http://pages.cs.wisc.edu/~hwkim/projects/k-gmm

THE MOTIVATING PROBLEM

- Interpolation (weighted mean) in the K-GMM space.
- Applications: diffusion weighted imaging, statistical maching

WHAT'S NEW?

- **•** This paper : interpolation of k-GMMs in the K-GMM space w.r.t ℓ_2 KL-divergence by numerically efficient schemes (GD, EM, and M
- Connections of our EM algorithm with functional spaces of Gaussians of Gaussian processes.

Where is this needed?

- Compressing a K-GMM to a K'-GMM (K > K').
- Clustering K Gaussian distributions with K' Gaussian mean functions
- Identifying the shortest path in the K-GMM space between two K-GM
- Inpainting, registration, and spatial transformation tasks which involve
- For vector samples $X \in \mathbf{R}^d$, our approach may address (a) noisy obse known Gaussian error, (b) ill-conditioned covariance matrices by a sm high dimensional samples or too many clusters.

PDF INTERPOLATION WITH REPARAMETERIZATION AND DIS^T

The mean of probability densities $\{f_i\}_{i=1}^N$ is given by

$$\hat{f} = \arg\min_{f\in\mathsf{PDF}}\sum_{i=1}^{N}w_id(\Phi(f),\Phi(f_i))^2$$

where $\Phi(\cdot)$ is a mapping function for parameterizing the given probability is a distance metric and w_i is a weight for f_i .

DISTANCE METRICS AND DISSIMILARITY MEASURE

*ℓ*₂-distance

$$\|f_1-f_2\|_2 = \left(\int_X |f_1(x)-f_2(x)|^2 d\mu(x)\right)^{1/2}.$$

where f_1 and f_2 are PDFs.

KL-divergence

$$D(f_1||f_2) = \int f_1(x) \log \frac{f_1(x)}{f_2(x)} dx$$

where f_1 and f_2 are PDFs.

 ℓ_2 -distance with the normalized PDFs

$$d_{n-\ell_2}(f_1,f_2)^2 = \int (f_1'(x) - f_2'(x))^2 dx = 2(1 - \int_{\mathcal{X}} f_1'(x) f_2'(x) dx$$

where $f'_i(x) = f_i(x) / \|f_i(x)\|_2$.

Geodesic distance on the Hilbert sphere

$$d_{geo}(f_1, f_2) = \cos^{-1}\langle f'_1, f'_2 \rangle_2 = \cos^{-1}(\int_{\mathcal{V}} f'_1(x)f'_2(x)dx)$$

where f'_1 and f'_2 are normalized PDFs or square-root parameterizations of

 ℓ_2 -MEAN OF k-GMMS

The ℓ_2 -mean (arithmetic mean) of $\{\mathcal{F}_n\}_{n=1}^N$ minimizes the sum of squared each $\mathcal{F}_i \in \mathbf{F}$,

$$\bar{\mathcal{F}} = \arg\min_{\mathcal{G}} \sum_{n=1}^{N} \|\mathcal{F}_n - \mathcal{G}\|_2^2 = \frac{\sum_{n=1}^{N} \mathcal{F}_n}{N} = \sum_{\substack{n=1 \ j=1 \\ N \times K \text{ components}}}^{N} \frac{\pi_n^j}{N} \mathcal{N}(\mu_n^j, \Sigma)$$

where $\pi_n^J, \mu_n^J, \Sigma_n^J$ are the parameters for j_{th} component of the n_{th} GMM.

