelihood function and
squared geodesic error. So, the joint distribution in one cluster, i.e., F(qi)

in (5.2), is given by,

Yi|xi, qyi ⇠ NSPD(Ŷi, s

2
y ), where Ŷi = Exp(Bi, V ixi)

xi|qxi ⇠ N (µxi
, s2

xi
), where qxi = (µxi

, s2
xi
)

(5.5)

where, N is a Normal distribution for x 2 Rd, and NSPD denotes the
“generalized Normal” distribution for Y 2 SPD(n). The next step is to
define the base distribution G0 over q = (µx, s2

x, B, V) where sy is assumed
to be given (or empirically estimated).

µx|µ0, s0 ⇠ N (µ0, s2
0), log(s2

x)|Ms

, S
s

⇠ N (M
s

, S2
s

)

B ⇠ NSPD(µB, s

2
B), V ⇠ NSym(µV , s2

V)

d,
(5.6)

where NSym is a symmetric matrix-variate Normal distribution over V 2
Sym(n) defined later in (5.8). To make it analytically feasible, we use a
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Normal (or log normal) distribution.
Remark. For a SPD matrix-valued variable B, other distributions such

as log normal, Wishart or inverse Wishart distribution can also be used
within G0. However, these distributions do not necessarily yield a sample
B around mean or mode of the distribution with respect to a GL-invariant
metric. So, if one has knowledge of a highly probable B (e.g., the Fréchet
mean) and its neighbors w.r.t. the geodesic distance, then a log Normal
or the generalized Normal distribution in (5.9) is more suitable. Using a
log Normal distribution is useful because it is easier to sample (compared
to generalized Normal). However, the Jacobian of the matrix exponential
varies as a function of the sample location, which makes it harder to
deal with the derivative of its log likelihood. We provide candidate
distributions for the base distribution over Sym(n) and SPD(n) and the
corresponding density functions and their log likelihood in Chapter A.1
which are useful in deriving the final HMC algorithm.

5.3 Posterior Sampling

fletcher2013geodesicIn this section, we describe our proposed method
for posterior inference. To place our contribution in context, we first
summarize the conventional approach and then the key modifications
needed.

If the base measure G0 is conjugate, then it yields an efficient sampling
procedure called the “collapsed Gibbs sampling” (Neal, 2000). Unfortu-
nately, the distributions in (5.6) are not known to be conjugate. To address
the above problem, we instead use Gibbs sampling with auxiliary param-
eters by adapting Algorithm 8 in (Neal, 2000). This requires sampling
cluster parameters for each cluster such that the distribution remains
invariant — in our setting, this is simpler for qx = (µx, s2

x) but more
involved for qy = (B, V). For qx, we use a simple slice sampling for updat-
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ing the parameters (Neal, 2000). Updating the regression parameters, qy is
more challenging. This is because while slice sampling can be performed
for each dimension independently, this is not true for the manifold-valued
B. So, for a more effective sampling, we generalize the HMC method,
used in Dirichlet process mixtures of multinomial logit model (dpMNL),
a special case of DP-GLM (Hannah et al., 2011; Shahbaba and Neal, 2009).

The HMC algorithm needs to be generalized for the MGLM on Rie-
mannian manifolds. Note that our formulation here is distinct from the
Riemann manifold Langevin and Hamiltonian Monte Carlo (RMHMC)
technique in (Girolami and Calderhead, 2011), which is Riemannian in
the sense that it treats the joint probability space of the data as a Rieman-
nian manifold. This is done by defining a Riemmanian metric (e.g., the
Fisher-Rao metric) and the negative Hessian of the log-prior. However,
the data itself are not assumed to lie on a manifold.

When the parameters lie in Euclidean space. Recall that conventional
rejection sampling (such as Metropolis-Hastings) suffers from a low accep-
tance rate. However, HMC provides an ergodic Markov chain capable of
achieving both large transitions and high acceptance rate. The underlying
theory of HMC relies on Hamiltonian dynamics. Hamiltonian dynamics
operates on a d-dimensional position vector q and a d-dimensional mo-
mentum vector p, so that the full state space has 2d-dimensions. For HMC,
we usually use Hamiltonian functions written as H(q, p) = U(q) + K(p).
Here, U(q) is the potential energy and K(p) is the kinetic energy. Generally,
the posterior distribution for the model parameters is the usual object of
interest and hence these parameters take the role of the position, q. The po-
tential energy is U(q) = log[p(q)L(q|D)], where p(q) is the prior density,
and L(q|D) is the likelihood function, given the data D. The kinetic energy
is defined by K(p) = pT M-1p/2, where, p is the auxiliary variable which
can be interpreted as momentum and M is the “mass matrix”. HMC
proposes transitions q ! q

⇤, which are then accepted with probability
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based on Hamiltonian functions min{1, exp(H(q, p)- H(q⇤, p⇤
)}, where

q⇤ and p⇤ are proposed parameters and their momentum respectively
(Neal, 2011).

Manifold setting. Defining the potential energy function for the HMC
algorithm is simple – we can use the negative log of the joint probabil-
ity. To define the kinetic energy, we must account for manifold-valued
parameters; B 2 M for the intercept and a set of tangent vectors V for
the slope. To this end, the following description provides solutions to the
main questions, (a) How to define the change of parameters B and V?
(b) How to update the parameters? (c) How to transport objects (such
as momentum) to the appropriate tangent space? (d) How to sample the
initial momentum?

First, we define the potential energy. To do so, we introduce the explicit
form of probability density functions. The density function of the Normal
distribution as a prior over Sym(n) (definition 3.1.3) in (Schwartzman,
2006) is

fSym(V; µV , B) =

1
Z

exp
✓
-

1
2

tr[((V - µV)B-1
)

2
]

◆
(5.7)

where Z = (2p)

q/2|B|(n+1)/2, |B| is the determinant of B and q = n(n +

1)/2. Also, the simpler version (definition 3.1.4) in (Schwartzman, 2006)
is

fSym(V; µV , s

2
) =

1
(2p)

q/2
s

q exp
✓
-

1
2s

2 tr[(V - µV)

2
]

◆
. (5.8)

Next, to define the likelihood of y 2 SPD, we introduce the generalized
Normal distribution.

fSPD(y; µy, s

2
y ) =

1
Z(µy, sy)

exp

 
-

d(y, µy)
2

2s

2

!
(5.9)
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where Z(µy, sy) =

R
M exp

✓
-

d(y,µy)
2

2s

2
y

◆
dy. Here, it turns out that Z(µy, sy)

is constant w.r.t. µ when M is a symmetric space (Fletcher, 2013). So, the
negative log-likelihood of each cluster c takes the form,

- log L(q

⇤
c |Dc) = nc log Z(sy) +

1
2s

2
y

X

i2c

d(yi, ŷi)
2 (5.10)

where ŷi = Exp(B, V xi), c is a cluster, nc is the number of its elements.
Interestingly, because the normalization factor is constant, maximizing
the log likelihood reduces to minimizing the least squares error. We can
now define our potential function as

U(B, V) :=
1
s

2 E(B, V)- log fSPD(B)- log fSym(V) (5.11)

where E(B, V) := 1
2
P

i d(yi, ŷi)
2. Our kinetic energy is given by

K(Ḃ, V̇) :=
1
2
kḂkB +

1
2

dX

j=1

kV̇ jkB (5.12)

where the covariate is in Rd.
We must now account for the change of parameters. Notice that the

change of manifold valued B 2 M is represented by a tangent vector
Ḃ 2 TBM. However, the change of tangent vectors, V̇, live in TV(TBM)

(a tangent space of a tangent space). Fortunately, the natural isomorphism
TV(TBM)

⇠
=

TBM allows us to let V̇ be in TBM. By construction, the pri-
ors for B and V are Gaussian and so the log of the prior density functions
are quadratic forms whose derivatives can be obtained analytically. These
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are given by,

rBU ⇡ -
1
s

2
y

NX

i=1

Gŷi!BLog(ŷi, yi)-rB log fSPD(B)

rVjU ⇡ -
1
s

2
y

NX

i=1

xj
iGŷi!BLog(ŷi, yi)-rVj log fSym(Vj

)

(5.13)

where G is the parallel transport operation. More details on prior distribu-
tions and their derivatives are available in Chapter A.1.

Remarks. The least squares loss function is defined on a SPD manifold.
If one uses the prior distribution over B which is defined in a Euclidean
space instead of the generalized Normal distribution we use, then the
gradient with respect to B needs to be separated into the derivative, rBE,
along the curved surface (called covariant derivative) and the derivative
along the ambient space rB log fB. Technically, these are not in the same
space, which can verified by comparing their respective update schemes.
For instance, the next iterate B via rBE is Exp(B, erBE) whereas the
next iterate B suggested by rB log fB is B = B + rB log fB. Fortunately,
for V, the update schemes are identical. Both use the simple addition
operation since rVj E and rVj log fVj lie in vector spaces. A minor is-
sue here is that their scales might be different since rVj E lies in TBM
with a locally defined inner product hU, BiB = tr(UB-1VB-1

) whereas
rVj log fVj 2 Sym(n) with the natural inner product hU, Vi = tr(UV) in
Euclidean space where a symmetric matrix-variate normal distribution
(5.8) is defined. In addition, there is no reason to expect that the samples
drawn from this distribution in (5.8) are normally distributed in an ar-
bitrary tangent space at B with respect to the GL-invariant metric. We
provide a cleaner solution next.
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5.3.1 Defining an alternative distribution for both the
base point B and a set of tangent vectors V

As a solution, we propose a new distribution for (B, V) 2 M ⇥ TBM by
conditionally combining two distributions.

B|µB, s

2
B ⇠ NSPD(B|µB, s

2
B), V|µV , B ⇠ NSym(V|µV , B)

(5.14)

Lemma 5.1 shows that the distribution in (5.14) is more of a “Normal
like” distribution for both B and V w.r.t a GL-invariant metric.

Lemma 5.1. Let (B, V) 2 SPD(n) ⇥ Sym(n) be a sample drawn using (5.14),
then V is Normally distributed w.r.t. a GL-invariant metric at the tangent space
TBM at B. For each B, the probability density function of V is proportional to
exp(-1

2kVk2
B)) at TBM, when µV = 0.

Proof. We will derive an expression for the density. By inspection, we
have
Z Z

f (B; µB, s

2
B) f (V; µV , B)dVdB =

Z
f (B; µB, s

2
B)

Z
f (V; µV , B)dV

�
dB = 1

Let q = n(n + 1)/2. Given the density functions Eq. (7) and (8) in the
main paper, the density of the proposed distribution fSPD,Sym((B, V)|µB, s

2
B, µV)

is the product of density functions given by

f ((B, V)|µB, s

2
B, µV)

=

1
Z(µB, s

2
B)

exp

 
-

1
2s

2
B

d(B, µB)

2

!
1

(2p)

q/2|B|(n+1)/2 exp
✓
-

1
2

tr[((V - µV)B-1
)

2
]

◆

=

1
Z(µB, s

2
B)

exp

 
-

1
2s

2
B

d(B, µB)

2

!
1

(2p)

q/2|B|(n+1)/2 exp
✓
-

1
2
kV - µVk2

B

◆

= f (B; µB, s

2
B)

1
(2p)

q/2|B|(n+1)/2 exp
✓
-

1
2
kVk2

B

◆
, when µV = 0 2 Sym(n)

(5.15)
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Algorithm 7 HMC algorithm for DP-MGLM on Riemannian manifolds

1: Input: (Bcur, V cur) 2 M ⇥ TBMn, Leapfrog (or step) size e 2 R
++

, L 2 Z
++

2: Output: (Bnext, V next) 2 M ⇥ TBMn

3: Sample (Ḃcur, V̇ cur) 2 TBM ⇥ TBMn from independent normal distribution w.r.t.
Riemannian metric.

4: Initialize (B, V , Ḃ, V̇) (Bcur, V cur, Ḃcur, V̇ cur)
5: Ḃ Ḃ - e

2rBU(B, V) and V̇  V̇ - e

2rV U(B, V)

6: for i 2 {1, · · · , L} do
7: B 0  B, B Exp(B, eḂ), V  V + eV̇
8: (V , Ḃ, V̇) (GB 0!BV , GB 0!BḂ, GB 0!BV̇) /* Parallel transport */
9: if i !=L then

10: Ḃ Ḃ - erBU(B, V) and V̇  V̇ - erV U(B, V)

11: end if
12: end for
13: Ḃ Ḃ - e

2rBU(B, V) and V̇  V̇ - e

2rV U(B, V)

14: Accept (B, V) with probability
15: min[1, exp(H(Ḃcur, V̇ cur, Bcur, V cur)- H(Ḃ, V̇ , B, V))]

where the inner product of U, V 2 TBM is hU, ViB = tr(B-1/2UB-1VB-1/2
).

Note that it is not exactly a Normal distribution because of the depen-
dence on |B|. With these components, our final HMC algorithm is given
by Algorithm 7.

Some additional details. We use the exponential map for parameter
updates for B 2 SPD(n). For all parameters in the vector space (TBM),
the vector addition operation suffices. However, once the base point
Bold changes to a new B, then the objects Ḃ, V̇, V do not belong to the
tangent space of B anymore. So, they need to be parallel transported
from the old anchor point Bold to the new anchor point B. Then, the
kinetic energy at each time point can be properly measured by the sum
of squared norms of the tangent vectors in the new tangent space at B.
Finally, we point out that the initial momentum is set by finding a random
direction in the tangent space at B; its magnitude is given by the length
w.r.t. the Riemannian inner product. Let D denote the measurements
(or data). For the prediction of response Y, the conditional distribution
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of Y|X = x, D is f (Y|X = x, D) ⇡ 1
S
PS

s=1 f (Y|X = x, q

(s)
). Thus, the

prediction E[Y|X = x, D] = E[E[Y|X = x, q]|D] is approximated by the
posterior samples {q(s)}Ss=1. Since Y is on M, the expectation is the Fréchet
mean. This can be updated in an online manner for the SPD manifold (Ho
et al., 2013).

5.4 Experiments

To evaluate the proposed model, we conducted a set of experiments on
synthetic and real-world data.

5.4.1 Experiments on synthetic data

Comparison between DP-MMGLM and MMGLM on synthetic data.
We first evaluate whether our algorithm can simultaneously find a set of
geodesic relationships between the covariates and the manifold-valued
response variables. We follow the experimental protocol from (Hannah
et al., 2011) which is broadly used in the literature, but with the distinction
that now we have Y 2 SPD(n). To do this, we simulate data from multiple
geodesic curves which are parameterized by the covariates — this gives
heteroscedasticity properties where DP-GLM approaches are known to
be effective. The number of “local” models in this synthetic data varies
between 2 to 5. Our sample size is 300. We perform a few hundred
realizations where the number of MCMC samples in each realization
is 1000. We set the burn-in period to 100 epochs. When the data is
sampled from a single local model, one should expect both MMGLMs
and DP-MMGLMs to perform well and estimate the parameters correctly.
However, when the samples are drawn from a mixture of multiple local
models, the flexibility offered by our framework must yield improvements.
Since visualizing the model fit on the SPD manifold is not possible, we
perform a Principal Geodesic analysis (PGA) to pick a prominent direction
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of variance and project the original data onto this axis for evaluation. As
shown in Fig. 5.2, in nearly all cases, the model provides a good fit and is
able to identify a very good estimate of the real local relationships in the
data, exactly as desired.

Since data is generated from multiple local models, DP-MMGLM
yields significant improvements as we expected. As shown in Fig. 5.2
(multiple datasets), in nearly all cases, DP-MMGLM provides a good fit
and is able to identify a very good estimate of the real local relationships
in the data, exactly as desired. For visualizing the model fit on SPD
manifolds, we project the data onto a prominent direction by Principal
Geodesic analysis (PGA).

Estimating Models for Spatially-based Covariates. A number of ap-
plications motivating the need for statistics on manifold-valued responses
come from image analysis. To evaluate our model in this setup, we syn-
thesized an experiment where the responses form a distribution on SPD
whereas the corresponding covariates are grid points on an image lattice.
The ability to estimate such models faithfully offers numerous advantages
including clustering and the ability to draw samples from the estimated
model, e.g., for performing downstream hypothesis tests. We test these
scenarios next in the context of estimating E(y|x).

Table 5.1: Mean squared errors and R-squared (R2) statistic w.r.t the intrinsic
metric on SPD(3) for eight synthetic datasets. MGLMc denotes MGLM with
centered covariate x.

