Manifold-valued Dirichlet Processes

Hyunwoo J. Kim, Jia Xu, Baba Vemuri, Vikas Singh

http://pages.cs.wisc.edu/~hwkim/projects/dp-mglm/

Regression

 $f: \mathbf{R}^d \to \mathcal{M}$

 $\mathcal{M} = \mathrm{SPD}(n)$

-Ż

Regression

 $f: \mathbf{R}^d \to \mathcal{M}$

 $\mathcal{M} = \mathrm{SPD}(n)$

- Covariance matrix
- Diffusion tensor imaging

Regression

 $f: \mathbf{R}^d \to \mathcal{M}$

 $\mathcal{M} = \mathrm{SPD}(n)$

- Covariance matrix
- Diffusion tensor imaging
- Region covariance

M.Cimpoi et al., CVPR 2014

5

Linear regression on manifolds

$$f: R \to \mathcal{M} \quad y_i = \operatorname{EXP}(\operatorname{EXP}(B, vx_i), \epsilon)$$

$$\mathsf{GR} \quad \mathsf{Fletcher, IJCV 2013.}$$

$$f: R^n \to \mathcal{M} \quad y_i = \operatorname{EXP}(\operatorname{EXP}(B, \sum_{j=1}^d V^j x_i^j), \epsilon)$$

$$\mathsf{MGLM} \quad \mathsf{Kim \ et \ al., CVPR \ 2014.}$$

$$\mathsf{IR} \quad \mathsf{Thu \ et \ al., JASA, 2009.}$$

Build models on manifolds

Locally defined parametric models PGA (Fletcher et al., 2004), GR (Fletcher, IJCV 2013), MGLM (Kim et al., CVPR 2014), RCCA (Kim et al., ECCV 2014)

General Linear Model

$$\boldsymbol{y}_i = \boldsymbol{\beta}^0 + \boldsymbol{\beta}^1 x_i^1 + \ldots + \boldsymbol{\beta}^d x_i^d + \boldsymbol{\epsilon}$$

What if data have nonlinear correlation?

General Linear Model

$$\boldsymbol{y}_i = \boldsymbol{\beta}^0 + \boldsymbol{\beta}^1 x_i^1 + \ldots + \boldsymbol{\beta}^d x_i^d + \boldsymbol{\epsilon}$$

- Generalized Linear Model (fixed link function) $y_i = g^{-1}(\beta^0 + \beta^1 x_i^1 + \ldots + \beta^d x_i^d) + \epsilon$
- Single Index Model (searching link function) $\boldsymbol{y}_i = g^{-1}(\beta^0 + \beta^1 x_i^1 + \ldots + \beta^d x_i^d) + \epsilon$

General Linear Model

$$\boldsymbol{y}_i = \boldsymbol{\beta}^0 + \boldsymbol{\beta}^1 x_i^1 + \ldots + \boldsymbol{\beta}^d x_i^d + \boldsymbol{\epsilon}$$

• Generalized Linear Model (fixed link function) $y_i = g^{-1}(\beta^0 + \beta^1 x_i^1 + \ldots + \beta^d x_i^d) + \epsilon$

- Single Index Model (searching link function) $\boldsymbol{y}_i = g^{-1}(\beta^0 + \beta^1 x_i^1 + \ldots + \beta^d x_i^d) + \epsilon$

Link functions for manifold-valued response?

• GLM

$$\boldsymbol{y}_i = \boldsymbol{\beta}^0 + \boldsymbol{\beta}^1 x_i^1 + \ldots + \boldsymbol{\beta}^d x_i^d + \boldsymbol{\epsilon}$$

• ?-GLM

 $\boldsymbol{y}_{i} = \boldsymbol{\beta}_{i}^{0} + \boldsymbol{\beta}_{i}^{1} \boldsymbol{x}_{i}^{1} + \ldots + \boldsymbol{\beta}_{i}^{d} \boldsymbol{x}_{i}^{d} + \boldsymbol{\epsilon}$

• GLM

$$\boldsymbol{y}_i = \boldsymbol{\beta}^0 + \boldsymbol{\beta}^1 x_i^1 + \ldots + \boldsymbol{\beta}^d x_i^d + \boldsymbol{\epsilon}$$

• DP-GLM

$$\boldsymbol{y}_{i} = \boldsymbol{\beta}_{i}^{0} + \boldsymbol{\beta}_{i}^{1} \boldsymbol{x}_{i}^{1} + \ldots + \boldsymbol{\beta}_{i}^{d} \boldsymbol{x}_{i}^{d} + \boldsymbol{\epsilon}$$