International Conference on Computer Vision (ICCV) 2015

Interpolation on the manifold of K component GMMs

	INTERPOLATION ON THE MANIFOLD OF K-G
ne learning.	$\ell_{2}\text{-distance}$ $\mathcal{G}^{*} = \arg\min_{\mathcal{G}\in\mathbf{G}^{(K)}}\sum_{n}^{N} \ \mathcal{F}_{n} - \mathcal{G}\ _{2}^{2} (7)$ $KL\text{-dive}$
e-distance and odified-EM) and the mixture	LEMMA 1 The mean of functions $\{\mathcal{F}_n\}_{n=1}^N$ w.r.t. ℓ_2 metric is the close $\mathcal{G}^* = \arg\min_{\mathcal{G}\in\mathbf{G}^{(K)}}\sum_n^N \mathcal{F}_n - \mathcal{G} _2^2 = \arg$
	KL-DIVERGENCE AND CROSS ENTROPY MINI
(K > K'). MS. interpolation. ervations with	$\arg\min_{\mathcal{G}\in\mathbf{G}^{(\mathcal{K})}} D(\bar{\mathcal{F}} \mathcal{G}) = \arg\min_{\mathcal{G}\in\mathbf{G}^{(\mathcal{K})}} \int \bar{\mathcal{F}}(x) \log \frac{\bar{\mathcal{F}}(x)}{\mathcal{G}(x)} dx = a$
nall number of	LEMMA 2
TANCE	Given GMM $f(x) := \sum_{i=1}^{L} \pi_{i} f_{i}(x)$, where $f_{i}(x)$ is a Gaussia entropy / KL-divergence between $f(x)$ and an unknown $(u^{*} \Sigma^{*}) = \arg \min H(f(x) \mathcal{N})$
	$(\mu, \Sigma) = \arg(\mu, \Sigma)$
(1)	where $\Pi(\cdot, \cdot)$ is the closs entropy, $\mu = \mathbb{E}_{f(x)}[x]$ and Z
densities, $d(\cdot, \cdot)$	EWIALGORITHM FOR MINIMIZING CROSS ENT EWIALGORITHM FOR MINIMIZING CROSS ENT
	E-step: Let $\Theta = \{ w_j, \mu_j, \Sigma_j \}_{j=1}^{K}$, $\mathcal{F}(x) = \sum_{i=1}^{M} \pi_i f_i(x)$ and X_i be a s $\gamma_{ij} := p(z_i = j X_i, \Theta) = w_j \exp\left[-\frac{w_j \exp\left[-\frac{$
	$H(f_i, g_j)$ is analytically obtained as,
(2)	$\frac{1}{2} \{k \log 2\pi + \log \Sigma_j + \operatorname{tr}[\Sigma_j^{-1}\Sigma_i] + (\mu_i - \mu_i)\}$
	M-step: $W_j = \frac{\sum_{i=1}^{NK} \pi_i \gamma_{ij}}{\sum_{i'=1}^{K} \sum_{i''=1}^{NK} \pi_{i''} \gamma_{i''i''}}, \mu_j = \mathbb{E}_{\bar{\mathcal{F}}'(j')}$
	$\Sigma_{j} = \mathbb{E}_{\bar{\mathcal{F}}'(\boldsymbol{x})}[(\boldsymbol{x} - \mu_{j})(\boldsymbol{x} - \mu_{j})^{T}] = \sum_{j=1}^{NK}$
(3)	where $\bar{\mathcal{F}}' = \sum_{i=1}^{NK} \pi'_i f_i(x)$, and $\pi'_i = \frac{\pi_i \gamma_{ij}}{\sum_i \pi_i \gamma_{ij}}$, for fixed <i>j</i> .
	MODIFIED EM ALGORITHM FOR LIMITED GP
	E-step: Estimate the responsibilities of data PDFs $\{f_i\}$ to comp
). (4)	$w_j C_j^{-1} \exp\left(-\frac{1}{2C_j^2} \ f_j - g_j\ \right)$
	$\sum_{k=1}^{N_{y}} W_{k} C_{k}^{-1} \exp\left(-\frac{1}{2C_{k}^{2}} \ f_{i}\right)$
	M-step: Maximize cross entropy given assignments over mode $\mathcal{N}(\mu_j, \Sigma_j)$ and a covariance function C_j).
(5) (5) (5) f_1 and f_2 .	$C_j^2 = \sum_{i=1}^{NK} \gamma_{ij} \pi_i \ f_i - g_j\ _2^2 / \sum_{i=1}^{NK} \gamma_{ij} $
	w_j and μ_j, Σ_j are updated using (12).
l l'adictances to	ENSEMBLE AVERAGE PROPAGATOR (EAP)
	Ensemble average propagator $P(R\mathbf{r})$ describes the propagator
$(n) \notin \mathbf{G}^{(K)}$	(i.e., $E(q\mathbf{u}) = E(-q\mathbf{u})$ and $P(R\mathbf{r}) = P(-R\mathbf{r})$), the follow
(6)	$P(R\mathbf{r}) = \int_{\mathbb{R}^3} E(q\mathbf{u}) \cos(2\pi qR)$
	where \mathbf{u}, \mathbf{r} are unit vectors in \mathbb{R}^3 , q is proportional to th gradient along \mathbf{u} . The EAP is a PDF whose domain is

Research supported in part by NIH R01 AG040396, NS066340, NSF CAREER award 1252725, 1UL1RR025011, P30 HD003352-45, UW CPCP NIH AI117924.