Mean Squared Error R2

Model Train Test Train Test
DP-MGLM 1.18 ± 0.99 1.19 ± 1.04 0.80 ±0.06 0.79 ± 0.08

MGLMc 3.40 ± 2.43 3.28 ± 2.14 0.39 ± 0.16 0.38 ± 0.16
MGLM 4.94 ± 3.40 4.80 ± 3.09 0.10 ± 0.04 0.10 ± 0.04
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Our generating function is a mixture of models with spatially localized
support. Each voxel is a manifold-valued measurement Y 2 SPD(3) (such
as in diffusion tensor imaging) whose grid locations are the covariates.
For ease of visual assessment, each perceptual region in Fig. 5.3 (left
column) is generated by a single function.
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Figure 5.2: The figure shows the models fitted in the PGA axes space versus the
covariates. The prediction of DP-MGLM (red) is shown using a single sample
from the posterior, q

(i). To visualize the response variable Y 2 SPD(3), we
project the variables onto the axis obtained by PGA (y-axis). The x-axis is the
covariate x 2 R. Green and blue correspond to our predictions of MGLM and
the measurements respectively.
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Figure 5.3: (Rows 1–2, col 1) Each voxel is a SPD(3) matrix; the covariates are
the grid positions (horizontal, vertical coordinates). (Rows 1–2, col 2) shows a
clustering result. (Row 3) is a glyph figure where the global mixture of local
models is “ICML”. (Row 4) A clustering based on the posterior samples q

(i).
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5.4.2 Experiments on real-world data

Next, we conduct an experiment on facial datasets which are derived from
the important biometric task of face recognition and age estimation. In par-
ticular, we attempt to assess: how do facial landmark appearances evolve
with age? Which age ranges/periods are most correlated with which face
regions? This problem is important for facial age estimation (Guo et al.,
2013). Since we expect that changes in different face regions will likely
correspond to different age periods, it exhibits nice heteroscedasticity
properties. We used the Lifespan database (Minear and Park, 2004), which
contains 580 subjects with ages ranging from 18–93. To avoid the influ-
ence of facial expressions, we focus only on the “Neutral” subset which
contains images without facial expressions and human labeled landmark
points are provided (Guo et al., 2013). These include 40 points overall, see
Fig. 5.4. We used the covariance descriptors common in image processing,
computed from the feature vector [r, c, Rrc, Grc, Brc, Ir, Ic], where r (and c)
is row (and column) index, R, G, B are colors and Ir, Ic are intensity deriva-
tives. The covariance matrix for an image patch (size 20 ⇥ 20) centered at
each landmark is a 7 ⇥ 7 SPD, the response variable, Y 2 M. The age of
the person associated with each image is the covariate, x.

We run Algorithm 7 on each landmark. The algorithm provides a set
of local models for each landmark; here, these local models correspond
to age ranges. In the manifold setting, each ‘local’ cluster (or model)
can be interpreted as a geodesic explaining the relationship between the
covariates (age range) and evolution in the covariance descriptor in that
period. For each landmark, there are multiple clusters — we simply
measure the length of the corresponding tangent vectors and pick the
median as the representative. After normalization to [0, 1], we show it as
a color coded heat map in Fig. 5.4 shown in the bottom right of the figure.
We see that our algorithm found that regions around the center of the
eye (numbered as 2 ⇠ 5, 7 ⇠ 10) and nose (27 ⇠ 29) exhibit no meaningful
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relationship with age (shown in blue). On the other hand, regions around
the brow (12 ⇠ 18), cheeks (34 ⇠ 40) and forehead (21 ⇠ 23) exhibit a
much stronger relationship (e.g., wrinkles) shown in red. This is consistent
with prior findings (Montillo and Ling, 2009), which identified similar
landmarks as the most distinguishing identifiers for age.

Figure 5.4: The top two rows show 6 sample faces with ages ranging from
20 ⇠ 80. The bottom row (left image) shows 40 landmarks (indexed by numbers)
on an example image. The second image of the bottom row shows correlation
magnitude of the landmark’s variation with age as a heat map. Best viewed in
color.
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5.5 Summary

We have presented a novel algorithm for Dirichlet process mixtures of
multivariate general linear models on Riemannian manifolds. The for-
mulation globally extends the locally-defined parametric models on Rie-
mannian manifolds using a mixture of local models, thereby solving the
“locality” problem pervasive in various parametric formulations for a class
of Riemannian manifolds. We derive specific sampling schemes for the
SPD manifold but the ideas should apply to other manifolds with similar
geometries (e.g., non-positively curved). We also studied and proposed a
new distribution to get a pair of parameters for models on the SPD mani-
fold and its tangent space. On the algorithm side, we derived a specialized
HMC algorithm which efficiently estimates manifold-valued parameters,
which may be of independent interest. While our development here is
primarily on the theoretical side, we believe that the proposal will lead to
practical sampling and inference schemes for various problems in medical
imaging, machine learning and computer vision that involve statistical
tasks on the SPD manifold. The code is publicly available 1.

1https://github.com/MLman/DP-MMGLM

https://github.com/MLman/DP-MMGLM
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6 RIEMANNIAN NONLINEAR MIXED EFFECTS

MODELS

The aim of this chapter is to develop a model for longitudinal analysis
of manifold-valued measurements. So far, manifold-valued regression
models including Manifold-valued Multivariate General Linear Models
in Chapter 3 assume that the samples are independent. These models
are called “fixed effects models” since the model parameters are fixed
(not random quantities). But in most longitudinal analysis settings, mul-
tiple samples are obtained from each subject at multiple time points. In
this case, samples from one subject may not be independent and can
be affected by “random effects” specific to the subject. So, the applica-
tion of fixed effects models in this situation is problematic. In an effort
to address this need, “mixed effects models” have been studied in the
literature to capture both fixed effects and random effects. In this chapter,
we generalize mixed effects models to the regime where the response
variable is manifold-valued. We derive the underlying model (includ-
ing estimation schemes) and demonstrate the immediate benefits such
a model can provide – both for group level and individual level analy-
sis on longitudinal brain imaging data. The direct consequence of our
results is that longitudinal analysis of manifold-valued measurements
(especially, the symmetric positive definite manifold) can be conducted in
a computationally tractable manner.

6.1 Longitudinal analysis and random effects

Longitudinal analysis has been extensively studied by a variety of statis-
tical learning models in the Euclidean space. However, such models are
relatively less studied for structured measurements. In this chapter, we
develop a longitudinal analysis method for structured measurements. As
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Figure 6.1: An example panel of data generated in morphometric studies. (a, d)
The moving and fixed brain image respectively. (b) Warped spatial grid to move
(a) to (d). (c) Vector field of local deformations. (e, f) A map of the det(J) of the
deformation field. (g, h) The Cauchy deformation tensor field (CDTs) (

p
JT J).

Among the different features of brain morphology that can be analyzed, CDTs
are the focus of this chapter.

a motivating example, we discuss a longitudinal analysis task with struc-
tured measurements derived from a longitudinal neuroimaging study. But
the proposed model here is applicable to any measurements on SPD(n).

In a longitudinal neuroimaging study of disease progression, the sta-
tistical models need to capture morphometric changes over time while
controlling (or accounting) for the dependency of repeated measurements
coming from the same subject. Consider the following analysis: we have
two groups of subjects, “controls” and “disease” which correspond to
healthy controls and individuals with a high risk of a disease. We want to
identify group-differences with respect to time (or disease progression). It
is known that anatomical changes at a voxel X can be captured by spatial
derivatives, i.e., the Jacobian matrix J(X), of deformation (or warping)
maps of a subject (e.g., capturing changes between the first to the sec-
ond time points, two years apart). The most widely used “deformation”
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feature is the log determinant of the Jacobian matrices, log(det(J(X)))

— a scalar voxel-wise value which captures the volumetric/anatomical
changes. The so-called Cauchy deformation tensor (CDT) (Lepore et al.,
2008) represented as

p
J(X)

T J(X) is a richer representation of J(X), an
object on the SPD(3) manifold, see Fig. 6.1. To understand how each voxel
in the image is associated with a predictor variable (say, age or disease sta-
tus), a regression between the predictor and the voxel-specific “response
variable”

p
J(X)

T J(X) will identify brain regions that are most affected
by age or disease (via the calculated regression coefficients). This can be
accomplished by generalizations of linear models on manifolds (Fletcher,
2013; Kim et al., 2014b; Cornea et al., 2016) introduced in Chapter 3, or
kernel regression on manifolds (Banerjee et al., 2016).

Random effects in longitudinal analysis. Now, let us consider a
slightly more involved setting where each subject provides data over
multiple time points, a few years apart. In such a longitudinal setting, we
obtain one CDT image (composed of CDTs at each voxel in the image)
between each consecutive time point (i.e., pairs). A standard linear regres-
sion (or its manifold-valued analog) is agnostic to dependency of temporal
samples. Since subjects are examined multiple times within the study, the
repeated measurements from the same subject – commonly known as
the subject specific “random effect”. This dependency violates the i.i.d.
assumptions of fixed effects models (e.g., generalized linear regression),
including the manifold versions (Fletcher, 2013; Kim et al., 2014b; Cornea
et al., 2016) discussed in Chapter 3. The fixed effects model assumes that
all data are i.i.d. samples from the same underlying generating func-
tion with random noise on the response variable Y. As Fig. 6.2 shows,
each subject may have a different trend. For example, subject A has an
early disease onset (intercept). Subject B shows faster disease progression
(slope). Also, based on the participants’ age-range, there may be larger
variability between subjects than the variability within a subject. So, a
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fixed effects linear model for the data in Fig. 6.2, is prone to fit population
level variability (black) rather than the trajectory of each subject (red). Within
statistical machine learning, such subject specific random effects can be
modeled via the more general mixed effects models. The overarching goal
and contribution of this chapter is to derive formulations/algorithms
for the regime where the set of longitudinal responses Y is a manifold
valued variable and the objective is to fit linear (or non-linear) mixed
effects models. We note that regression models on manifolds were studied
for the group of diffeomorphisms (Davis et al., 2007; Niethammer et al.,
2011; Singh et al., 2013). This is relevant to how one models morphome-
tric changes of brains. The closest work to the formulation proposed in
this chapter is a recent independent result on mixed effects models in
(Schiratti et al., 2015). This works deals with univariate manifolds [0, 1],
which is the unit interval in a real line R with a specifically designed
metric to capture sigmoid function like patterns. The work is not directly
applicable to multivariate manifold-valued variables (e.g., SPD); further
it is computationally impractical for more than hundreds of voxels. In
contrast, 3D CDT images we will analyze exceed 1M+ voxels.

6.2 Preliminary concepts and notations

We first briefly review linear mixed effects models and their estimation
methods. Then, we introduce Cauchy deformation tensors and Jacobian
matrices to capture longitudinal morphometric brain changes.

6.2.1 Euclidean Linear mixed effects model

In general, the estimation of regression models (such as linear/polyno-
mial) assumes that the data come from an underlying model with i.i.d.
noise; so the effects of the covariates/features are pertinent to the en-
tire sample. These models are called fixed effects. For example, a linear
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Figure 6.2: This figure demonstrates the key effects we are interested in captur-
ing. Each subject has a different progression rate of the brain atrophy (accelera-
tion effect) and has a different onset for the change (time shift). A regular general
linear model (GLM) with fixed effects is insufficient to capture these effects in a
regression framework while including random effects (subject-specific slope and
intercept) in mixed effects models can capture these effects.

regression model is also a fixed effects model given as

y = b

0
+ b

1x1
+ · · · + b

pxp
+ e, (6.1)

where y 2 R, x 2 Rp, b = [b

0, . . . , b

p
]

T 2 Rp+1. We see that the coeffi-
cients are ‘fixed’ and the same over the entire population. However, in
longitudinal studies (see Fig. 6.2), the repeated measurements from the
same subject are no longer independent. We need a more flexible speci-
fication – often covariates/features have different effects on individual
subjects (or groups), which is called random effects. For example, the rate
of brain atrophy and disease progression can vary over subjects given by

yi = u1
i z1

+ · · · + uq
i zq

+ ei, (6.2)
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where z is a known vector specifying which subject (or group) a sample
belongs to, and uq

i is the qth random effect for the ith subject (or group)
denoted by ui. This combination of fixed and random effects yields mixed
effects models Laird and Ware (1982). When the model is linear, we get
linear mixed effects models, which we introduce next. We then work with
its nonlinear analog. The nonlinear mixed effects models are an intermedi-
ate (but necessary) step in deriving our final models for manifold-valued
data, introduced in Sec. 6.3.2.
Specifying the model. Let yi =

h
yJijK

ini

j=1
be a set of ni repeated obser-

vations of a response or dependent variable for subject i. Here yi is a ni

dimensional vector, vertically stacked with yJijK responses for subject i.
The notation Ji, jK simply recovers the specific observation j for subject
i. Similarly, let the subject-specific matrix Xi of size ni ⇥ p be setup ash

x1
JijK x2

JijK . . . xp
JijK

ini

j=1
where we collect for subject i, all p measurements

for all ni visits as rows. The matrix Zi will provide information on the num-
ber of longitudinal measurements for each subject (design matrix). Simi-
lar to Xi, we define Zi by specifying rows as Zi =

h
z1
JijK z2

JijK . . . zq
JijK

ini

j=1
.

These correspond to sets of p and q variables (features) for the ith subject
where one is interested in estimating fixed effects for the set Xi and ran-
dom effects for the set Zi on yi. In the classical setting, a linear mixed
effects model (Laird and Ware (1982)) is given by

yJijK =b

0
+ b

1x1
JijK + · · · + b

pxp
JijK+

u1
i z1

JijK + · · · + uq
i zq

JijK + eJijK,

where b

1, . . . , b

p are the fixed effects shared over the entire population
and u1

i , . . . , uq
i are the (subject-specific) random effects for the ith subject.

The random effects ui = [u1
i u2

i · · · uq
i ]

T are assumed to follow a multi-
variate normal distribution (zero mean and covariance matrix S 2 Rq⇥q).
The “unexplained” random error ei comes from a normal distribution
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N (0, S2
ei
). We can compactly write the model using matrix notation as

yi = Xib + Ziui + ei. (6.3)

Let ‘vstack(·)’ be the vertical stack of parameters. By denoting y =

vstack(y1, y2, · · · , yN), and similarly X, Z, u, the final model for all N
subjects can be expressed as,

y = Xb + Zu + s

2
e

I,

where u ⇠ N (0, S̃) and S̃ = diag(S1, S2, . . . , SN) = S ⌦ I (when Si =

S8i), and Z = diag(Z1, Z2, . . . , ZN).
In general, estimation of linear mixed effects models does not have a

closed form solution. If S̃ and s

2
e

are known, analytical solutions can be
obtained by the generalized least squares estimation. For more details,
see Section A.3.1.

6.3 Longitudinal analysis of CDT images

Let Ii,j denote the image acquired from subject i at time point j. Given
images Ii,j and Ii,j+1 for successive visits (j, j + 1), we can compute a
deformation (e.g., diffeomorphism) that aligns the two images (Avants
et al., 2008; Klein et al., 2009). Let Ii,1 (i.e., j = 1) give the subject-specific
coordinate system denoted as Wi. This will provide the (intermediate)
common coordinate system to represent the deformations undergone by
subject i over time, j = 1, 2, · · · , ni. The global template (or coordinate
system) where all (ni - 1) temporal deformations (i.e., CDT images) for
each subject i will be represented is denoted as W. Then, a nonlinear
deformation F(vox) for voxels (spatial locations) vox 2 W for each image
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(rather, for each (Ii,j+1, Ii,j) pair) is given as

F : Ii,j+1 ! Ii,j (6.4)

F(vox + dvox) = F(vox) + J(vox)dvox + O(dvox

2
),

where J(vox) denotes the Jacobian of the deformations at position vox. A
nice property of CDTs is that it preserves the determinant of J(vox), since
det(J(vox)) > 0. So, a CDT representation introduced in Sec. 6.1, nicely
symmetrizes J(vox) without affecting the volumetric change information,
i.e., det(J) = det(

p
JT J). The CDT “image” comprised of voxel locations

vox is an object of the same size as I1,1 and derived from a black-box
diffeomorphism solver given as a 3 ⇥ 3 SPD matrix

p
JT J at each voxel.

It provides the deformation field between two longitudinal images of a
subject. Various results have described the benefits of CDT images for
analysis; an example from our experiments is given in Sec. 7.6.

6.3.1 A model with subject specific intercepts

We know that in any longitudinal/temporal dataset, the errors/noise of
repeated measurements are dependent. To take this aspect of the data into
account, a common approach is to express the random effects of subjects
as nuisance parameters. If the set {i = 1, i = 2, · · · , i = N} indexes the
columns, we may write the design matrix Z as diag(1n1 , 1n2 , · · · , 1nN),
where 1ni = [1 · · · 1]

T 2 Rni . Then, the model in (6.3) becomes

yJijK = b

0
+ bTxJijK + ui, (6.5)

where yJijK, b

0, ui 2 R, and b, xJijK 2 Rp. Note that zJijK 2 RN recovers a
specific row corresponding to subject i’s visit j from matrix Z taking dot
product with u gives us the subject specific random effects, ui = zJijKu.

This model poses two problems. 1) It has the same slope b for the
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entire population, whereas subjects in the study may have different rate of
disease progression; 2) Another issue is the interpretation of ui, which is
viewed as subject-specific shift in the y space or x space, i.e., depending on
whether we move it to the left or right of the equality in (6.5). In medical
applications, readability of models is important to understand the disease.
Our solution involves explicitly adding a subject-specific shift for x as
well as a shift in y.

6.3.2 Nonlinear mixed effects models with yi(x)

Based on the foregoing motivation, we can extend the linear mixed effects
models with a subject-specific random function yi(·) as

yJijK = b0 + zJijKui + b.yi(xJijK) (6.6)

Depending on the form of yi(·), (6.6) can be a nonlinear mixed effects
model (NLMM). When yi is the Identity, we simply get a linear mixed
effects model. In our analysis, we use yi(x) := ai(x - ti - t0) + t0 moti-
vated by Durrleman et al. (2013) where each subject can have their own
speed of disease progression (ai) and different onset time ti, but (b0, b, t0)

are common for the population. Then, we have

yJijK = b0 + zJijKui + b(ai(xJijK - ti - t0) + t0). (6.7)

Note that this extension is different from the generalized linear mixed effects
models Lindstrom and Bates (1990), e.g., yJijK = h-1

(xJijKb + zJijKui), ui ⇠

N (0, Si). Next, we extend the mixed effects models in (6.5) and (6.7) to
manifold-valued data.



