Manifold-valued Dirichlet Processes
Hyunwoo J. Kim ${ }^{1}$, Jia Xu ${ }^{1}$, Baba C. Vemuri ${ }^{2}$, Vikas Singh ${ }^{1}$
${ }^{1}$ University of Wisconsin-Madison ${ }^{2}$ University of Florida

The uniyersity WISCONSIN MADISON

DP-MGLM ON MANIFOLDS

Non-parametric Bayesian construction relating multivariate covariates to "manifold-valued" responses.
Extension of locally-defined models on Riemannian manifolds to "global" models

What's new?

DPMM for manifold-valued data e.g., sphere [Straub et al., AISTAT 2015], SPD [Cherian et al. CVPR 2011]
Inspired by DP-GLM in Euclidean space [Hannah et al., JMLR 2011] and Multivariate general linear model (MGLM) on manifolds [Kim et al. CVPR 2014]
This paper : DP-MGLM for Riemannian manifolds (SPD(n)) w.r.t. the GL-invariant metric
Main technical highlight: New Hamiltonian Monte Carlo (HMC) algorithm for
parameters on manifolds and tangent spaces $(B, V) \in \mathcal{M} \times T_{B} \mathcal{M}^{d}$.
New distribution proposed for $(B, V) \in \mathcal{M} \times T_{B} \mathcal{M}^{d}$.
A direct by-product is "clustering based on nonlinear correlation" between covariates and response.

Euclidean and Riemannian MGLMs: Basic Operation

Operation	Subbraction	Addition	Distance	Mean	Covariance		
Euclidean	$\overrightarrow{x_{i} x_{j}}=x_{j}-x_{i}$	$x_{i}+\overrightarrow{\bar{x}_{i} x_{k}}$	$\left\\|\overrightarrow{x_{i}} \vec{x}_{i}\right\\|$	$\sum_{i=1}^{n} \overrightarrow{\vec{x}_{i}}=0$	$\mathbb{E}\left[\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}\right]$		
Riemannian	$\overrightarrow{\bar{x}_{i} x_{i}}=\log \left(x_{i}, x_{i}\right)$	$\operatorname{Exp}\left(x_{i}, \overrightarrow{x_{i} x_{k}}\right)$	$\left\\|\log \left(x_{i} x_{i}\right)\right\\|_{x_{i}}$	$\sum_{i=1}^{n} \log \left(\bar{x}, x_{i}\right)=0$	$\mathbb{E}\left[\log \left(\bar{x}, x_{i}\right) \log \left(\bar{x}, x_{i}\right)^{T}\right]$		

Euclidean GLM

where $x \in \mathbf{R}^{d}, y \in \mathbf{R}^{d^{\prime}}$ and $\boldsymbol{\beta} \in \mathbf{R}^{d^{\prime}}$

Riemannian MGLM

$$
y=\operatorname{Exp}\left(\operatorname{Exp}\left(B, V^{1} x^{1}+V^{2} x^{2}+\ldots+V^{d} x^{d}\right), \epsilon\right)
$$

where $x \in \mathbf{R}^{d}, y \in \mathcal{M}, B \in \mathcal{M}$, and $V^{j} \in T_{B} \mathcal{M}$.

DP-MGLM on MANIFolds

$$
\begin{aligned}
& \\
G & \sim D P\left(G_{0}, \nu\right) \\
\theta_{i}=\left(\theta_{x_{i}}, \theta_{y_{i}} \mid G\right. & \sim G \\
x_{i} \mid \theta_{x_{i}} & \sim f_{x}\left(\theta_{x_{i}}\right) \\
y_{i} \mid x_{i}, \theta_{y_{i}} & \sim \operatorname{MGLM(x_{i},\theta _{y_{i}})}
\end{aligned}
$$

$G \sim D P\left(G_{0}, \nu\right)$

$$
\theta_{i}:=(\underbrace{\mu_{x}, \sigma_{x}^{2}}, \underbrace{B, V}) \mid G \sim G,
$$

$$
\begin{aligned}
x_{i} \mid \theta_{x_{i}} & \sim \mathcal{N}\left(\theta_{x_{i}}, \sigma_{x_{i}}^{2}\right), \\
x_{i} \theta_{i} \sigma_{2}^{2} & \sim \mathcal{N a n}\left(\hat{v_{i}}, \sigma^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& y_{i} \mid x_{i}, \theta_{y_{i}}, \sigma_{y_{i}}^{2} \sim \mathcal{N} \operatorname{\mathcal {SDD}}\left(\hat{y}_{i}, \sigma_{y_{i}}^{2}\right), \\
& \text { where } \hat{y}_{i}=\operatorname{Exp}\left(B_{i}, V_{i} x\right),
\end{aligned}
$$

Hamiltonian Monte Carlo Sampling (HMC)

$$
\begin{gathered}
H(q, p)=U(q)+K(p) \\
U(q):=-\log f(q) \text { and } K(p):=\frac{1}{2} p^{T} M^{-1} p
\end{gathered}
$$

where q is parameters to sample, p is momentum vector, $M \succ 0, M^{T}=M$ is "mass matrix" [Duane et al., "Hybrid monte carlo.", Physics letters B, 1987].