 $(x_i, y_i)|\theta_i \sim F(\theta_i), \theta_i|G \sim G, G \sim DP(G_0, \nu)$

Hannah et al., JMLR 2011

 $y_i = \text{EXP}(\text{EXP}(B, \sum^d V^j x_i^j), \epsilon)$ j=1

 $y_i = \text{EXP}(\text{EXP}(\underline{B}, \sum_{j=1}^d V^j x_i^j), \epsilon)$

$$y_i = \text{EXP}(\text{EXP}(\underline{B}, \sum_{j=1}^d \underline{V^j} x_i^j), \epsilon)$$

DP-GLM

$$G \sim DP(G_0, \nu)$$

$$\theta_i = (\theta_{x_i}, \theta_{y_i}) | G \sim G,$$

$$x_i | \theta_{x_i} \sim f_x(\theta_{x_i}),$$

$$y_i | x_i, \theta_{y_i} \sim GLM(x_i, \theta_{y_i}),$$

Hannah et al. JMLR 2011

$$\begin{aligned} & \mathsf{DP}\text{-}\mathsf{GLM} \\ & \mathsf{Manifold-valued?} \\ & y_i \in \mathcal{M} \\ & G \sim DP(G_0, \nu) \\ & \theta_i = (\theta_{x_i}, \theta_{y_i}) | G \sim G, \\ & x_i | \theta_{x_i} \sim f_x(\theta_{x_i}), \\ & y_i | x_i, \theta_{y_i} \sim GLM(x_i, \theta_{y_i}), \end{aligned}$$

Hannah et al. JMLR 2011

$$\begin{split} & \text{DP-MGLM} \\ & G \sim DP(G_0,\nu) \\ & \theta_i = (\theta_{x_i},\theta_{y_i}) | G \sim G, \\ & \text{MGLM on} \\ & x_i | \theta_{x_i} \sim f_x(\theta_{x_i}), \\ & y_i | x_i, \theta_{y_i} \sim MGLM(x_i,\theta_{y_i}) \end{split}$$

DP-MGLM $G \sim DP(G_0, \nu)$ $\theta_i = (\theta_{x_i}, \theta_{y_i}) | G \sim G,$ $x_i|\theta_{x_i} \sim f_x(\theta_{x_i}),$ $\frac{y_i | x_i}{\text{manifold-valued}} \theta_{y_i} \sim MGLM(x_i, \theta_{y_i}),$ parameters? $\theta_{y_i} \in \mathrm{SPD}(n) \times \mathrm{Sym}(n)^d$

DP-MGLM
• Distribution on
manifolds
• Intrinsic metric

$$G \sim DP(G_0, \nu)$$

$$\theta_i = (\theta_{x_i}, \theta_{y_i}) | G \sim G,$$

$$x_i | \theta_{x_i} \sim f_x(\theta_{x_i}),$$

$$y_i | x_i, \theta_{y_i} \sim MGLM(x_i, \theta_{y_i}),$$

$$\theta_{y_i} \in \text{SPD}(n) \times \text{Sym}(n)^d$$

ť.

C LA LA LA

DP-MGLM

Hamiltonian Monte Carlo (HMC) sampling

$$G \sim DP(G_0, \nu)$$

$$\theta_i = (\theta_{x_i}, \theta_{y_i}) | G \sim G,$$

$$x_i | \theta_{x_i} \sim f_x(\theta_{x_i}),$$

$$y_i | x_i, \theta_{y_i} \sim MGLM(x_i, \theta_{y_i}),$$

$$\theta_{y_i} \in \text{SPD}(n) \times \text{Sym}(n)^d$$

H(q,p) = U(q) + K(p)

Duane, S., et al, "Hybrid Monte Carlo", 1987.

Neal, R. "MCMC using Hamiltonian dynamics", 2011

H(q, p) = U(q) + K(p) $q = \theta \in \mathbf{R}^d$ $p = \dot{\theta} \in \mathbf{R}^d$

Duane, S., et al, "Hybrid Monte Carlo", 1987.

Neal, R. "MCMC using Hamiltonian dynamics", 2011

$$H(q, p) = U(q) + K(p)$$
$$U(q) := -\log f(q)$$
$$K(p) := \frac{1}{2}p^T M^{-1}p$$

Duane, S., et al, "Hybrid Monte Carlo", 1987.

Neal, R. "MCMC using Hamiltonian dynamics", 2011

Experiments

Clustering result of patch 1

Clustering result of patch 1

3D ellipsoid patch of ICML

3D ellipsoid patch of ICML

Clustering results

Experiment 3 Age versus landmark appearance

Experiment 3 Age versus landmark appearance

Landmarks

Experiment 3 Age versus landmark appearance

Correlation Magnitude

Conclusion

- DP-MGLM (Dirichlet process multivariate general linear model) for Riemannian manifolds (SPD(n)) learns more complicated models than MGLM
- Clustering based on nonlinear correlation between Euclidian covariates and manifold-valued response
- New distribution (over base point and tangent vectors) and HMC algorithm for DP-MGLM on SPD(n).

Thank you!