114

6.4 Mixed effects models on manifolds

The Linear Mixed Effects Model (LMM) can be extended in many ways to
the manifold setting depending on the order of addition and interpretation.
For instance, recall that the associativity of addition, (a + b) + c = a +

(b + c), in the Euclidean space is not directly translated to manifolds,
i.e., Exp(Exp(a, b), c) 6= Exp(Exp(a, c 0

), b 0
), where b 0 and c 0 are parallelly

transported tangent vectors of b and c respectively, so that they are in the
right tangent spaces. A natural extension of LMM in (6.3) can be written
as

yJijK = Exp(Exp(Exp(B, VxJijK), UizJijK), eJijK), (6.8)

where yJijK, B, Bi 2 M, V 2 TBMp, Ui 2 ThJijKMq, hJijK = Exp(B, VxJijK),
xJijK 2 Rp and zJijK 2 Rq. Recall that the base point B on the manifold M
is the analog to the intercept b

0 in (6.5) whereas V (and Ui) corresponds
to the slope b (and the random effects ui) respectively. Unfortunately, the
model above involves a subtle issue related to Ui. Note that Ui is used
in different tangent spaces at hJijK. Also, especially on SPD(n) manifolds
with the GL-invariant metric, the norm of the tangent vectors varies
as a function of the base point B of the respective tangent spaces, i.e.,
kUk2

B = hU, UiB = tr(UB-1UB-1
). So the corresponding scales might

be different. As a result, the prior for Ui needs to be carefully designed
(Kim et al., 2015b) so that it is consistent over all tangent spaces. To
address this problem, we change the order of the exponential maps and
propose a mixed effects model with subject specific intercepts (shift in y)
on manifolds. Also, unlike the Euclidean space, in general, there is no
equivalence between the shift in x and the shift in y. So, we can explicitly
add in the shift in x, denoted as ti. Then, our formulation on manifolds is
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given as

yJijK = Exp(Exp(Bi, GB!Bi(V)(xJijK - ti)), eij), (6.9)

Bi = Exp(B, UizJijK), (6.10)

where ti 2 Rp, Bi 2 M, V 2 TBMp, Ui 2 TBMq, and the remaining
variables are the same as before. As in the standard mixed effects models,
Ui is assumed to follow a multivariate normal distribution. Recall that
Ui is in the tangent space of SPD(n), which we know is the space of sym-
metric matrices Sym(n). So, we may specify a normal distributions for
Sym(n) (Schwartzman, 2006), see Chapter A.1. With this basic construc-
tion in hand, we may now include a subject-specific time shift in the onset
time (similar to (6.7)) and assume that the progression of disease has the
same overall pattern but only its speed/rate and onset time vary between
subjects. This allows writing a model with fewer parameters given by

yJijK = Exp(Exp(Bi, GB!Bi(V)ai(xJijK - ti - t0), eij)))

Bi = Exp(B, Ui), (6.11)

where ai is the subject-specific acceleration, ai < 1 (and ai > 1 resp.)
means slower (and faster resp.) than the population. Further, ti is the
subject-specific shift in onset time: ti > 0 means a late onset time whereas
t0 is the global shift in onset time. Finally, Ui (or Bi) are the tangent
vectors (or base points) that characterize the subject-specific shift in the
response variable space (see the Euclidean case in Fig. 6.2). As in the
classical setting, we may specify the following priors on the manifold
valued parameters, GB!IUi ⇠ NSYM(0, s

2
U), ai ⇠ N (1, s

2
a

), ti ⇠ N (0, s

2
t

).
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6.5 Parameter estimation procedure

In general, accurate estimation of the (nonlinear) mixed effects models
in even Euclidean space is computationally demanding. So the accurate
estimation of the mixed effects models on manifolds in (6.10) that involves
more complex nonlinear functions may be prohibitively computationally
expensive to run over the entire brain image. Even for Euclidean response
variables, efficient estimation methods for nonlinear mixed effects mod-
els are still being actively studied (in machine learning and statistics),
e.g., Alternating algorithms (Lindstrom and Bates, 1990), Laplacian and
adaptive Gaussian quadrature algorithms (Pinheiro and Chao, 2012), as
well as generalized EM algorithms with MCMC (Meza et al., 2007). Un-
fortunately, this issue only gets worse in the manifold setting. Fitting a
nonlinear mixed effects model exactly, even for univariate manifolds on the
real line takes about a day (Schiratti et al., 2015) with a generalized EM
algorithm. In our data set, the number of voxels is 1M+, it is impractical
to perform exact analysis for the full brain. So, we present approximate
algorithms based on a certain geometrical interpretation of the models.

6.5.1 Estimation of RNLMM

We observe that the main building block of our models, Riemannian
nonlinear mixed effects models (RNLMMs), is a manifold-valued mul-
tivariate general linear model (MMGLM). This module has an efficient
parameter estimation called the Log-Euclidean framework. In Chapter
3, we discussed that in practice the estimation can be well approximated
in the tangent space at the Fréchet mean of the response variables Y with
a centered X, i.e., B ⇡ Ȳ, t ⇡ X̄. As in a global manifold-valued linear
model, i.e, MMGLMs in Chapter 3, the parameter V will correspond to
the full data set; however, we allow subject-specific variability for the
base point B and t via Bi(r) and ti(r), where r 2 R can be viewed as the
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mixing rate between the local models that share a global V. This is given
by

yJijK = Exp(Exp(Bi(r), GB!Bi(r)(V)(xJijK - ti(r))), e). (6.12)

In other words, r 2 R is a weight to globally average the population
subject specific base points Bi(r) and time shifts ti(r) — all subjects share
the fixed effects V but each subject corresponds to its own shifts ti(r) and
Bi(r) in x and y spaces. When r = 0, the model reduces to the model
in (Kim et al., 2014c; Cornea et al., 2016) with only global intercepts, see
Section 6.6.1.

Our estimation for (6.29) is summarized in Alg. 8, where yo
JijK is a

tangent vector obtained by: taking the response yJijK and mapping it to the
tangent space at Bi(r) and parallel transporting that mapping to TBM. We
now briefly describe how we can perform the estimation efficiently. First,
in Step 2, we solve for the linear interpolation of two SPD matrices w.r.t.

Algorithm 8 Riemannian mixed effects models
1: Calculate the mean for each subject, ȳi,

ȳi = argmin
y2M

niX

j=1

d(y, yJijK)
2. (6.13)

Similarly calculate ȳ for the entire population.
2: Given r, solve for Bi(r) (interpolation of ȳi and ȳ) by

Bi(r) = ȳ(ȳ-1ȳi)
r
= ȳi(ȳ-1

i ȳ)

1-r, 0  r  1.

3: yo
JijK = GB̄i(r)!BLog(B̄i(r), yJijK).

4: Transport yo
JijK to I by group action.

5: Center x by xJijK(r)=(1 - r)(xJijK - x̄) + r(xJijK - x̄i).

6: Calculate V⇤ using MMGLM on transported yo
JijK and xJijK(r).

7: Prediction is given by

ŷij = Exp(Bi(r), GB!B̄i(r)(V⇤
)xij(r)). (6.14)
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the geodesic distance on the SPD manifold using the analytical form of
the solution in (Moakher and Batchelor, 2006) (note that when the number
of samples is large, recursive schemes exist (Ho et al., 2013)). In Step 4,
we transport the tangent vectors from B to I and vice versa using group
action, which is known to be more efficient than parallel transport but
equivalent as discussed in Chapter 4.

6.5.2 Estimation of RNLMM with yi(x)

The estimation of the model in (6.11) with the subject-specific random
function yi(·) involves few additional technical challenges. To reduce the
problem complexity, we first find the main longitudinal change direction
h controlling for the subject-specific random effects Ȳi and X̄i (since Ui

and ti are random effects). This scheme is described in Alg. 9.

Algorithm 9 Calculate longitudinal change direction
1: Calculate the population Fréchet mean ȳ of response.
2: Calculate the Fréchet mean for each subject ȳi.
3: Solve yo

JijK = Gȳi!ILog(ȳi, yJijK).

4: Solve xo
JijK = xJijK - x̄i, where x̄i = Ej[xJijK].

5: Collect Xo
= [xo

1; . . . , xo
N ], and Yo

= [yo
1, . . . , yo

N ].
6: Calculate longitudinal change direction h by least squares estimation, h =

((Xo
)

TXo
)

-1
((Xo

)

TY)2TIM.

Once the longitudinal change direction h (fixed effects for the entire
population) is estimated, we solve for a subset of parameters at a time.
This procedure is described in Alg. 10, where we solve for all parameters
given the estimate of h. Note that for our downstream analysis, the bias
induced by priors on parameters may reduce the statistical power. So,
we simply used noninformative priors for all parameters. While Alg.
10 utilizes noninformative priors, with minor changes, we can easily
incorporate normal distribution priors. It turns out that if the response
y has a generalized normal distributed noise on manifolds, as in the
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Euclidean space, the least-squares estimator (first term in (6.15)) is the
same as the maximum likelihood estimator (Fletcher, 2013).

min
c,t0,{Bi,Ui,ai,ti}

X

ij

d(yJijK, Exp(Bi, GI!Bi(ch)(yi(xJijK))))
2

+ lu
X

i

kUik2
B + l

a

X

i

kai - 1k2
+ l

t

X

i

ktik2, (6.15)

where yi(xJijK) := ai(xJijK - ti - t0) + t0; Bi = Exp(B, Ui).
Remarks. Notice the regularizers in (6.15) comprise of the last three

terms. This is based on the fact that MLE estimation of linear regression
with a normal distributional prior for the coefficients is equivalent to
the ridge regression estimate (Hoerl and Kennard, 1970). For inference
with priors, Step 4 and 7-8 in Alg. 10 need to be substituted with ridge
regression.

Alg. 10 contains many steps in common with Alg. 8. In Step 7, we esti-
mate the fixed effects V and t0 by fixing all other variables (c is a dummy
variable). In Step 8, we estimate the subject-specific random effects ai and
ti by fixing V and t0 (di are dummy variables).

Derivation of step 7. in Alg. 10, given h

yij = Exp(Bi, GI!Bi(ch)(ai(xij - ti - t0) + t0))

Log(Bi, yij) = GI!Bi(ch)(ai(xij - ti - t0) + t0)

yo
ij = ch(aixij - aiti - ait0 + t0), by GBi!I

= h(aixij - aiti)c + h(1 - ai)t0c

where b := t0c. Let qi := h(1 - ai)
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Algorithm 10 Riemannian mixed effects models with yi(x)

1: Calculate the Fréchet mean ȳ 2 M of population.
2: Calculate the Fréchet mean for each subject ȳi 2 M.
3: Main longitudinal change direction h by algorithm (9).
4: Calculate subject-specfic base points (random effects) Bi=Exp(B, U⇤

i ), where U⇤
i =

argminUi
d(ȳi, Exp(B, Ui))

2
+ lUikUik2

B.

5: yo
ij = GBi!ILog(Bi, yij).

6: while until convergence do
7: Calculate the common speed of change V = ch and common time intercept

t0 = b/c with fixed all other variables by
" P

ij qT
i qi

P
ij pT

ijqiP
ij pT

ijqi
P

ij pT
ij pij

# 
b
c

�
=

" P
ij qT

i yo
ijP

ij pT
ijy

o
ij

#
,

where b := t0c, qi := h(1 - ai),pij := h(aixij - aiti).

8: Given V, t0, calculate the subject-specific acceleration ai, and time-shift ti by
generalized least square estimation with the priors for ai and ti = di/ai

" P
j WT

ij Wij -
P

j WT
ij V

P
j WT

ij V -
P

j VTV

# 
ai
di

�
=

" P
j UT

ijWijP
j UT

ijV

#
,

where Uij := yo
ij - Vt0, Wij := V(Xij - t0) and di = aiti.

9: end while

and pij := h(aixij - aiti).

argmin
b,c

X

ij

(yo
ij - pijc - qib)T

(yo
ij - pijc - qib)

= argmin
b,c

X

ij

(yo
ij)

Tyo
ij + c2pT

ij pij + b2qT
i qi - 2c(yo

ij)
T pij

+ 2bcpT
ijqi - 2bqT

i yo
ij
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Take the partial derivatives

∂

∂b
= -

X

ij

qT
i yo

ij + c
X

ij

pT
ijqi + b

X

ij

qT
i qi = 0 (6.16)

∂

∂c
= -

X

ij

pT
ijy

o
ij + c

X

ij

pT
ij pij + b

X

ij

pT
ijqi = 0 (6.17)

So the system of equations from the KKT condition is,

" P
ij qT

i qi
P

ij pT
ijqiP

ij pT
ijqi

P
ij pT

ij pij

# "
b
c

#
=

" P
ij qT

i yo
ijP

ij pT
ijy

o
ij

#
(6.18)

Derivation for Step 8. Given V := ch, and t0,

yij = Exp(Bi, GI!Bi(V)(ai(Xij - ti - t0) + t0))

yo
ij = V(ai(Xij - ti - t0) + t0), the same trick

yo
ij = V(aiXij - aiti - ait0 + t0) (6.19)

yo
ij - Vt0 = VaiXij - Vaiti - Vait0 (6.20)

Uij = Wijai - Vdi (6.21)

(6.22)

where Uij := yo
ij - Vt0, Wij := V(Xij - t0) and di = aiti

argmin
X

j

(Uij -Wijai + Vdi)
T
(Uij -Wijai + Vdi) (6.23)

= argmin
X

j

UT
ijUij + WT

ij Wija
2
i + VTVd2

i (6.24)

- 2UT
ijWijai + 2UT

ijVdi - 2WT
ij Vaidi (6.25)
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Take the derivatives

∂

∂ai
=

X
aiWT

ij Wij - UijWij -WT
ij Vdi (6.26)

∂

∂di
=

X
VTVdi + UT

ijV -WT
ij Vai (6.27)

The system of equations is given as

" P
j WT

ij Wij -
P

j WT
ij V

P
j WT

ij V -
P

j VTV

# "
ai

di

#
=

" P
j UT

ijWijP
j UT

ijV

#
(6.28)

6.6 Experiments

We first show the synthetic data experiments to demonstrate the different
behaviors of the proposed models. Then, we perform analysis with real
longitudinal data from a neuroimaging study.

6.6.1 Synthetic experiments

In this section, we demonstrate the difference between our Riemannian
nonlinear mixed effects model in (6.29) and MGLMs.

yJijK = Exp(Exp(Bi(r), GB!Bi(r)(V)(xJijK - ti(r))), e). (6.29)

The model in (6.29) reduce to MMGLM in Chapter 3 as r ! 0 since
all the subjects have the same intercept and same slope V, see the trend
in Fig. 6.3. This model uses the interpolation between a global mean
and a subject-specific mean as a subject-specific intercept. In Fig. 6.3(d),
the global intercept is completely ignored and the model uses the mean
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of measurements from a subject as the intercept for the subject. This
allows a more flexible model that can learn the correct trajectories in the
synthetic data. In Fig. 6.3(a), the interpolation between subject-specific
mean and population mean with the weight r = 0.1, the subject-specific
intercepts becomes closer to the population mean. The model behaves
like a MMGLM and it fails to capture true trends with a poor fit.

6.6.2 Neuroimaging data experiments

Goals. The overarching goal of our experiments is to evaluate whether the
proposed formulations can serve as core modules that drive longitudinal
analysis of image datasets in neuroimaging. To this end, when conducting
analysis of longitudinal data acquired in the context of a specific disease,
the procedure should yield meaningful results for group analysis — for
instance, when the population is split with a stratification variable (e.g.,
gender or disease risk factor), the “maps” of statistically significant group-
wise differences in subject/voxel-specific “random” effects (especially,
acceleration and spatial shift) should be scientifically interpretable, yet
generally consistent with a baseline. Our experiments below show the
extent to which the models satisfy this requirement.

Data. The CDT images (denoting subject-specific warps) were derived
from a longitudinal neuroimaging study of pre-clinical Alzheimer’s dis-
ease (AD). The longitudinal warps (or transformations) were obtained
using with-in subject registration of T1-weighted images between two con-
secutive visits i.e., Fi,j : Ii,j ! Ii,j+1. Voxelwise CDTs were derived from
the spatial derivatives rFi,j(vox) of the deformation field. The details of
calculation of CDTs and minimizing spatio-temporal biases in the CDT
estimation are presented in Section A.3.2 and A.3.3.

CDT versus det(J). We first present a motivating experiment to
demonstrate the rationale behind using CDTs instead of the determinants
det(J) of Jacobian of the deformations, i.e., do CDTs actually carry more
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(a) Model in (6.29) with (r = 0.1)

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4
Independent Variable, X

D
ep

en
de

nt
 V

ar
ia

bl
e,

 Y
, a

fte
r p

ro
je

ct
io

n

●●● Data
MEM Fit
MGLM
MEM pattern
MGLM
MEM translated
Subject Data

(b) Model in (6.29) with (r = 0.7)

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4
Independent Variable, X

D
ep

en
de

nt
 V

ar
ia

bl
e,

 Y
, a

fte
r p

ro
je

ct
io

n

●●● Data
MEM Fit
MGLM
MEM pattern
MGLM
MEM translated
Subject Data

(c) Model in (6.29) with (r = 0.9)
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(d) Model in (6.29) with (r = 1)

Figure 6.3: When the variability over subjects is large than variability of a subject
over time, the linear model (MMGLM in blue) captures the overall relationship
between x and y. In this example, the trajectory estimated by a MMGLM is
significantly different from the trajectory of each subject. Each subject is measured
four times and the trajectory correctly captured by the mixed effects model (in
gray dot lines). The mixed effects model control the variability between subjects
as random effects and captured the common longitudinal pattern (in red). The
common longitudinal change is translated to each subject (in gray dot lines).
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information? We test for group differences in longitudinal changes of the
brain between groups of middle versus old aged individuals using CDTs
and compare these results to those obtained via determinants. In order to
avoid confounding factors in this comparison, we use the Cramér’s test, a
nonparametric test for univariate as well as manifold-valued data since it
does not require any specification of the null distribution (Baringhaus and
Franz, 2004). Fig. 6.4 clearly shows the improvements in statistical differ-
ences across the groups (higher sensitivity) when using CDTs (instead of
det(J) maps).