	-				-					-				-			-	/	r	1	1	+	· 4	1	F.	1	1	1			-	-			-	-		•
	-	-	-	-	-				-	-					-		-	• -	۴.	~	4	+	- 4		4	4	4	7	*		-	-	-	-	-	-		•
	-	-	-	-	-				-	- 4	-	-	-	~	-	-/-	+		۴.	1	+	+	/		4	1	*	×	$\mathbf{\star}$		-	-	•	-	-	-		•
	-	-	-	-			-	-	-	~	-	2	-	-	÷	+	+		۴.	1	+	+	. 7		4	*	*	*			-	-	•	-	-	-	•	•
	-			1	~	~	~	-	-	_	1	2	~	-		+	-		۴.	1	+	*	4		4	*	×	×			~	-	-			-		•
	-	1	1		1	~	~	-	-	-	1	-	~		+	+	+		<u> </u>	1	4	*	1	5	1	*	×	~				-			-	-		•
* *	L 74	74	74	X	×	1	1	-	-	~	-			1	+	1			٤.	Ι.	1	1	7		K '	X (N	N	N	Δ.		•	-	-	•	•
	~ ~	*	74	*	*	74	>4	د ٢	< ;	×.,	-	-4	- J	1	1	7	7			7	1	1			κ.	X		N	N	X	X	X	2		-	-		•
++		*	*	*	*	×	74	< ``	-	-	-	-1	44	4	4	4	4	- 7	1	4	7	7		')	٢.	X	V	X	X	x	Υ.	x	1	-	-	-		
++		*	*	*	*	-	-	-	-	-	+	. 7	47	4	+	+	4	. 4	r -	1	4	4	. 4		۴.		۲	r	r	Υ.	7	7	T	- 1	-	-		-
• 🚽	- +	+	+	+	4	-	-	-	-	1	+	. 4	4 7	4.	+	+	4	- 7	4.	4	*	+	-	-	-	ς.	÷	÷	÷	4	f	۲.			-	-		
++	- +	+	+	+	*	-	-	-	-	+	*	. 7	47	4	+	*	4	- 7	4.	1	*	*	-	~	-	-	+	+	+	+	+	+	+	+	+			
++	- +-	+	+	-	-	-	-	-7	4 -	1	+	. 4	47	4	+	+	4		4.	1	+	+	-	-	-	-	+	+	+	+	+	+	+	+	+			
++	- +	+	+	+	-	-	+		4.	+	+	. 4	47	4	+	+	4	- 7	r -	4	+	-	-	-	-	+	+	+	+	+	+	+	+	+	-	-	•	
11		+	+	~	*	-	1	- 7	4.	1	+	. +	4 7	4.	+	+	+	- 7	4.	1	-	-	-	-	4	1	*	*	•	+	+	+	+			-	-	
11		X	N	\	N	*	1	' -	4	1	4	. 4	47	4.	+	+	4	- 7	4.	1	-	-	-	-	4	1	*	*	*	*	*	+	-	-	-	-		
- 7 N	× *	N.	N.	`	×	×	7		!	2	1		1 -	4	1	+	-		-	-	-	~	~	5 >	< ۱	*	*	*	*	*	*	1	-	-	-	-		
- N	: N	1	`	~	×	×	4	1	! '	7	7	1	13	1	7	1		_	-	-	1	~	~~	د >	< :	><	74	*	74	×	-	-		-	-	-		
	N	1	~	1	×	×	×	: 5	4	4	4	- 7	1 7	2	4	4	4	-	-	-	1	-	-	-	/	1	/	*			-	-						
			1	×	×	*	*		4.	+	4	. 4	L 4	÷.	4	+	-	-	-	-	-		2	1	-							-			-			
	-	×	×	×	×	*	*		4.	+	+	4	4 -	<u>.</u>	+		-	2	-	-	-	-	۰.			•	-	-			-	-			-			
	-		×	×	*	*	+		4.	+	4	. 4	L -	<u>.</u>	4		-	-	-													-			-	-		
			+	×	*	+	4		4.	1	4	. ,	L	4	*																	-						
				*	1	+	+		4.	4	4	. 4	- 1	-									-								-	-			-	-		
	-	-	-	1	2	1	1	1	4	2	1			-			-			-			-					-			-	-		-	-	-		-
				-	2	۰.	٩.		-) (-				-		
							1			<u>Λ</u>	<u></u> :		_	.				<u> </u>			-			Λ														
							()	C)) /	A	ITI	n	e	τ	r9	เท	S	0	ri	Π	e	Q		A	r													
				• •	• •	-	-	~	*	. >	Κ.,	R	7	1	· .		1			,	×	×	_	-	-				-	-			94	×	1			
، مد م						_		~	~		×	*	1	, J	0		<u> </u>	<	`	Ξ,		~	-	_	-		_	_		_		_		~	<u>`</u>	1	` ا	
					_	-	-	<u> </u>					<i>′</i> ,	,″			0			`															- ·	/		