HMC ALGORIthm FOR DP-MGLM ON RIEMANNIAN MANIFOLDS

1: Input: $\left(B_{\text {cur }}, V_{\text {curr }}\right) \in \mathcal{M} \times T_{B} \mathcal{M}^{n}$, Leapfrog parameters $\epsilon \in \mathbf{R}_{++}, L \in \mathbf{Z}_{+}$

2: Output $\left(B_{\text {next }}, V_{\text {next }}\right) \in \mathcal{M} \times T_{B} \mathcal{M}^{n}$
2: Stample $\left(B_{\text {un }} V_{\text {our }}\right) \in T_{\mathcal{M}} \mathcal{M} \times T_{B} \mathcal{M}^{n}$
3: Sample ($\left(B_{\text {cur }}, \boldsymbol{V}_{\text {cur }}\right) \in T_{B} \mathcal{M} \times T_{B} \mathcal{M}^{n}$ from independent normal distribution w.r.t. Riemannian metric.
4: Initialize $(B, \boldsymbol{V}, B, \boldsymbol{V}) \leftarrow\left(B_{\text {cur }}, \boldsymbol{V}_{\text {cur }}, \dot{B}_{\text {cur }}, \dot{V}_{\text {cur }}\right)$

6: for $i \in\{1, \cdots, L\}$ do
$\begin{array}{ll}\text { 7: } & B^{\prime} \leftarrow B, B \leftarrow \operatorname{Exp}(B, \epsilon \dot{B}), V \leftarrow V+\epsilon \dot{V} \\ & (\boldsymbol{V}, \dot{B}, \dot{\boldsymbol{V}}) \leftarrow\left(\Gamma_{B \rightarrow B} V, \Gamma_{B^{\prime} \rightarrow B} \dot{B}, \Gamma_{B^{\prime} \rightarrow B} \dot{V}\right)\end{array}$

9: Paraie transport
if i is not L then
$\dot{B} \leftarrow \dot{B}-\epsilon \nabla_{B} U(B, V)$ and $\dot{V} \leftarrow \dot{V}-\epsilon \nabla_{v} U(B, V)$
end if
end if
12:
end for
13: end for
14. $B<B$
14: $B \leftarrow B-\frac{\epsilon}{2} \nabla_{B} U(B, \boldsymbol{V})$ and $\dot{\boldsymbol{V}} \leftarrow \dot{\boldsymbol{V}}-\frac{\epsilon}{2} \nabla_{V} U(B, \boldsymbol{V})$
5: Accept $\boldsymbol{B})$
15: Accept (B, \boldsymbol{V}) with probability
16: $\min \left[1, \exp \left(H\left(B_{\text {cur }}, \boldsymbol{V}_{\text {cur }}, B_{\text {cur }}, \boldsymbol{V}_{\text {our }}\right)-H(\dot{B}, \dot{\boldsymbol{V}}, \boldsymbol{B}, \boldsymbol{V})\right)\right]$

LEmMA

Let $(B, V) \in \operatorname{SPD}(n) \times \operatorname{Sym}(n)$ be a sample drawn using (2), then V is Normally distributed w.r.t. a GL-invariant metric at the tangent space $T_{B} \mathcal{M}$ at B. For each B, the probability density function of V is proportional to $\exp \left(-\frac{1}{2}\|V\|_{B}^{2}\right)$) at $T_{B} \mathcal{M}$, when $\mu_{V}=0$.

$$
B\left|\mu_{B}, \sigma_{B}^{2} \sim \mathcal{N}_{S P D}\left(B \mid \mu_{B}, \sigma_{B}^{2}\right), V\right| \mu_{V}, B \sim \mathcal{N}_{S y m}\left(V \mid \mu_{V}, B\right)
$$

Synthetic Experiments: Riemannian DP-MGLM vs. MGLM

Figure: The figure shows the models fitted in response $y \in \mathcal{M}$ versus covariate $x \in \mathbf{R}$. The prediction of DP-MGLM is shown using a single sample from the posterior, $\theta^{(i)}$. To visualize the response variable $Y \in \operatorname{SPD}(3)$, we project the variables onto the axis obtained by
$X \in R$

Synthetic Experiments: Clustering by nonlinear correlation

Figure : (Column 1) shows SPD(3) response variables in each voxel; the corresponding covariates are the Figure: (Column 1) shows SPD(3) response variables in each voxel; the corresponding covariates are the
grid positions (horizonal, vertical coordinates). (Column 2) shows a clustering result. A clustering is shown gased on the posterior samples $\theta^{(i)}$

Synthetic Experiments: Clustering effect