Figure 6.4: Results of Cramér’s test showing voxels that are different between
middle and old age groups (p < 0.01) from (a) CDTs and (b) det(J).

RNLMMs on longitudinal CDTs. We now present results using our
Riemannian nonlinear mixed effects models (RNLMM) using subject
specific transformation functions yi(xJijK) (6.6). Here, xJijK 2 R is used
to represent the age of each subject at the previous visit and yJijK 2 M,
(the CDT image calculated from scans at two points). For these results,
we used data from subjects who had at least three visits. We estimated
our model at each voxel in the brain (1.3M+) using a total of N = 228
participants that had at least two CDT images. The maps for acceleration
(ai), spatial shift (Ui) and time shift (ti) for each of the subjects offer unique
advantages. For instance, these maps are not offered by standard linear
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mixed effects models where only a subject specific slope or intercept
is used as the random-effects (independently noted in (Schiratti et al.,
2015)). Fig. 6.5 shows four representative subject-specific acceleration
maps. The regions where this specific individual has a faster (slower) aging
(or disease progression) compared to the population average rate are
colored in yellow (and blue) color-scales respectively. These RNLMM
maps can be used to perform additional “downstream” statistical tests
using parametric tests. Here, we cover two specific examples. In Fig. 6.5,
we show the kind of results our model can offer at the individual level.
Fig. 6.5(a)-(d) shows four results, each pertaining to a different participant
in the study. Fig. 6.5(a)-(b) show maps for two females, whereas Fig.
6.5(c)-(d) show examples of two males. The color indicates the brain
deformation over time (captured via acceleration), for this specific person,
relative to the population. We see that a representative male (with no
APOE risk) shows a slower acceleration rate (blue regions) compared
to the population. Not many models in the literature can provide such
personalized assessment.

Of course, such acceleration and spatial shift maps can also be used
for group level analysis. We present results of Hotelling-T2 tests on the
group-wise Ui maps using the following two stratification variables: (a)
males and females and (b) individuals with/without AD risk (due to
APOE) (Tang et al., 1998; Corder et al., 1993). This enables us to iden-
tify longitudinal spatial shifts (deviations from population base points
B) between these groups, shown in Fig. 6.6 for the gender and APOE
stratification variables.

6.7 Summary

In this chapter, we extend nonlinear mixed effects models to the set-
ting where the responses lie on curved spaces such as the manifold of
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symmetric positive definite (SPD) matrices. By treating the subject-wise
“non-linear warps” between consecutive time points as a field of Cauchy
deformation tensors (CDT), we show how our model can facilitate longitu-
dinal analysis that respects the geometry of such data. While the existing
body of work dealing with regression models on manifold-valued data
is inherently restricted to cross-sectional studies, the proposed mixed
effects formulation significantly expands the operating range of the types
of analyses we can conduct. For instance, the “random” effects in the
construction parameterized by acceleration and spatial and time shifts
offer interesting advantages. Not only can these quantities be directly
used for downstream models but they also offer interpretability at the level
of individual subjects — as an example, when conditioned on (or controlled
for) race, sex and education, we can ask if a specific person’s onset time of
brain atrophy or rate of atrophy, at the level of individual voxels, deviates
from the group. This capability is not currently available otherwise.
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Figure 6.5: Representative acceleration (ai) maps derived from our RNLMM. (a)
Female, APOE-. (b) Female, APOE+. (c) Male, APOE-. (d) Male, APOE+. The
male with no APOE risk shows slower progression (more blue regions) compared
to the population average.
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Figure 6.6: P-value maps of group differences in random effects (Ui). Top:
Gender differences. Bottom: APOE group {APOE+, APOE-} differences. Gender
differences can be effectively captured by our RNLMM.
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7 INTERPOLATION ON THE MANIFOLD OF k
COMPONENT GMMS

Probability density functions (PDFs) are fundamental objects in mathe-
matics with numerous applications in computer vision, machine learning
and medical imaging. Especially, in medical imaging, the diffusion of
water molecules in diffusion weighted MRI is characterized by a PDF
so-called ensemble average propagator (EAP) at each voxel. Diffusion
tensor imaging (DTI) is a simple method to parameterize EAPs by a sin-
gle Gaussian density function. But it is not capable to capture multiple
orientations (fiber crossing) in a voxel. So, to address the problem, a
mixture of Gaussian densities is often used. Motivated by applications,
e.g., registration, denoising, and smoothing, in diffusion weighted MRI
with GMMs, we study the parameterizations of Gaussian mixture models
(GMMs) and their interpolation.

In this chapter, we study numerical algorithms to enable basic op-
erations on such objects that strictly respect their underlying geometry
controlling the model complexity. For instance, when operating with a
set of K component GMMs, a first order expectation is that the result of
simple operations like interpolation and averaging should provide an
object that is also a K component GMM. The literature provides very little
guidance on enforcing such requirements systematically. It turns out that
these tasks are important internal modules for analysis and processing
of a field of ensemble average propagators (EAPs), common in diffusion
weighted magnetic resonance imaging. We provide proof of principle
experiments showing how the proposed algorithms for interpolation can
facilitate statistical analysis of such data, essential to many neuroimaging
studies. Separately, we also derive interesting connections of our algo-
rithm with functional spaces of Gaussians, that may be of independent
interest.
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7.1 Gaussian Mixture Models and applications

A K component GMM (K-GMM for short) is a probability density function
given as a weighted sum of K Gaussian densities,

p(x|Q) =

KX

j=1

p

jN (x|µj, Sj
), (7.1)

where the mean and covariance of the mixing components are given
by µ

j and Sj respectively, p

j gives the corresponding weight and Q =

{µj, Sj}Kj=1. Let G = {GK
1 , · · · , GK

N} denote a set of N K-GMMs. In this
chapter, we study the problem of interpolating between GK

1 , · · · , GK
N to

derive an interpolant, Ĝ. Our main requirement on Ĝ is that it should
correspond to a K-GMM for a given K. In addition to this constraint,
based upon the needs of the specific application, the interpolation task
may correspond to an averaging operation over G or alternatively, when
|G| = 2, we may ask for a continuous interpolation G(GK

i , t) such that
G(GK

i , 0) = GK
i and G(GK

i , 1) = GK
j for any i, j and for any offset, t 2 [0, 1].

The question of whether this problem permits efficient solution schemes is
interesting enough in its own right to merit careful investigation. It turns
out that such an algorithm, if available, will be immediately applicable to
(or facilitate) a variety of tasks in computer vision, machine learning and
medical imaging with minor changes. Besides the motivating examples of
the interpolation of structured data discussed in Chapter 1.4, we provide
specific applications of K-GMM interpolation below.

Problem 1: Spatial transformations of diffusion PDFs (Goh et al., 2009;
Cheng et al., 2010, 2011). As we discussed in Chapter 1.4, interpolation of
PDFs is a fundamental operation to handle images with diffusion PDFs.
Here is an example. An important scientific frontier today is to establish
a connectome of the human brain (Setsompop et al., 2013). Diffusion
weighted magnetic resonance (MR) is one of the tools being used to help
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answer the underlying analysis questions. It exploits the physical phe-
nomenon of diffusion of water to image the microstructure of the white
matter pathways in the brain (Cheng et al., 2010). An object estimated
from such MR measurements is the so-called ensemble average propa-
gator (EAP), a PDF describing the diffusivity profiles of water molecules
on spheres of varying radii at the micrometer scale. The EAP can be
conveniently represented as a K-GMM which can help resolve up to K
crossing of white matter pathways at a voxel. Now, given two images
(source and target) where each voxel has a K-GMM, the registration task
involves applying a spatial transform to the source image to align it with
the target image. Recall that the most basic routine needed in applying
such a transformation is a way to estimate a ‘value’ for each voxel in the
transformed image via interpolation (e.g., bi-linear). Since both the source
and target images are a field of K-GMMs, an interpolation routine for
K-GMMs is essential – in contrast, a naïve interpolation here will output a
(NK)-GMM if |G| = N, clearly blowing up the model complexity.

Problem 2: Matching point sets (Jian and Vemuri, 2011). Consider the
problem of matching one point set to another where we seek the best
alignment between the transformed “model” set and the target “scene”
set — common in shape matching and model-based segmentation. In
contrast to identifying point-to-point correspondence, a class of fairly suc-
cessful recent approaches (Myronenko and Song, 2010) statistically model
each of the two point sets by a PDF. Then, a suitable distance measure be-
tween the two distributions, d(·, ·) is minimized over the transformation
parameters, t. Kernel density based and GMM based representations are
quite popular. Assume that the two point sets are defined as S and T. To
align K-GMM(t(S)) and K-GMM(T), the optimization proceeds by tak-
ing incremental steps along r

t

d, until convergence. However, right after
the first gradient update, we leave the feasibility region of K component
GMMs. As a result, most methods are unable to provide intermediate
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evolution steps along the transformation that are members of the same
set as the source and the target models, i.e., a K-GMM. In contrast, with
a minor modification (i.e., plugging in our method), this ability can be
obtained with a nominal additional cost.

Problem 3: Statistical compressed sensing (Yu and Sapiro, 2011). Let f 2 Rp

be a function (or signal) and F 2 RN⇥p denote the so-called sensing ma-
trix. We are provided measurements y = Ff. The recovery of f from Ff
is ill-posed in general when N ⌧ p. Compressed sensing significantly
generalizes the regime under which such recovery is possible based on
incoherence between the sensing and a certain ‘representation’ basis, see
(Donoho, 2006). Statistical compressed sensing (SCS) takes this argument
further by considering the situation where one is interested in recon-
structing not just one but an entire sequence of signals, f1, f2 · · · . Here,
SCS assumes that fi is drawn from a GMM — which enables additional
improvements in recovery. When deployed in a ‘streaming’ setup, the
current GMM prior in SCS (say, at time t) is incrementally updated based
on the current measurement (t + 1). Our proposed algorithm offers a
potential improvement: by providing a moving average version of the to-be-
updated GMM prior by constructing a weighted (or unweighted) mean
of the previous t GMMs. This will likely be immune to local fluctuations
or noise in the streaming measurements.

In this chapter, we develop a systematic framework for performing
interpolation on the manifold of K component GMMs. It will take in as in-
put a set of GMMs and a specific interpolation task and provide a K-GMM
as an output that optimizes the interpolation objective. While the primary
focus of this work is theoretical, we provide experiments demonstrating
the expected behavior of the algorithm. Separately, we highlight some
interesting connections of this formulation with the functional spaces of
Gaussians. Next, Section 7.2 introduces some basic concepts relevant to K-
GMMs. With the `2-distance metric, Sections 7.3 studies the interpolation
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of GMMs and Section 7.4 introduces a numerical scheme to identify the
shortest path on the K-GMM manifold. Section 7.5 presents our main EM
algorithm and a modified EM algorithm to minimize the KL-divergence
between the learned K-GMM and given GMMs. Finally, experimental
results and conclusions are discussed in Sections 7.6 and 7.7 respectively.

7.2 Parameterization and distance measures

To our knowledge, there are no existing algorithms for interpolating a set
of K-GMMs which also control the number of components; on the other
hand, there is a mature body of research for tackling the setting where
the objects to be interpolated are probability density functions (PDFs)
(Srivastava et al., 2007; Cetingul et al., 2012; Ncube et al., 2012; Li et al.,
2014). So one might ask, why not simply use PDFs? We will present
several specific reasons in the section below.

Observe that the actual formulation for interpolation will depend on
the specific parameterization we choose to represent the PDF as well as
the distance metric. To make this point concrete, let us review a few
example parameterizations and distance metrics. With these two pieces,
the corresponding interpolation/averaging operation is simple to derive.
Evaluation of their advantages or limitations in the K-GMM setting will
then become apparent.

7.2.1 PDF parameterizations and distances

Parameterization. First, let us consider a simple expression for computing
the mean of probability densities { fi}

N
i=1,

f̂ = arg min
f 2F

NX

i=1

wid(F( f ), F( fi))
2 (7.2)
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where F(·) is for parameterizing the given probability densities, d(·, ·)
is a distance metric and wi is a weight for fi. Some parameterizations
will allow using tools from differential geometry for deriving efficient
algorithms (Srivastava et al., 2007). Clearly, there are multiple options
for parameterization but some specific ones form a set (the so called unit
Hilbert sphere in `2-space) and are mathematically convenient. We can
parameterize a given set of PDFs so that they lie in this set. The mapping
is bijective when restricted to non-negative functions i.e., every element
in the unit Hilbert sphere can be mapped back to a PDF. For example,
the square root parameterization simply takes the square-root of the PDF
value. If, for example, the PDF was parameterized using a K-GMM then,

f (x|Q) =

q
p(x|Q) =

vuuut
KX

j=1

p

jN (x|µj, Sj
) (7.3)

By inspection, the `2-norm of f is always 1 since
qR

f (x) f (x)dx =

R
p(x)dx = 1. Notice that this is a re-parameterization of the original

PDF (which was provided as a K-GMM).
Normalization. Alternatively, we can normalize the PDFs by dividing

with the `2-norm, which only changes the scale and not the shape of the
model.

p 0
(x) = p(x)/kp(x)k2, (7.4)

where k · k2 is the standard `2-norm for functions. For the special case of
GMMs, we have

kGik2
2 =

KX

j

KX

j 0
p

j
p

j 0N (µ

j|µj 0 , Sj
+ Sj 0

), (7.5)

where Gi denotes a representative GMM.
Distances. Let us now consider the calculation of distances. Let
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p 0
i (x) = pi(x)/kpi(x)k2. Recall that for two different functions, the `2-

distance is given as

k f1 - f2k2 =

✓Z

X
| f1(x)- f2(x)|2dµ(x)

◆1/2
. (7.6)

Then, the normalized `2-distance (dn-`2) is simply the `2-distance between
the normalized PDFs (Jensen et al., 2007),

dn-`2(p1, p2) =

Z
(p 0

1(x)- p 0
2(x))

2dx (7.7)

= 2(1 -

Z

X
p 0

1(x)p 0
2(x)dx).

Geodesics and Divergences. Instead of the `2-distance, we can also
calculate the geodesic distance on the unit Hilbert sphere. Let p 0

i (x) =

pi(x)/kpi(x)k2. Then, the geodesic distance between normalized PDFs is

dn-geo(p1, p2) = cos-1hp 0
1, p 0

2i2 = cos-1
(

Z

X
p 0

1(x)p 0
2(x)dx)

This is interesting because the geodesic distance here admits a closed form
solution.

The KL-divergence (Kullback, 1997) is another possibility, albeit not a
metric, that can be used as a information theoretic divergence between
probability density functions f (x) and g(x). It is also known as relative
entropy and given by

D( f ||g) :=
Z

f (x) log
f (x)

g(x)

dx. (7.8)

The KL-divergence between two GMMs cannot be obtained analytically
and so various approximations have been proposed (Hershey and Olsen,
2007). Shortly, we will discuss the relationship between the KL-divergence/cross
entropy and the log likelihood which will suggest natural EM style algo-
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rithms.
How many components? PDFs and K-GMMs. With these concepts

in hand, it is easy to verify what happens when we seek to interpolate
GMMs but the only tool we have available is an interpolation routine
for PDFs. In general, given a set of GMMs, if we consider them simply
as PDFs, the mean derived from the geodesic distance (with the square
root parameterization) may not even be a GMM. However, it turns out
that the simple arithmetic mean of PDFs, i.e., f̄ =

PN
i fi/N is optimal

with respect to the `2-metric for PDFs. It is easy to check and the proof is
provided shortly in Lemma 7.1.

Unfortunately, the main difficulty is that when given N GMMs with K
components each, the arithmetic mean solution will not be a K component
GMM (instead, a GMM with N ⇥ K components),

Ḡ =

nX

i

Gi/N =

NX

i=1

KX

j=1| {z }
N⇥K components

p

j
i

N
N (µ

j
i , Sj

i).

If one needs the interpolation of K-GMMs to be a K-GMM, to our knowl-
edge, there are no existing solutions. We address this problem in the
later sections with a focus on `2-distance and KL-divergence/cross en-
tropy which, roughly speaking, corresponds to the least squares and
log-likelihood functions of a finite number of samples in the classical
GMM setting.

7.3 Interpolation w.r.t. `2-distance

Let G(K) denote the manifold of K-GMMs. We will first describe an
optimization scheme to directly minimize the `2-distance in G(K) which is
used for the interpolation objective.
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Computing the `2-mean in G(K). First, we will derive an algorithm
for calculating the mean for a set F = {F1, · · · , Fn} where 8j, Fi 2 G(K)

w.r.t.`2 metric. Second, for the case where |F| = 2, we will derive a ‘path’
from Fi to Fj, which never leaves the feasibility region i.e., G(K). This
construction will provide a meaningful distance measure which respects
the geometry of G(K).

