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Actual 25.0o C Actual −7.2o C Actual 20 Actual 74 Actual 65 Actual 36 CN (Normal)
Est. 23.6o C Est. −3.7o C Est. 16 Est. 69 Est. 70.0 Est. 38.4 AD (Alzheimer’s Disease)

Figure: Dynamic feature weights for three tasks: ambient temperature prediction (left), age estimation (middle) on Lifespan database (Meredith et al., 2004, Guo, et al., 2012.) , and AD
classification (right). AD classification accuracy of 86.17% by simple thresholding of continuous prediction by AIR comparing to SVM+PCA (80%-85%) (Hwang et al., 2015). AIR provides a
way to determine, at test time, which features are most important to the prediction. Our results are competitive, which demonstrates that we achieve this capability without sacrificing accuracy.

OBJECTIVE

Goal: Develop a regression model explaining why a particular prediction
was made at the level of specific examples/samples
Strategy: Inverse Regression and Sufficient Reduction in the “abundant”
feature setting.

MAIN IDEA

Desired: Relevance of individual covariates at the level of specific
samples for a given regression task.
Challenge (“Chicken-or-egg problem”): Relevance/confidence score to
individual covariates x j should condition the estimate based on
knowledge of all other (uncorrupted) covariates x−j.
f (x1|x2, x3, . . . , y) is high-dimensional requiring large amount of data.
f (x1|x2, y), f (x1|x3, y), f (x1|x4, y), . . . f (x1|xp, y) too many cases.
Solution: sufficient reduction

f (x i|φ(X )), where x i|X , φ(X ) ∼ x i|φ(X )

Desired: Robust regression model which allows missing or randomly
corrupted covariates with their dynamic weights.
Solution: distance measure with dynamic weights.

SUFFICIENT REDUCTION AND INVERSE REGRESSION

I Given a regression model h : X → Y , a reduction φ : Rp → Rq,q ≤ p,
is a sufficient reduction if it satisfies one of the following conditions:

1) inverse reduction, X |(Y , φ(X )) ∼ X |φ(X ),
2) forward reduction, Y |X ∼ Y |φ(X ),
3) joint reduction, X ⊥⊥ Y |φ(X ),

where ⊥⊥ indicates independence, ∼ means identically distributed, and
A|B refers to the random vector A given the vector B.

I Forward regression E[Y |X ]: f : X → Y
I Inverse regression E[X |Y ]: f : Y → X
I Sliced Inverse Regression (Li, 1991) estimates φ(X ) by PCA over
E[X |Y ].

I Relevance (dynamic weights) in our model:

Ej[f (x i|φj(X ))], where x i|X , φj(X ) ∼ x i|φj(X ) (1)

DISTANCE MEASURE WITH RELEVANCE

dw(x1, x2,w1,w2) :=

√√√√√∑j wx j
1
wx j

2

[
d(x j

1, x
j
2)

2 − 2σ2
x j|z j

]
∑

j wx j
1
wx j

2

. (2)

Relevance of covariates wx j :=
∑

I wφIf (x j|ŷ I)/
∑

I wφI

Global weight, wφI := E[(y − φI(x I))2]−1 , σ2
x j|z j := E[(x j − E[x j|x−j])2]

ALGORITHM

1: Training
2: Estimate a joint distribution for each covariate, f (x j, y)
3: Find sufficient reduction φI : x I → y for each subset of features x I

4: Estimate the prior/weight for φI(·) as wφI = E[(y − φI(x I))2]−1

5: Estimate cond. confidence of feature wx j :=
∑

I wφIf (x j|ŷ I)/
∑

I wφI

6: Fit a feature confidence aware regressor h : [{x j}K
j=1, {wx j}K

j=1]→ y
7: Prediction
8: Evaluate wx j := Ef

(
x j|φI(x I)

)
by lines 3 and 5, with learned wφI.

9: ŷ = h({x j}K
j=1, {wx j}K

j=1)

LEMMA 1: OPTIMAL GLOBAL WEIGHTS FOR φI

Suppose we have K random variables (sufficient reduction),
φ1(x1) ∼ N (y , σ2

1), . . . , φ
K (xK ) ∼ N (y , σ2

K ), (3)
where σ2

I > 0,∀I ∈ {1, . . . ,K}. Consider a convex combination of φI. Its
expectation is y . Assuming that the errors of all sufficient reductions are
independent, the problem to find the optimal weights for the convex
combination with the minimal variance can be formulated as

min
w
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I (wI)

2 s.t.|w |1 = 1 and wI ≥ 0, for all I ∈ 1, . . . ,K . (4)

The unique global optimum of Eq. (4) is wI = σ−2
I /

∑K
k=1 σ

−2
k .

EXPERIMENTS: AMBIENT TEMPERATURE PREDICTION

Low-frequency High-frequency
weight = 1.0

weight = 0.0
time-invariant (global) weights wφI

Actual 25.6o C, Est. 21.6o C time-specific (dynamic) weights wx j

Actual 3.3o C, Est. 10.0o C time-specific (dynamic) weights wx j

Actual −0.6o C, Est. 2.8o C time-specific (dynamic) weights wx j

Figure: Qualitative results on scene (a) from the Hot or Not dataset (Glasner et al., 2015) .
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