The `2-mean (arithmetic mean) of {Fn}
N
n=1 minimizes the sum of squared

`2-distances to each Fi 2 F,

F̄ = arg min
G

NX

n=1

kG -Fnk2
2 (7.9)

As discussed in Section 7.2, we have F̄ 2 G(NK) (the blowup in the
number of components). Instead, we require a GMM Ĝ 2 G(K). Our
algorithm has two steps. First, we find F̄ and then find the closest K-
component GMM to F̄ , i.e., we will minimize (7.10)

Ĝ = arg min
G2G(K)

kG - F̄k2
2 (7.10)

This may seem like a very loose relaxation. In other words, is there a
Ĝ 0 2 G(K) that is farther from F̄ but achieves a lower objective function
value for (7.9)? The following result shows that this cannot be the case.

Lemma 7.1. The mean of a finite number of functions {Fn}
N
n with respect to `2

metric is the closest G⇤ to the `2-mean F̄ =

PN
n

Fn
N .
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Proof.

G⇤
= arg min

G2G(K)

NX

n
kFn - Gk2

2

= arg min
G2G(K)

NX

n
kFnk2

2 - 2
NX

n
hFn, Gi2 + NkGk2

2

= arg min
G2G(K)

1
N

NX

n
kFnk2

2 - 2

*PN
n Fn
N

, G
+

2

+ kGk2
2

= arg min
G2G(K)

-2

*PN
n Fn
N

, G
+

2

+ kGk2
2

= arg min
G2G(K)

k 1
N

NX

n
Fnk2

2 - 2h 1
N

NX

n
Fn, Gi2 + kGk2

2

= arg min
G2G(K)

k 1
N

NX

n
Fn - Gk2

2

= arg min
G2G(K)

kF̄ - Gk2
2

This result suggests that (7.10) is indeed equivalent to (7.9) with the
constraint G 2 G(K). Also it shows that the arithmetic mean is the optimal

solution in the ambient space (or L2 space not G(K)), i.e., G⇤
= F̄ =

PN
n Fn
N .

Optimization scheme. To optimize (7.10), we first initialize the so-
lution and then perform incremental gradient descent steps. The main
terms in the gradient update step are described below and are computed
using F̄ and G, the former has L(= NK) components and the latter has K
components.

Let L denote the objective function in (7.10). The three main variables
to optimize over are the component weights p

j
G , means µ

j
G and covari-

ances Sj
G , where i and j index components in F̄ and G respectively. Let



140

cj,i
G,F̄ := N (µ

j
G |µ

i
F , Sj

G + Si
F ). The derivative w.r.t. p

j
G takes the form,

∂L
∂p

j
G

= 2

0

@
KX

j 0=1

p

j 0
G cj,j 0

G,G -
LX

i=1

p

i
F̄ cj,i

G,F̄

1

A (7.11)

The derivative w.r.t. µ

j
G is given as

∂L
∂µ

j
G

= 2p

j
G

0

@
KX

j 0 6=j

p

j 0
G

∂

∂µ

j
G

cj,j 0
G,G -

LX

i=1

p

i
F̄

∂

∂µ

j
G

cj,i
G,F̄

1

A , (7.12)

whereas the derivative ∂L
∂Sj

G
is

⇣
p

j
G
⌘2

∂

∂Sj
G

cj,j
G,G + 2p

j
G

0

@
KX

j 0 6=j

p

j 0
G

∂

∂Sj
G

cj,j 0
G,G -

LX

i=1

p

i
F

∂

∂Sj
G

cj,i
G,F̄

1

A . (7.13)

The gradient is calculated by putting together the three terms above
and the step size is determined using a standard line search procedure
(Nocedal and Wright, 2006a). We repeat until convergence.

For the detailed derivations of the derivatives above, we start with the
partial derivatives of the Gaussian distribution.

7.3.1 Gaussian distribution and its derivatives

A Gaussian distribution has parameters (µ, S). Since S is matrix-valued,
we need derivatives of functions w.r.t. a matrix. Suppose X 2 Rd⇥d. We
have the following.

(i) det(cX) = cd det(X), where A is a n ⇥ n matrix.

(ii) ∂ det(X)

∂X = det(X)X-T, see (Petersen and Pedersen, 2012b).
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(iii) aT X-1b
∂X = -XTabTX-T, 8a, b 2 Rd, see (Petersen and Pedersen,

2012b).

(iv) ∂

∂X log |det(X)| = X-T,

where for a matrix A, A-T denotes an inverse followed by a transpose.
We will use the facts above in our derivations. Places where they are used,

are denoted by the number over the equality e.g. “
(i)
= ”.

The density function of Gaussian is given by

f (x|µ, S) =

1p
det(2pS)

exp

-

1
2
(x - µ)

TS-1
(x - µ)

�
. (7.14)

The derivative w.r.t. µ is given by

∂ f (x|µ, S)

∂µ
= f (x|µ, S)S-1

(x - µ). (7.15)
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The derivative w.r.t. S is given by

∂ f (x|µ, S)

∂S
=

∂

∂S


det(2pS)

-1/2 exp

-

1
2
(x - µ)

TS-1
(x - µ)

��

(i)
= (2p)

-d/2 ∂

∂S


det(S)

-1/2 exp

-

1
2
(x - µ)

TS-1
(x - µ)

��

= (2p)

-d/2
✓

∂

∂S
det(S)

-1/2
◆

exp

-

1
2
(x - µ)

TS-1
(x - µ)

�

+ (2p)

-d/2 det(S)

-1/2
✓

∂

∂S
exp


-

1
2
(x - µ)

TS-1
(x - µ)

�◆

(ii)
= (2p)

-d/2
✓
-

1
2

det(S)

-3/2 det(S)S-T
◆

exp

-

1
2
(x - µ)

TS-1
(x - µ)

�

+ (2p)

-d/2 det(S)

-1/2
✓

∂

∂S
exp


-

1
2
(x - µ)

TS-1
(x - µ)

�◆

= -
1
2

f (x|µ, S)S-T

+ (2p)

-d/2 det(S)

-1/2
✓

∂

∂S
exp


-

1
2
(x - µ)

TS-1
(x - µ)

�◆

(iii)
= -

1
2

f (x|µ, S)S-T
+

1
2

f (x|µ, S)S-T
(x - µ)(x - µ)

TS-T

7.3.2 Derivatives for `2 minimization in (7.9)

The loss function (7.9) consists of the `2 norms of GMMs. We complete the
derivation of (7.9) with the partial derivatives of cj,i

G,F := N (µ
j
G |µ

i
F̄ , Si

G +

Si
F ) w.r.t µG and SG . The derivatives are obtained by derivatives of

Gaussian in (7.15) and (7.16).
The derivatives w.r.t µ

j
G are given by

∂cj,i
G,F̄

∂µ
j
G

= -cj,i
G,F̄ (Sj

G + Si
F̄ )

-1
(µ

j
G - µi

F̄ ),

∂cj,j 0
G,G

∂µ
j
G

= -cj,j 0
G,G(Sj

G + Sj 0
G)

-1
(µ

j
G - µ

j 0
G).

(7.16)
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The derivatives w.r.t Sj
G are given by

∂cj,i
G,F̄

∂Sj
G

= -
1
2

cj,i
G,F̄ (Sj

G + Si
F̄ )

-T
[I - (µ

j
G - µi

F̄ )(µ
j
G - µi

F̄ )

T
(Sj

G + Si
F̄ )

-T
]

∂cj,j 0
G,G

∂Sj
G

= -
1
2

cj,j 0
G,G(Sj

G + Sj 0
G)

-T
[I - (µ

j
G - µ

j 0
G)(µ

j
G - µ

j 0
G)

T
(Sj

G + Sj 0
G)

-T
].

(7.17)

When j = j 0, it is simplified as

∂cj,j
G,G

∂Sj
G

= -2-(d/2+1)cj,j
G,G(Sj

G)

-T
= -

1
2
N (µ

j
G |µ

j
G , 2Sj

G)(Sj
G)

-1. (7.18)

7.4 Identifying a path in G(K) between Fstart

and Fend w.r.t `2 distance

A special case for the interpolation scheme above is when we want to
interpolate between just two K component GMMs, Fstart and Fend, and
recover a shortest path {Gt}

T
t=1 that does not leave the feasibility region,

G(K) and G0 = Fstart and GT+1 = Fend. As can be expected, one can
identify such a path with a minor change of the algorithm described
above. Then, our objective function is,

min
{Gt}Tt=1

TX

t=0

kGt - Gt+1k2
2, s.t. Gt 2 G(K) 8t. (7.19)

Letting dT :=
PT

t=0 kG⇤
t - G⇤

t+1k2, we have limT! dT = d(Fstart, Fend),
the geodesic distance between Fstart and Fend in G(K). Given two GMMs,
Fstart and Fend, we seek to find the shortest path which does not leave
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the feasibility region, G(K). The result from such a procedure will directly
provide a potentially more meaningful distance measure between two
samples in G(K).

To do so, we will approximate it by a set of smaller paths along other
GMMs with K components. By minimizing the sum of the squared dis-
tances between adjacent GMMs, we will approximate the shortest path.
It is similar to the cumulative chordal distance (Ahlberg et al., 2016), ap-
proximation on the sphere, see Figure 7.1. In the limit, this will be the true
shortest length.

On a Riemannian manifold M with metric tensor g, the length of a
continuously differentiable curve g : [a, b]!M is defined by

L(g) =

Z b

a

q
g

g(t)(ġ(t), ġ(t)) dt, (7.20)

where L is its length and g
g(t)(ġ(t), ġ(t)) is the inner product of ġ(t) at

g(t) w.r.t g. When g is the shortest geodesic curve, it is called geodesic
distance.

G0 G
T

d1

d4

d2

d

M = G(K)

Figure 7.1: `2 distance between G0 and GT is d1. The geodesic distance between two
GMMs can be approximated by the sum of `2 distances between many intermediate
K-GMMs. It converges to the real path length as the number of chords t increases. Here
d1  d2  ...  d, where d is the true distance.
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Given g, the arc length L of g can be approximated by

L(C) = sup
a=t0<t1<···<tn=b

n-1X

i=0

d(g(ti), g(ti+1)), (7.21)

where the supremum is taken over all possible partitions of [a, b] and n is
unbounded. But we do not know the curve g. To seek the g on G(K), we
adopt the definition of the geodesic curve. A geodesic is a locally shortest
metric curve (Lee, 2006; Deza and Deza, 2009). So we can approximate
the geodesic with discretized line segments that minimizes the sum of
squared distances of each chordal segment.

Let G0 (GT+1 resp.) be Gstart (Gend resp.). Then, our objective function
is given as

min L := min
{µt,pt,St}Tt=1

TX

t=0

kGt - Gt+1k2
2, (7.22)

using the shorthand notations pt := {p
j
t}

K
j=1, µt := {µ

j
t}

K
j=1 and St :=

{S
j
t}

K
j=1. Again, to compute the gradient, we take the derivative with

respect to the relevant variables which include the component weights,
means and their covariances. Similarly, define cj,j 0

t,t 0 := N (µ
j
t|µ

j 0
t 0 , Sj

t + Sj 0
t 0).

The derivatives of (7.21) w.r.t p

j
t, µ

j
t, Sj

t are related to only the following
terms

∂L
∂µt

:=
∂

∂µt

⇥kGt-1 - Gtk2
2 + kGt - Gt+1k2

2
⇤

=

∂

∂µt

⇥kGt-1k2
2 - 2hGt-1, Gti2 + 2kGtk2

2 - 2hGt, Gt+1i2 + kGt+1k2
2
⇤

=

∂

∂µt

⇥
2kGtk2

2 - 2hGt, Gt+1i2 - 2hGt, Gt-1i2
⇤

.

(7.23)
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Recall that the inner product of two GMMs Gt and Gt 0 in G(K) is given by

hGt, Gt 0 i2 =

KX

j=1

KX

j 0=1

p

j
tp

j 0
t 0N (µ

j
t|µ

j 0
t 0 , Sj

t + Sj 0
t 0) =

KX

j=1

KX

j 0=1

p

j
tp

j 0
t 0 c

j,j 0
t,t 0 (7.24)

Then the derivatives w.r.t p

j
t, µ

j
t, Sj

t can be written with cj,j 0
t,t 0 . The derivative

w.r.t p

j
t is given as

∂L
∂p

j
t

= 4
KX

j 0
p

j 0
t cj,j 0

t,t - 2
KX

j 0
p

j 0
i+1cj,j 0

t,t+1 - 2
KX

j 0
p

j 0
i-1cj,j 0

t,t-1 (7.25)

The derivative w.r.t µ

j
t is

∂L
∂µ

j
t

= 4
KX

j 0 6=j

p

j
tp

j 0
t

∂

∂µ

j
t

cj,j 0
t,t - 2

KX

j 0=1

p

j
tp

j 0
t+1

∂

∂µ

j
t

cj,j 0
t,t+1 - 2

KX

j 0=1

p

j
tp

j 0
i-1

∂

∂µ

j
t

cj,j 0
t,t-1 (7.26)

The derivative w.r.t Sj
t

∂L
∂Sj

t

= 2p

j
tp

j
t

∂

∂Sj
t

cj,j
t,t + 4

KX

j 0 6=j

p

j
tp

j 0
t

∂

∂Sj
t

cj,j 0
t,t - 2

KX

j 0=1

p

j
tp

j 0
t+1

∂

∂Sj
t

cj,j 0
t,t+1 - 2

KX

j 0=1

p

j
tp

j 0
t-1

∂

∂Sj
t

cj,j 0
t,t-1

(7.27)

Interpolation path between two 2-GMMs in G(2) is shown in Fig. 7.2 as
a demonstration, see Fig. (7.22).

7.5 An EM algorithm for KL-divergence

Our initial experiments reveal that minimizing `2-distance via gradient
descent with the constraint of staying on the G(K) manifold is technically
correct but prone to instability due to many local optima. For example,
the gradient descent method works well when the covariance matrices
are diagonally dominant (isotropic) but tends to yield unsatisfactory re-
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Figure 7.2: Interpolation path along 2-GMM manifold showing 10 steps from
top (GMM0) to bottom (GMM11).
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sults when the estimated covariances matrices need to be projected back
to satisfy the “⌫ 0” constraint. To address this issue, we describe an
alternate algorithm that avoids such a projection step. To motivate this
setup, observe that in the preceding section, the overall interpolation task
comprised of modules/steps for finding the closest K-GMM to a given L
component GMM, see (7.10). So, any potential solution to the foregoing
numerical issue must be addressed at the level of this module.

Consider a very special case of the module above where L is arbitrary
but K = 1. Interestingly, it turns out that if we use KL-divergence instead
of the `2-distance between GMMs, Lemma 7.2 suggests that that there is a
closed form solution which involves no numerical difficulties. Notice that
no such result exists for `2-distance. So, if we can extend this result to the
case where K > 1, we can efficiently solve the problem while ensuring that
the procedure is numerically stable. In fact, this idea will form the core of
our proposal described next where we first decouple the components in
the “E” step and use a closed form solution for each component in the “M”
step. In fact, our scheme optimizes the KL-divergence which is equivalent
to cross-entropy in this case.

The interpolation of multiple GMMs is obtained by minimizing,

G⇤
= arg min

G2G(K)

NX

n=1

D(Fn||G). (7.28)

We observe that the expression in (7.28) is equivalent to,

arg min
G2G(K)

D(F̄ ||G)

= arg min
G2G(K)

Z
F̄ (x) log

F̄ (x)

G(x)

dx

= arg min
G2G(K)

-

Z
F̄ (x) log G(x)dx.

(7.29)
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Letting G(x) =

PK
j=1 wjgj(x), the objective function is given by

G⇤
= arg max

G2G(K)

Z
F̄ (x) log

KX

j=1

wjgj(x)dx,

= arg max
g2G(K)

EF̄ (x)

[log
KX

j=1

wjgj(x)].

(7.30)

We note that this formulation can also be interpreted as finding the best
code book in G(K), namely, G⇤

(x) to represent F̄ (x). The E and M steps
are presented in Fig. 11. Detailed derivations are provided in Section
7.5.4.

Lemma 7.2. Given GMM f (x) :=
PL

i pi fi(x), where fi(x) is a Gaussian
distribution, the minimum cross entropy / KL-divergence between f (x) and an
unknown single Gaussian g := N (x; µ, S), i.e.,

(µ

⇤, S⇤
) = arg min

µ,S
H( f (x), N (x; µ, S)), (7.31)

is obtained by µ

⇤
= E f (x)

[x] =

PNK
i=1 p

0
i µi, and S⇤

= E f (x)

[(x - µ

⇤
)(x -

µ

⇤
)

T
] =

PNK
i=1 p

0
i Si +

PNK
i=1 p

0
i (µi - µj)(µi - µj)

T, where p

0
i =

pigijP
i pigij

, for
fixed j.

The closed form of (µ

⇤, S⇤
) is used in (7.38) and (7.39).

Proof. We can easily observe that

arg min
g

D( f ||g) = arg min
g

H( f , g), (7.32)

since f is fixed. Recall that cross entropy is given by

H( f , g) := Ef [- log g(x)] = -

Z
f (x) log g(x)dx. (7.33)
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Take the derivative of objective function H( f , g) w.r.t µ and set it to
zero. Then we get,

-
∂

∂µ

Z
f (x) log g(x)dx = k

∂

∂µ

Z
f (x)(x - µ)

TS-1
(x - µ)dx

= k

0
Z

f (x)S-1
(x - µ)dx = c 0S-1

(

Z
f (x)xdx - µ) = 0

, µ =

Z
f (x)xdx,

where k and k

0 are some constants. Therefore µ

⇤
=

R
f (x)xdx, since S is

invertible. Now take the derivative of objective function H( f , g) w.r.t. S
we get,

-
∂

∂S

Z
f (x)

 
log

 
2p

-d/2

det(S)

1/2

!
-

1
2
(x - µ)

TS-1
(x - µ)

!
dx

= c
Z

f (x)

∂

∂S

⇣
log det(S) + (x - µ)

TS-1
(x - µ)

⌘
dx

(iii & iv)

= c
Z

f (x)

⇣
S-T - S-T

(x - µ)(x - µ)

TS-T
⌘

dx, * X � 0.

Set the derivative to zero we get,

S-T
=

Z
S-T

(x - µ)

T
(x - µ)S-T f (x)dx

= S-T
Z
(x - µ)

T
(x - µ) f (x)dxS-T.

(7.34)

Then,

S =

Z
(x - µ)

T
(x - µ) f (x)dx, * S = ST. (7.35)

To perform the EM algorithm in Alg. 11, we need each module in a
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Algorithm 11 EM algorithm minimizing cross entropy.

E-step: Let Q = {wj, µj, Sj}
K
j=1, F̄ (x) =

PNK
i=1 pi fi(x) and Xi be a set of

points with density function fi(x). Then we have,

gij := p(zi = j|Xi, Q) =

wj exp
⇥
-H( fi, gj)

⇤

PK
j 0 wj 0 exp[-H( fi, gj 0)]

(7.36)

Note that gij is the likelihood that the ith component of F̄ corresponds to
jth in G H( fi, gj) is analytically obtained as,

1
2
{k log 2p + log |Sj|+ tr[S-1

j Si] + (µi - µj)
TS-1

j (µi - µj)}

M-step:

wj =

PNK
i=1 pigij

PK
j 0=1
PNK

i 0=1 pi 0gi 0 j 0
(7.37)

µj = EF̄ 0
(x)

[x] =

NKX

i=1

p

0
i µi (7.38)

Sj = EF̄ 0
(x)

[(x - µj)(x - µj)
T
] (7.39)

=

NKX

i=1

p

0
i Si +

NKX

i=1

p

0
i (µi - µj)(µi - µj)

T (7.40)

where F̄ 0
=

PNK
i=1 p

0
i fi(x), and p

0
i =

pigijP
i pigij

, for fixed j.

closed form. We first introduce how to calculate the cross entropy between
two Gaussian distributions used in (7.36) for the E-step. And then we
derive the closed forms for the mean and variance of a GMM used in
(7.38) and (7.39) for the M-step.
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7.5.1 Cross entropy between two Gaussians

The cross entropy used in (7.36) is the optimal code length given data p
and codebook q, which is as

H(p, q) := Ep[- log q(x)] = -

Z
p(x) log q(x)dx. (7.41)

The cross entropy between two Gaussian distributions has an analytic
form. Let Np and Nq be multivariate Gaussian distributions with (µp, Sp)

and (µq, Sq) respectively. The cross entropy H(p, q) is given as

Ep[- log q(x)] =

1
2

⌦
k log 2p + log |Sq|+ tr[S-1

q Sp]

+(µp - µq)
TS-1

q (µp - µq)
↵ (7.42)

Proof. First, the Gaussian density function is given by

q(x) =

1q
(2p)

k|Sq|
exp

✓
-

1
2
(x - µq)

TS-1
q (x - µq)

◆
(7.43)

Let us take the log of q(x).

log q(x) = -
k
2

log 2p -
1
2

log |Sq|-
1
2
(x - µq)

TS-1
q (x - µq) (7.44)

Then, the cross entropy H(p, q) is
Z
-p(x) log q(x)dx =

k
2

log 2p +

1
2

log |Sq|

+

1
2
[µ

T
q S-1

q µq - 2µ

T
p S-1

q µq +

Z
xTS-1

q xp(x)dx]

(7.45)

We know that tr(·) and E[·] are linear operators, so tr � E = E � tr. Using
this fact, we have
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Z
xTS-1

q xp(x)dx = Ep[xTS-1
q x] = Ep[tr[xTS-1

q x]]

= Ep[tr[S-1
q xxT

]] = tr[Ep[S-1
q xxT

]]

= tr[S-1
q Ep[xxT

]] = tr[S-1
q (Sp + µpµ

T
p )]

= tr[S-1
q Sp] + µpS-1

q µ

T
p

(7.46)

Replacing
R

xTS-1
q xp(x)dx in (7.45) with tr[S-1

q Sp] + µpS-1
q µ

T
p completes

the proof.

7.5.2 Mean and covariance of samples from a GMM

Let f 0
(x) =

PL
i=1 p

0
i fi(x) be a GMM, namely, each fi(x; µi, Si) is a Gaus-

sian distribution and
PL

i=1 p

0
i = 1. We provide the derivation of the mean

and covariance of GMM f 0
(x) used in (7.38) and (7.39).

The mean used in (7.38) is obtained by

E f 0
(x)

[x] =

Z
x f 0

(x)dx =

Z

x
x

LX

i=1

p

0
i fi(x)dx

=

LX

i=1

p

0
i

Z

x
x fi(x)dx =

LX

i=1

p

0
i µi =: µ̄

(7.47)
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Now, the covariance used in (7.39) is obtained by

E f 0
(x)

[(x - µ̄)(x - µ̄)

T
] =

Z
(x - µ̄)(x - µ̄)

T f 0
(x)dx

=

Z

x
(x - µ̄)(x - µ̄)

T
LX

i=1

p

0
i fi(x)dx

=

LX

i=1

p

0
i

Z

x
(x - µ̄)(x - µ̄)

T fi(x)dx

=

 LX

i=1

p

0
i

Z

x
xxT fi(x)dx - 2p

0
i

Z
xµ̄

T fi(x)dx

!
+ µ̄µ̄

T

=

 LX

i=1

p

0
i

Z

x
xxT fi(x)dx

!
- µ̄µ̄

T

=

 LX

i=1

p

0
i [Si + µiµ

T
i ]

!
- µ̄µ̄

T

=

LX

i=1

p

0
i Si +

LX

i=1

p

0
i (µi - µ̄)(µi - µ̄)

T

(7.48)

Remarks: our proposed method can be interpreted as a functional
clustering algorithm for a set of Gaussian distributions { fi}

L
=1 whereas the

classical GMM clusters a set of points {xi}
L
=1. In our case, gij represents

the soft assignment of fi in F̄ to gj in G. M-step can be interpreted as
searching parameters for one representative Gaussian gj 2 G (roughly
speaking, for each cluster a mean function (centroid) is restricted to a
Gaussian) for a set of assigned Gaussians { fi}

L
i=1 2 F̄ with {gij}

L
i=1.

7.5.3 Comparison with EM for the classical GMM

EM-algorithm w.r.t. cross entropy. Similar to the EM-algorithm for clas-
sical GMM, this proposed method comprises of two steps: E-step and
M-step. Our result shows that M-step maximizes the negative cross entropy
between reweighted data GMM

PL
i=1 p

0 fi and a Gaussian component
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in a model GMM gj as the classical GMM increases the likelihood of
reweighted samples. Let us compare each step of classical GMM and our
proposed method.

E-step in classical GMM is given by

gij := p(zi = j|xi, q) =

p(zi = j|q)g(xi|zi = j, q)

PK
j 0 p(zi = j 0|q)g(xi|zi = j 0, q)

(7.49)

where i is the index for instance and j is the index for component in g
(K-GMM).

E-step with cross entropy, we estimate the responsibilities between fi

and gj rather than a point xi and gj in the classical GMM. Let Xi be a set
of points which belong to set i with density function fi(x). j is defined as
above. Then, the responsibilities gij of fi to gj is given by

gij := p(zi = j|Xi, q)

=

p(zi = j|q)p(Xi|zi = j, q)

PK
j 0=1 p(zi = j 0|q)p(Xi|zi = j 0, q)

=

p(zi = j|q)

Q
x2Xi

g(x|zi = j, q)

fi(x)

PK
j 0 p(zi = j 0|q)

Q
x2Xi

p(x|zi = j 0, q)

fi(x)

=

p(zi = j|q) exp
hP

x2Xi
fi(x) log g(x|zi = j, q)

i

PK
j 0 p(zi = j 0|q) exp

hP
x2Xi

fi(x) log g(x|zi = j 0, q)

i

=

p(zi = j|q) exp
⇥R

x fi(x) log g(x|zi = j, q)dx
⇤

PK
j 0 p(zi = j 0|q) exp

⇥R
x fi(x) log g(x|zi = j 0, q)dx

⇤

=

wj exp
⇥R

x fi(x) log gj(x|q)dx
⇤

PK
j 0 wj 0 exp

hR
x fi(x) log gj 0(x|q)dx

i

=

wj exp
⇥
-H( fi, gj)

⇤

PK
j 0 wj 0 exp[-H( fi, gj 0)]

(7.50)
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Note that gij denotes the membership of the i-th Gaussian distribution in
l-GMM to the j-th component in k-GMM. H( fi, gj) is analytically obtained
as (7.42).

M-step in classical GMM is,

wj =

1
L

X

i

gij

µj =

PL
i=1 gijxi
PL

i 0=1 gi 0 j

Sj =

PL
i=1 gij(xi - µj)(xi - µj)

T

PL
i 0=1 gi 0 j

(7.51)

M-step with cross entropy is,

wj =

LX

i=1

pigij, since
LX

i=1

pi = 1

µj = E f 0(x)[x] =

LX

i=1

p

0
i µi

Sj = E f 0(x)[(x - µj)(x - µj)
T
]

=

X

i

p

0
i Si +

X

i

p

0
i (µi - µj)(µi - µj)

T

(7.52)

where f 0
=

PL
i=1 p

0
i fi(x), and p

0
i =

pigijP
i pigij

, for fixed j.
M step in classical GMM can be interpreted as expectations: x and

(x - µ)(x - µ)

T over a discrete probability distribution {gij/gj}
L
i=1, where

gj :=
PL

i=1 gij. Similarly, M-step in our proposed method also can be inter-
preted as expectations over a reweighted GMM f 0, which is a continuous
probability distribution.



157

7.5.4 Detailed derivation of EM algorithm

In this section, we provide full derivation of EM algorithm for our method.
Let f =

P
i pi fi and g =

P
j pj f j be GMMs. Our EM algorithm maximizes

the negative cross entropy -H( f , g) :=
R

f (x) log g(x). First, we derive
the Q function from the objective function.

arg max
g2G(K)

Z LX

i=1

pi fi(x) log
KX

j=1

wjgj(x)dx

= arg max
g2G(K)

Z LX

i=1

pi fi(x) log
KX

j=1

P(zi = j|Xi, q)

wjgj(x)

P(zi = j|Xi, q)

dx

� arg max
g2G(K)

Z LX

i=1

KX

j=1

pi fi(x)P(zi = j|Xi, q) log
wjgj(x)

P(zi = j|Xi, q)

dx

= arg max
g2G(K)

Z LX

i=1

KX

j=1

pi fi(x)P(zi = j|Xi, q) log wjgj(x)dx

-

Z LX

i=1

KX

j=1

pi fi(x)P(zi = j|Xi, q) log P(zi = j|Xi, q)dx

(7.53)

The inequality above is obtained by Jensen’s inequality. Now, we define
Q(q|qn) with the first term of the last equation as

Q(q|qn) :=
Z LX

i=1

KX

j=1

pi fi(x)P(zi = j|Xi, qn) log wjgj(x)dx. (7.54)

Once we define Q(q|qn), we are ready to derive EM algorithm. First, E
step is merely to estimate P(zi = j|Xi, q) =: gij by (7.50). Second, we
derive M step. To do so, we will maximize Q(q|qn) w.r.t. {wj, µj, Sj}

K
j=1.
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The Q function can be rewritten as

Q(q|qn) =

Z LX

i=1

KX

j=1

pi fi(x)gij log gj(x)dx +

LX

i=1

KX

j=1

pigij log wj. (7.55)

To maximize over µj and Sj, one needs to maximize the following.

argmax
{µj}

K
j=1,{Sj}

K
j=1

Q(q|qn) = argmax
{µj}

K
j=1,{Sj}

K
j=1

Z LX

i=1

KX

j=1

pigij fi(x) log gj(x)dx (7.56)

Since, given gij, one can decompose the maximization into for each com-
ponent j, one has

argmax
µj,Sj

Z LX

i=1

pigij fi(x) log gj(x)dx = argmax
µj,Sj

Z PL
i=1 pigij

PL
i 0=1 pi 0gi 0 j

fi(x) log gj(x)dx

(7.57)

since dividing the objective function by a constant doesn’t change the
problem. Now, let p

0
i := pigijPL

i 0=1 pi 0 gi 0 j
. Then the maximization over µj and

Sj reduces to Lemma 7.2 that maximizes the negative entropy between a
reweighted GMM f 0

(x) :=
PL

i=1 p

0
i fi(x) and a Gaussian with µj and Sj.

The optimal solution µ

⇤
j , S⇤

j is given in (7.52).
To maximize over wj, one needs to maximize Q(q|qn) with a constraint

PK
j=1 wj = 1. So the objective function with a Lagrange multiplier is

defined by L := Q(q|qn) + l(

PK
j=1 wj - 1). Now, take the derivative of L

w.r.t wj.

∂L
∂wj

=

∂

∂wj

LX

i=1

pigij log wj + l (7.58)
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Let’s set the derivative above to zero. Then, one gets

wj = -

PL
i=1 pigij

l

. (7.59)

The primal feasibility
PK

j=1 wj = 1 and the result above yields l =

-
PK

j=1
PL

i=1 pigij. Hence the optimal weight is given by

w⇤
j =

PL
i=1 pigij

PK
j 0=1
PL

i 0=1 pi 0gi 0 j 0
. (7.60)

This completes the derivation of our EM algorithm. For more details on
the theory of EM algorithms, we refer the reader to (Mak et al., 2004).

7.5.5 Functional clustering and construction of modified
EM for EAPs

In the case of EAPs (more details in section 7.6), the GMMs have a special
property that all µjs are zero. It is easy to verify that if the input EAPs are
comprised of zero mean Gaussians, the algorithm in Fig. 11 does yield a
valid EAP (k-GMM with zero means). However, our goal is not to merely
obtain ‘valid’ EAPs but to minimize the potential change in anisotropy
(of the EAPs) using our interpolation. EAPs (with zero mean Gaussians)
imply that their components overlap significantly at their modes. We
found that their differences are much less accurately captured by cross-
entropy. In practice, this may lead the algorithm towards inaccurately
big ellipsoids since it averages different Gaussians (in the EAPs) with
relatively similar responsibility gij.

This problem is directly addressed by our modified EM algorithm in
Fig 12. First, we use the `2 distance for the E-step to capture the differences.
In addition, by introducing the simplest covariance function Cj for each
component, we allow each component to have different densities in the
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Algorithm 12 Modified EM for operations on EAPs.
E-step: Estimate the responsibilities of data PDFs to components of our
model,

gij =

wjC-1
j exp

✓
- 1

2C2
j
k fi - gjk2

2

◆

PK
k=1 wkC-1

k exp
✓
- 1

2C2
k
k fi - gkk2

2

◆ (7.61)

M-step: Maximize cross entropy given assignments over model param-
eters (a weight wj, mean function N (µj, Sj) and a covariance function
Cj).

C2
j =

NKX

i=1

gijpik fi - gjk2
2/

NKX

i 0=1

gi 0 jpi 0 (7.62)

wj and µj, Sj are updated using Eqs. (7.37)-(7.39).

functional space. In other words, even though some Gaussians within
an EAP may overlap substantially, if Cj is small enough, our algorithm
is still able to distinguish them nicely and assign significantly different
responsibility. This makes our approach very robust.

This modified algorithm, which estimates four parameters for each
component (wj, µj, Sj, Cj), drives the EAP experiments presented in this
chapter. Note that as a by-product of EM algorithms, all our EM-algorithms
described in Alg. 11 and 12 cluster the weighted component Gaussian
distributions fi of F̄ in the functional space.

7.6 Experiments

In this section, we introduce the diffusion PDF of interest (EAP) and
demonstrate the results of various operations such as upsampling resolu-
tion, denoising, spatial transformations on the EAP field where the basic
underlying module is interpolation. We also show experiments showing
that interpolation on the K-GMM manifold provides benefits in terms
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of controlling the number of components when one needs to perform
repeated interpolations. Controlling the number of components has a
direct impact on our ability to resolve the peaks in the EAP profiles which
is crucial in generating tractography, a key component in deriving brain
connectivity information from such imaging data (Bastiani et al., 2012).

Ensemble average propagator (EAP). White matter architecture can
be probed by analyzing thermal diffusivity profiles of water molecules
in the brain. Thermal diffusion of water causes signal decay in the mea-
sured MR signal. The decay, under certain assumptions of the MR pulse
sequencing used to acquire the signal satisfies the following relationship

E(qu) =

Z

R3
P(Rr)exp(2piqRuTr)dRr, (7.63)

where u, r are unit vectors in R3, q is proportional to the amplitude of the
magnetic field gradient along u and P(Rr) is called the ensemble average
propagator (EAP) describing the probability of diffusion displacements
of water molecules at radius R (Stejskal and Tanner, 1965; Callaghan,
1991). Assuming antipodal (radial) symmetries for the signal decay (i.e.,
E(qu) = E(-qu)) and EAP (P(Rr) = P(-Rr)), the following relationship
holds (Cheng et al., 2010)

P(Rr) =

Z

R3
E(qu)cos(2pqRuTr)dqu. (7.64)

The EAP is a PDF whose domain is R3. In our experiments, we use a
K-GMM representation of the EAP (Jian and Vemuri, 2007b). However,
we would like to note that other tensor distribution models may be used
to tackle fiber crossings without the use of finite mixture of Gaussians
(Jian et al., 2007; Jian and Vemuri, 2007a,b).

Upsampling and denoising. Signal to noise ratio (SNR) of the MR sig-
nal is proportional to the volume size of a voxel. Diffusion weighted MRI
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(a) (b) (c) (d) (e)

Figure 7.3: (a) Input data with just four voxels in the foreground, (a)-(e) are all
at the same scale. The color mapping scheme used to visualize the profile at each
voxel is shown in the box overlaid on the background voxels which are set to
have isotropic diffusivity. (b) Result of upsampling with bi-linear interpolation.
(c) Noisy EAPs. (d) Gaussian filtering. (e) Anisotropic filtering.

faces challenges in terms of achieving high SNR due to rapid acquisitions
and hence the voxel resolution acquired on typical scanners is usually 8
mm3. For applications like tractography, recent investigations recommend
a resolution of 1.95313 mm3(Setsompop et al., 2013). But acquiring such a
scan requires drastic improvements to the scanner gradient capabilities
and adds significant scanning time (⇠55 mins. vs. ⇠10 mins.) (Setsompop
et al., 2013). Hence providing an upsampling algorithm and a denoising
modules that can reconstruct the EAPs respecting its native geometry
can be practically very useful. We simulate EAP profiles at R = 15µm in
voxels at the four corners of a 6 ⇥ 6 grid as shown in Fig. 7.3(a) and fill in
such severely undersampled data in the remainder of the grid with our
algorithm. We perform a simple bi-linear interpolation to fill in the grid
as shown in Fig. 7.3(b) using the operations introduced in Section 7.3. We
can observe that the diffusion PDFs are smoothly interpolated respecting
the geometry of the crossing fibers. To demonstrate the denoising capa-
bilities of our algorithm we add Wishart noise to the EAPs (Fig. 7.3(c)).
The denoised EAPs using Gaussian filtering and anisotropic filtering are
shown in Figs. 7.3(d) and (e).

Since EAP profiles are affected by the architecture of the white mat-
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(a) (b) (c) (d)

Figure 7.4: (a) Simulated EAP profiles. (b) EAP profiles with added Wishart
noise. (c) Gaussian filtering. (d) Anisotropic filtering.

ter pathways we additionally simulate EAP data to reflect crossing and
curving pathways (Cheng et al., 2010) and demonstrate Gaussian and
anisotropic filtering as shown in Fig. 7.4(a). We can observe that the
anisotropic filtering does near perfect recovery of the underlying sig-
nal. The red boxes in (c) highlight the differences between Gaussian and
anisotropic filtering.

Spatial transformations. One of the key steps in statistical analysis
of neuroimaging data is to spatially normalize the images from different
subjects i.e., transform/warp each of the individual subject’s image data
onto a group-level standard grid. Although spatial transformations of
diffusion tensor images (single component GMMs) is widely studied and
used in clinical studies (Zhang et al., 2006b), currently there are no widely
available tools for advanced diffusion PDFs such as EAPs. Note that there
are Riemmannian interpolation schemes available (Goh et al., 2009; Cheng
et al., 2009, 2011) in the literature but not specifically for K-GMMs. Using
our algorithm, we rotate two EAP fields by 30� and also apply affine
transformations. The results are shown in Fig. 7.5. When performing
non-orthonormal transformations on the EAP fields, one needs to extract
the rotation transformation to reorient the profiles. To do so, we use the
finite strain method (Alexander et al., 2001). We observe that even in cases
of really complex architecture our interpolation and reorientation preserve



164

Figure 7.5: Top row: Rotated EAP profiles. Bottom row: Results of affine
transformation of the EAP fields.

the organizational features (crossing and circular nature of the profiles) of
the profiles. The shearing effects where the crossing fiber region stretches
increasing the number of crossing fibers and the circular organization
becomes elliptical.

Peak preserving complexity reduction. In this experiment, we demon-
strate that model complexity can interfere with simple peak finding al-
gorithms and hence it is advantageous to operate on a fixed K-GMM
manifold. The error in peak detection is computed as follows,

Let K⇤ be the true number of peaks in the simulated EAP field. Then,
the error at each voxel in an estimated/interpolated EAP field is measured



165

Crossing

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030
Noisy data

Projection
Curving and crossing

0 20 40 60 80 100

0.00

0.01

0.02

0.03 CrossingCrossing

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

L2 AF

K-GMM AF
Curving and crossing

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

(a) (b) (c) (d)

Figure 7.6: The distributions of angular deviations of the peaks. Comparing
projected and noisy data in (a) crossing fiber phantom, and (b) curving and
crossing phantom. Comparing anisotropic filtering with K-GMM (ours) and
`2 interpolation in (c) crossing fiber phantom, and (d) curving and crossing
phantom.

by

e = min
P

K⇤X

i=1

cos-1 |VT
i UP(i)|, (7.65)

where Vi and Ui are eigen vectors of the K⇤ largest weight components of
ground truth and estimated EAP, respectively. P(i) is the best permuta-
tion which has the minimum error, i.e., when K⇤

= 2, e is the minimum
of angular errors between {V1, V2} and {U1, U2} with all possible permu-
tations. Hence the range of e in each voxel is [0, K⇤ ⇥ 90�

]. We first add
Wishart noise to the numerically simulated crossing and curving EAP
profiles (see Fig. 7.5). Figs. 7.6(a) and (b) show the deviations of the peaks
detected by projecting (without any filtering) from G(10) to G(2) the noisy
data for crossing and curving phantoms respectively. The distribution
corresponds to errors in all voxels in an image. As we can see, the errors
are reduced just by reducing the number of components. Figs. 7.6(c)
and (d) show the distributions of the angular deviations for crossing and
curving after anisotropic filtering with K-GMM and `2 method. We can
observe that the K-GMM method significantly outperforms the `2 method.
The K-GMM method deviates on average about 10� while the errors with
`2 are spread further especially in crossing fiber regions (i.e. e > 90�).
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7.7 Summary

This chapter describes a numerically robust scheme for performing inter-
polation on the manifold of K component GMMs, where few solutions are
available in the literature today. Such operations are needed to perform
theoretically sound processing of a field of EAPs, fundamental objects
in diffusion weighted magnetic resonance imaging. We first derive a
gradient descent scheme and then use those ideas towards an efficient
and numerically stable EM style method. The algorithm is general and
applicable to other situations where interpolation is needed for objects
such as functions, probability distributions and so on (though for some
special cases, more specialized algorithms are known). Separately, notice
that operating directly on the functional space of Gaussians (and their
mixtures) suggested insights that were useful in obtaining our numer-
ical procedures. Some of these issues are briefly mentioned in passing
in the chapter (see last paragraphs of Section 7.2 and Section 7.5). We
believe that with the growing interest in using advanced image analysis
and statistical techniques for analyzing and making sense of rich datasets
being collected worldwide (e.g., the Human Connectome project), algo-
rithms such as the one proposed here will be valuable in ensuring that the
underlying processing remains faithful to the geometry/structure of the
data. Doing so will not only improve the statistical analysis but put us in
the best position to extract scientifically interesting hypotheses from such
images. Code is available online 1.

1https://github.com/MLman/kgmm_interpolation

https://github.com/MLman/kgmm_interpolation
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8 DISCUSSION AND FUTURE DIRECTIONS

This chapter summarizes the main themes and contributions of this thesis
and discusses future directions.

8.1 Main ideas and contributions

The main motivation of this thesis is to develop statistical machine learn-
ing algorithms for structured data motivated by applications in computer
vision and neuroimaging. The proposed methods expand the operating
range of Euclidean multivariate statistics to more general nonlinear spaces
such as Riemannian manifolds and a structured functional space. Specifi-
cally, when the data space is known a priori, we studied how to exploit
the geometry of data space. Towards new learning models that respect
the geometry of data space and enable more statistically powerful and
accurate inference. The main contributions of this thesis are the following:

• We developed Manifold-valued Multivariate General Linear Models
(MMGLMs) for a structured response variable and multiple covari-
ates, i.e., f : Rn !M with efficient estimation schemes (Kim et al.,
2014b). The companion open-source code is available for large scale
analysis on Amazon Web Service1 and HTCondor2.

• We proposed a principled generalization of CCA to the Riemannian
setting that handles multi-modal images with structured measure-
ments and offers feature selection based on correlation (Kim et al.,
2014a, 2016b).

• For more flexible regression models for manifold-valued data, we ex-
tended MMGLMs to the mixtures of MMGLMs on manifolds using

1https://github.com/MLman/MMGLMAWS
2https://github.com/MLman/MMGLM_HTCONDOR

https://github.com/MLman/MMGLMAWS
https://github.com/MLman/MMGLM_HTCONDOR
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a nonparametric Bayesian approach. We studied a new distribution
to sample manifold-valued parameters and extended the Hamilto-
nian Monte Carlo sampling method for manifold-valued parameters.
The model captures more complex patterns than MMGLMs and of-
fers nonparametric clustering based on the relationship between
covariates and response variables (Kim et al., 2015b).

• We studied nonlinear mixed effects models that handles manifold-
valued response variables and analyzed the trajectories of local
morphometric changes of brains longitudinally. The model captures
subject-specific random effects as well as population-level trends. It
offers interpretability of learned models (Kim et al., 2017b).

• We studied how to interpolate Gaussian mixture models, which are
structured probability density functions, restricting the complexity
of resulting interpolants. This framework allows more robust in-
terpolation and compression of GMMs with a far fewer number of
Gaussian components (Kim et al., 2015a).

8.2 Future Directions

Structured data analysis has been shown to be effective and a variety of
theoretical results are emerging under umbrella topics such as Object-
oriented data analysis (OODA) (Marron and Alonso, 2014), manifold statis-
tics and so on. But the impact of these works still remains somewhat
limited due to three main reasons: 1) small-scale experiments, which are
not convincing to practitioners, 2) this line of work focuses on explor-
ing new models and their implementations are limited for a full suite of
downstream analysis, and 3) the lack of standard materials (textbooks)
often makes this field less accessible to newcomers.
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We believe that it is crucial to develop computationally scalable, ef-
ficient and easily deployable frameworks. As a part of this effort, open
source projects such as MANOPT (Boumal et al., 2014) are an excellent
jumping off point. But it is focused on optimization rather than learning
models and it may not be efficient or convenient enough for data scientists
to apply directly to large-scale real world data. On our end, we provided
software for some of the proposed methods in this thesis but they may
need to be improved for large-scale data in some applications.

Beyond efficient estimation of the models or scalable implementation,
additional statistical downstream analysis such as p-value calculations,
group difference, confidence interval, null distributions are still rudi-
mentary and rely on more computationally expensive methods such as
permutation tests. Theoretical development focused on these aspects is
important to understand the models and computational gain from such
developments is likely to be significant. Developing a full suite of machine
learning methods and efficient inference frameworks are sorely needed
to maximize the potential impact of this line of work. Motivated by the
needs of real-world data analysis problems, we plan to devote effort to-
wards both the theory and computational development of this topic, so
that these tools are effective at addressing the types of problems many
vision and machine learning researchers want to solve.

Further, one of the biggest barriers to entry is that no widely used
standard material to start studying manifold frameworks. Unlike other
topics, these concepts are not covered in a standard data science course.
We believe that an online resource/compendium of differential geometry
for machine learning and computer vision aimed at entry-level gradu-
ate students/undergrads including calculus, and numerical optimization
with constraints will be extremely useful and improve the accessibility of
manifold frameworks. One common issue for non-experts is that identify-
ing applications which benefit from manifold frameworks is not always
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easy. While the scope of such frameworks has been growing, it is slow
except some specific fields. We believe that the introductory materials
with examples online will help readers understand the framework and
apply them to their research properly.

Manifold frameworks have advanced the understanding of structured
data and data space. Further, it plays a crucial role to generalize statistical
models for multiple different types of structured data. The methods in this
thesis are also general and applicable to a wide range of manifold-valued
data directly or with minor changes. One natural question is what other
applications may benefit from our proposed methods? We discuss some
open problems directly related to the proposed models.

• Manifold-valued multivariate general linear models in Chapter 3
are applied for structured measurements in brain images. But the
model can be used for any structured data as long as they lie on
Riemannian manifolds. A recent project in collaboration with Ronak
Mehta in progress studies time-varying graphs, which can be on
SPD manifolds, with MMGLMs to identify a subgraph that shows
significant group difference in trends or abnormal trends. Also, this
can be used for shape analysis as a form of geodesic regression for
image time-series (Niethammer et al., 2011).

• Mixed effects models in Chapter 6 were used to enable the longitu-
dinal analysis controlling for subject-specific random effects, since
samples from a particular subject may have its own bias. The same
idea/framework can be used for data integration. Brain images
from multiple sites often have their own site-specific random effects
(Zhou et al., 2017). A collaborative effort of international Alzheimer
disease centers will benefit from mixed effects models in analyzing
neuroimaging data from with a much larger sample size controlling
for heterogeneity of data.



171

• Riemannian Canonical Correlation Analysis in Chapter 4 can be
extended to feature selection while controlling for covariates/nui-
sance variables, namely partial canonical correlation analysis. This
is crucial to remove trivially correlated regions by factors such as
age, and gender for brain changes. Further, feature selection in a
product space, where we handle images with structured measure-
ment at each voxel, should be studied with more general sparsity
regularizations (e.g., group lasso) so that the feature selection algo-
rithms can find sparsity patterns at a voxel-level rather than at a
dimension-level of the product space.

• Cauchy deformation tensors are not limited to brain image analysis.
It can be derived from any registration algorithms with natural
images, shape analysis, medical imaging and so on. One concrete
example is optical flow (Nagaraj et al., 2014). We can derive CDTs
or Jacobian matrices from the optical flow (vector field) between
two consecutive frames and may be able to find the intrinsic lower
dimensional spaces for more robust optical flow estimation and
segmentation using intrinsic metrics.

• We briefly discussed the unbiased estimation of brain structural
change and parallel transport of the morphometric changes to a
template space. If we start from registered images in a template
space, then a large portion of subject-specific structured change
will be lost. Estimating the structural changes within each subject
and bring the trajectories in a common space is preferable. In this
problem, modeling the individual trajectories and transporting them
to a common space are addressed by recent works (Lorenzi et al.,
2011b; Lorenzi and Pennec, 2014) but still various open problems
remain.

• We plan to evaluate the proposed methods on another dataset (or
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diseases) such as Human Connection Projects (HCP), Alzheimer’s
Disease Neuroimaging Initiative (ADNI), and Dominantly Inherited
Alzheimer Network (DIAN). Further, we plan to apply the methods
to other diseases. This will ensure that the reproducibility of the
models with limited samples.

We end this discussion with another interesting line of open problems.
Most manifold frameworks assume that the geometry of data spaces is
known a priori. However, even in known structured data spaces, data
may form a submanifold since data in the Euclidean space can be viewed
as points from a lower dimensional space embedded in the ambient space.
This topic is studied by relatively simple models (Fletcher et al., 2004;
Zhang and Fletcher, 2013; Sommer, 2013; Damon and Marron, 2014; Ha-
randi et al., 2017). Estimations of more general submanifolds needs to be
studied. Further, we know that a Riemannian manifold has three layers
of structure: topological space, differentiable space, and Riemannian met-
ric. Most works including the proposed methods in this thesis use the
well-studied Riemannian metric for a particular smooth manifold. For ex-
ample, when we have unit vectors then we often simply use a unit sphere
with a canonical metric, which is induced by the metric in the ambient
space. But on a smooth manifold, there may be multiple Riemannian
metrics and it will be ideal if this were optimally chosen by the data. A
more challenging problem may be structured data analysis in general
and time-varying spaces beyond manifolds: such spaces may not have
differential structures or well-defined metrics: examples include trees,
graphs, deformable shape spaces, and permutations. These objects are
useful to model pathway connectivity (biology), social networks (social
science), reference networks (library & information), annotations with
hierarchy, permutation space for ranking (recommender system, multi-
label classification), and so on. Also, it is relevant to my work (Kim et al.,
2016c) (but not included in this thesis) for graph structure estimation.
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Often, these structured data (including graphs) lie in time-varying spaces.
Analyzing the structured data in time-varying spaces is useful for many
different fields dealing with longitudinal data. For example, landmark-
based shape analysis on shape manifolds assumes that the number of
landmarks is consistent over time (Kendall, 1984). But this is rarely true
in practice. Longitudinal analysis of time-varying networks is an exciting
area (Ahmed and Xing, 2009; Zhou et al., 2010; Qiu et al., 2016) with broad
cutting applications that are related to the ideas described here. Towards
a deeper understanding of time-varying data spaces, we studied temporal
graphical models where the graph structure varies over time.

Lastly, multi-resolution analysis and deep learning for structured data
are important directions but less explored. Wavelets have been studied
on Riemannian manifolds by (Dahlke, 1994) and specifically harmonic
analysis on symmetric space such as SO(n) and Sn have been studied by
(Antoine and Vandergheynst, 1998; Terras, 2012). The harmonic basis on
Riemannian manifolds allow generalizing tools (or objects) to Riemannian
manifolds, for example, distributions (exponential family) on SO(n) and
Sn (Cohen and Welling, 2015) and deep neural networks (Shaham et al.,
2016) for provable function approximation using deep neural networks
with wavelet for data on Riemannian manifolds. We believe that many
theories from manifold statistics including the proposed methods in this
thesis will be useful to make building blocks of deep neural networks
for structured data. For example, the output layers for manifold-valued
measurements can benefit from MMGLMs in Chapter 3 and deep learning
for correlation analysis, the so-called Deep CCA in (Andrew et al., 2013),
can be generalized for manifold-valued data using the idea of RCCA in
Chapter 4. In this direction, there are recent attempts to incorporate in
deep learning the geometric priors (or geometry of data space) including
a distance metric, and invariance (or equivariance) w.r.t. scale, rotation,
translation and local deformation, e.g., Group Equivariant Convolutional
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Network (Cohen and Welling, 2016) and Invariant Scattering Convolution
Networks (Bruna and Mallat, 2013). These emerging techniques to gener-
alized deep networks for non-Euclidean and structured data are called
geometric deep learning models (Bronstein et al., 2016). Recently, neural
networks and deep learning have been studied on graphs (Bruna et al.,
2013), Riemannian manifolds (Shaham et al., 2016) specifically Deep learn-
ing on SPD manifolds (Huang and Van Gool, 2017) and Grassmannian
manifolds (Huang et al., 2016). Also Geodesic CNN (Masci et al., 2015)
and Anisotropic CNN (Boscaini et al., 2016) have been proposed for mesh
or point cloud. Though Riemannian manifold frameworks have been
studied in the community for decades, these ideas are not well studied
in terms of how to identify the best geometry of given data. Also, the
framework is not suitable for data on mathematically not well-defined
spaces. We believe that its marriage with deep neural networks allows
handling more complex data spaces such as time-varying spaces and
pseudo-Riemannian manifolds.
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A APPENDIX
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A.1 Distributions for manifold-valued
variables

A.1.1 Prior distributions for SPD matrix

Wishart distribution over n ⇥ n SPD X with V a (fixed) positive definite
matrix and d f degrees of freedom.

f (X|V, d f ) =

1

2
n⇥d f

2 |V|
d f
2 Gn(

d f
2 )

|X|
d f-n-1

2 exp
✓
-

1
2

tr(V-1X)

◆

log f (X|V, d f ) = - log Z(V, d f ) +

d f - n - 1
2

log det(X)-
1
2

tr(V-1X)

∂

∂X
log f (X|V, d f ) =

d f - n - 1
2

X-1 -
1
2

V-1

(A.1)

Since X is a symmetric positive definite matrix, we have ∂

∂X log det(X) =

X-1, see A.4.1 in (Boyd and Vandenberghe, 2004). Also we know that
∂

∂X tr(AXT
) = A (Petersen and Pedersen, 2012a). So we can ensure that

the derivative is a symmetric matrix.

Generalized normal distribution over n ⇥ n SPD X with (fixed) mean
positive definite matrix M and s 2 R.

f (X|M, s) =

1
Z(M, s)

exp
✓
-

1
2s

2 d(X, M)

2
◆

log f (X|M, s) = - log Z(s)-
1

2s

2 d(X, M)

2

rX log f (X|V, n) =

Log(X, M)

s

2

(A.2)

The second equality holds since Z is constant w.r.t M on SPD manifolds.
Note that this derivative is in TpM.
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Log normal distribution 1. (definition 3.3.3 in (Schwartzman, 2006)) over
symmetric positive definite matrix X with parameters M 2 sym+

(n)

and covariance S 2 Sym+

(q), where q =

n(n+1)

2 . In other words, Y =

Log(M, X) has symmetric matrix variate normal distribution.
First, we define a n(n + 1)/2 ⇥ 1 column vector vecd(X) as the con-

catenation of the on-diagonal and off-diagonal elements of X, i.e.

vecd(X) =

 
diag(X)

offdiag(X)

!
(A.3)

Then, the log normal distribution is defined by

vecd(Y) = vecd(Log(M, X)) ⇠ N(0, Sq⇥q)

f (X; M, s

2
= 1) =

J(G-1XG-T
)

(2p)

q/2|GGT |-(n+1)/2 exp
✓
-

1
2

tr(log(G-1XG-T
))

2
◆

(A.4)

where Y = Log(M, X), M = GGT, and J(·) = J (Y ! X) = |∂Y/∂X| is
Jacobian of the log transformation Y = log X. Let l1 > . . . > lp be the
eigenvalues of X. S Then the Jacobina of the transformation Y = log X
is equal to J(X) = J (Y ! X) =

1
l1...lp

Q
i<j

log lj-log li
lj-li

. However,
the Riemannian log-normal distribution is not symmetric. In general,
f (X; Y, s

2
) 6= f (Y; X, s

2
).

Log normal distribution 2. (definition 3.3.4 in (Schwartzman, 2006)) We
say that X 2 Sym+

(p) has a positive definite matrix variate Riemannian
log normal distribution with parameter M 2 Sym+

(n), if the Riemannian
logarithm map Y = Log(M, X) 2 Sym(n) has a symmetric matrix variate
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normal distribution. Specifically,

Y = Log(M, X) ⇠ Nsym(0, I) (A.5)

Two log normal distribution on SPD manifolds are easy to sample but
calculating the gradient has difficulty to deal with J(·) which depends on
the sample X.

A.1.2 Prior distributions for symmetric matrix

Normal distribution 1. (definition 3.1.2 in (Schwartzman, 2006)) over
X 2 Sym(n) with mean matrix 0 and covariance matrix I with respect to
Lebesque measure on Rq is given by

f (X) =

1
(2p)

q/2 exp(-
1
2

tr(X2
)) (A.6)

where q = n(n + 1)/2. This is equivalent to multivariate normal distribu-
tion with the appropriate reshaping function. For example, for p = 3, Z is
constructed as

Z =

0

B@
N(0, 1) N(0, 1/2) N(0, 1/2)

⇤ N(0, 1) N(0, 1/2)

⇤ ⇤ N(0, 1)

1

CA (A.7)

Normal distribution 2. (definition 3.1.3 in (Schwartzman, 2006)) over
X 2 Sym(p) with mean matrix M and covariance matrix S
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f (X; M, S) =

1
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2
◆
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(A.8)

The last equality is obtained by ∂

∂X tr(AXT
) = A and ∂

∂X tr(AXBX) =

ATXTBT
+ BTXT AT.

A.2 Differentiation related to Riemannian
CCA

The iterative method Algorithm 4 for Riemannian CCA with exact pro-
jection needs first and second derivative of g in (4.8). We provide more
details here.

First derivative of g for SPD

Given SPD(n), the gradient of g with respect to t is obtained by the fol-
lowing proposition in (Moakher, 2005).

Proposition 3. Let F(t) be a real matrix-valued function of the real variable t.
We assume that, for all t in its domain, F(t) is an invertible matrix which does
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not have eigenvalues on the closed negative real line. Then

d
dt

tr[log2 F(t)] = 2tr[log F(t)F(t)-1 d
dt

F(t)] (A.9)

The derivation of d
dti

g(ti, wx) proceeds as,

d
dti

g(ti, wx) =

d
dti

kLog(Exp(µx, tiWx), Xi)k2

=

d
dti

tr[log2
(X-1

i S(ti))]

(A.10)

where S(ti) = Exp(µx, tiWx) = µ

1/2
x expti A

µ

1/2
x and A = µ

-1/2
x Wxµ

-1/2
x .

In our formulation, F(t) = X-1
i S(ti). Then we have F(t)-1

= S(ti)
-1Xi

and d
dt F(t) = X-1

i Ṡ(ti). Hence, the derivative of g with respect to ti is
given by

d
dti

g(ti, wx) = 2tr[log(X-1
i S(ti))S(ti)

-1XiX-1
i Ṡ(ti)], according to proposition 1

= 2tr[log(X-1
i S(ti))S(ti)

-1Ṡ(ti)]

(A.11)

where Ṡ(ti) = µ

1/2
x A expti A

µ

1/2
x .

Numerical expression for the second derivative of g

Riemannian CCA with exact projection can be optimized by Algorithm
4. Observe that the objective function of the proposed augmented La-
grangian method, LA includes the term rg in (4.8). The gradient of LA

involves the second derivative of g. More precisely, we need d2

dwdt g and
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d2

dt2 g. These can be estimated by a finite difference method,

f
0
(x) = lim

h!0

f (x + h)- f (x)

h
(A.12)

Obviously, d2

dt2 g can be obtained by the expression above using the analyt-
ical first derivative d

dt g. For d2

dwdt g, we use the orthonormal basis in T
µxM

to approximate the derivative. By definition of directional derivative, we
have

lim
h!0

dX

i

✓
f (x + hui)- f (x)

h

◆
ui =

dX

i

hrx f (x), uiiui = rx f (x) (A.13)

where x 2 X , d is dimension of X , and {ui} is orthonormal basis of X .
Hence, perturbation along the orthonormal basis enables us to approxi-
mate the gradient. For example, on SPD(n) manifolds, the orthonormal
basis in arbitrary tangent space TpM can be obtained by following three
steps.
Step a) Pick an orthonormal basis {ei} of Rn(n+1)/2,
Step b) Convert {ei} into n-by-n symmetric matrices {ui} in TIM, i.e.,

{ui} =mat({ei}),
Step c) Transform basis {ui} from TIM to TpM.

A.3 Mixed effect models and longitudinal
analysis

A.3.1 Standard Euclidean Mixed Effects Models

We briefly discussed in Chapter 6 how to estimate mixed effects models
in the Euclidean space. For linear mixed effects models in the Euclidean
space, multiple numerical techniques have been proposed such as EM
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algorithms, Newton-Raphson methods, and MCMC. Particularly, EM
algorithms treat random effects u as unobserved hidden variables and
can naturally handle missing data.

As we discussed in Chapter 6, a linear mixed effects model is given as

y = Xb + Zu + s

2
e

I, (A.14)

where u ⇠ N (0, S̃) and S̃ = diag(S1, S2, . . . , SN) = S ⌦ I (when Si =

S, 8i), and Z = diag(Z1, Z2, . . . , ZN).
Especially, when the variances are known, regression coefficients b

(fixed effects) and random effects u can be estimated by a closed form
solution. When S̃ and s

2
e

are known (or can be estimated), the mixed
effects model can be re-written as Henderson’s mixed model equations
(MME),

 
X 0X X 0Z
Z 0X Z 0Z + s

2
e

S̃-1

! 
b̂

û

!
=

 
X 0y
Z 0y

!
.

Thus when the variances are known, the generalized least squares estima-
tion can be used as

b̂ = (XTS-1X)

-1XTS-1y (A.15)

û = S̃ZTS-1
(y - Xb̂) (A.16)

where S := s

2
e

I + ZD̃ZT.
Applying the Gauss-Markov theorem, b̂ and û are the best linear unbiased
estimates (BLUE) and predictors (BLUP), respectively (Lindstrom and
Bates, 1988). Depending on the applications, the structure of covariance
matrix may be differently specified as a function of some parameters, e.g.,
S(q) rather than estimating the whole matrix (Demidenko, 2013).
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A.3.2 Cauchy deformation tensors (CDTs)

Recall that Cauchy deformation tensors are derived from a nonlinear
deformation F(vox) for voxels (spatial locations) vox 2 W for each image
(rather, for each (Ii,j+1, Ii,j) pair) is given as

F : Ii,j+1 ! Ii,j (A.17)

F(vox + dvox) = F(vox) + J(vox)dvox + O(dvox

2
),

where J(vox) denotes the Jacobian of the deformations at position vox. A
nice property of CDTs is that it preserves the determinant of J(vox), since
det(J(vox)) > 0. So, a CDT representation introduced in the main, nicely
symmetrizes J(vox) without affecting the volumetric change information,
i.e., det(J) = det(

p
JT J). To prove this there are few assumptions which

are commonly made by registraion algorithms to get a nonlinear defor-
mation. In neuroimaging applications, registration algorithms generally
assume that deformations are diffeomorphic and orientation preserving. A
diffeomorphism requires a Jacoian matrix of deformation to be invertible.
Orientation preserving implies that the determinants of Jacobian matrices
are positive. Hence, the spatial gradient of deformation, (Jacobian J(vox)),
forms a subgroup of general linear group, GL+

(n), which is a subgroup
of invertible matrices with positive determinants, where n is the number
of rows (or columns) of a matrix.

More explicitly each Jacobian matrix can be written as

J(vox) = DF|
vox

=

0

B@
∂1f

1|
vox

∂2f

1|
vox

∂3f

1|
vox

∂1f

2|
vox

∂2f

2|
vox

∂3f

2|
vox

∂1f

3|
vox

∂2f

3|
vox

∂3f

3|
vox

1

CA . (A.18)

where D is the Jacobian operator (derivative of vector field) and ∂if
j is a

derivative along i and j component of W and G respectively.
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Now, CDTs can be derived from J(x) with matrix operation

CDT(vox) =

q
J(vox)

T J(vox), (A.19)

where
p

(·) is matrix square root. As mentioned above, one nice property
of CDTs is that it preserves the determinant of J(vox), since det(J(vox)) >

0. So, CDT transformation nicely symmetrizes J(vox) without changing
information of volumetric changes, i.e., det(J) = det(

p
JT J).

Lemma A.1. det(J) = det(
p

JT J)

Proof. In general, the square root of a matrix can be multiple. Fortunately,
positive (semi) definite matrix has a unique positive (semi) definite square
root matrix (Horn and Johnson, 2012). Also the square root matrix of a
symmetric positive (semi) definite matrix can be written as

X1/2
= VD1/2VT, where X = XT, X ⌫ 0, X = VDVT (A.20)

So, let X = JT J. Then, since X ⌫ 0, XT
= X, we have det(

p
JT J) =

det(X1/2
) =

Q
i
p

Dii =

pQ
i Dii =

p
det(X) =

p
det(JT

) det(J) =p
det(J) det(J) = det(J).

A.3.3 Unbiased estimation of CDTs

We present experimental details on deriving the deformation fields and
then the CDT images which capture the subject-wise longitudinal changes.
These CDT images will be in a least biased coordinate system to allow
for voxel-wise analysis of morphometric longitudinal changes. We first
estimate an unbiased global template space as shown in Fig. A.1. While
estimating an unbiased atlas (coordinate system) is well investigated in
cross-sectional imaging studies, there are fewer validation studies for
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the 3D+time regime. The additional bias which we must restrict in a
longitudinal study is the interpolation asymmetry that can arise when
selecting only one of the time points as a temporal representative in
generating the population/study level coordinate system. Based on the
current best practices, we first estimate a subject-specific average that
is temporally unbiased. The subject-specific averages are then used to
generate an unbiased population level average template space (Fig. A.1).
Each of the curved black lines represents a combination of affine and
non-linear diffeomorphic transformations. These transformations and the
spatial averages are estimated iteratively until convergence using ANTS
(Avants et al., 2008; Tustison and Avants, 2013) based implementation.

Figure A.1: Schematic for generating least biased global coordinate system for
the longitudinally acquired imaging data. Visits V1-V4 are averaged first which
are then used to estimate the global average.

So far, we have only described constructing a common coordinate
system. N ext we describe how the longitudinal deformation fields are
generated in the global coordinate system for voxel-wise analyses. This
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step turns out to be non-trivial for CDT images. Most existing publicly
available pipelines such as SPM, FreeSurfer, AFNI, FSL do not generate
such results and instead provide scalar/univariate images representing
longitudinal magnitude of Jacobians or divergences of the deformation
fields. Note that the widely used Freesurfer processing streams allows
subject-level longitudinal analysis of features such as rate of change of
thickness on the cortical surfaces but not the morphological changes them-
selves. While such “summary” measures of structures are relevant, in the
case of preclinical AD, they are complementary to morphological changes
captured at the voxel-level. Fortunately based on the work in gravitation
theory Lorenzi and Pennec recently developed a computationally efficient
framework for parallel transport of stationary velocity fields along other
stationary velocity fields (SVFs) (Lorenzi and Pennec, 2014). Using this
framework we can obtain longitudinal deformations in a global coordi-
nate system. We first register the set of longitudinal images (using rigid
transformations - rotations and translations) from all visits (Vi) to the
global average (GA) estimated as described in the previous paragraph i.e.
Vi 7!R GA, 8i. We thus have VR

i and GA in the same global coordinate
system. Now the key non-linear symmetric diffeomorphic deformations
are generated using (Lorenzi et al., 2013). Images are registered pairwise
between consecutive visits, i.e. VR

i+1 ,!SVF VR
i ) resulting in a stationary

velocity field (SVF) (VSVF
(i+1) 7!i) representing longitudinal progression be-

tween visits i + 1 and i. The individual visit images VR
i are non-linearly

registered to GA (VR
i ,!SVF GA) resulting in a "subject-to-template" SVF,

VSVF
i . The VSVF

(i+1) 7!i are then parallel transported in the direction of VSVF
i

resulting in SVFs that represents longitudinal progression in the global
coordinate system. Cauchy deformation tensor fields are constructed from
Jacobian matrices of these final transported vector fields.
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