< >	~	••	2	-		-	*	×	\times	\times	\times	\times	$\boldsymbol{\times}$	8		×	\times	\times	\times	\varkappa	×	≻	≁				*	><	\times	\times	\times	×	\times	×	1
۱ ک	•	≻	≻	2	24	><	×	⊁	⊁	×	×	•	×	×	×	×	×	×	⊁	×	≻	×		-		*	*	><	⊁	×	×	×	×	×	×
	Κ	×	∕	≫	≻	×	X	X	×	×	×	$\overline{\mathbf{X}}$	×	8	×	×	×	×	×	×	×				**	ø	P	S	\times	×	×	×	×	2	×
	~	×	∕	్≻	$\boldsymbol{\times}$	×	P	J	X	×	×	×	X	8	X	8	×	×	×	×	~			్	Ж		P	J	1	×	8	8	8	×	N
	~	∢	╳	$\boldsymbol{\times}$	•	⊁	×	S	J	×	8	×	×	X	1	1	×	×	×	~	~		×	∝	☓	×	P	8	1	1	×	8	×	N	
`	~	☓	\succ	\times	\times	$\boldsymbol{\times}$	⊁	×	J	X	×	×	X	1	1	1	1	1	8	~	~	×	×	×	×	×	×	S	P	l	P	8	1	N.	
, ,	Κ.	×	$\boldsymbol{\times}$	\times	\times	☓	×	×	×	×	×	8	1				1	1	8	~	×	×	×	×	×	×	్	×	×	l	8	1	1	1	
	<	×	$\boldsymbol{\times}$	\times	×	×	×	•	×	×	X	1						1	8	×	×	×	×	×	×	×	×	్	×	×	8	1	1		
2	<	×	$\boldsymbol{\times}$	×	×	×	×	×	$\boldsymbol{\times}$	×	*	8	1	1	1			1	8	P	×	×	×	×	×	×	×	×	⊁	~	۶,	8	1		
1	R	×	$\boldsymbol{\times}$	•	×	×	×	$\boldsymbol{\times}$	×	⅀	×	*	8	1	1	1	N	\$	×	1	1	×	×	×	×	×	×	×			×	8	1		
1	P	X	⊁	×	×	×	×	>	∾	⅀	×	×	*	1	1	X	×	×	×	P	1	1	×	×	8	8	⅀	~		∕	×	×	*	1	8
	1	P	X	×	⊁	×	×	~	۹	۹	×	×	×	*	1	×	×	×	×	×	P	P	1	×	×	×	~	\	~	×	×	⊁	×	×	1
	<	X	P	×	×	×	>	×	≻	×	$\boldsymbol{\times}$	0	×	×	*	×	*	×	్	×	×	P	P	P	х	~	~	•	⊁	×	×	×	×	×	8
	<	⊁	*	*	24	24	><	≻	≻	$\boldsymbol{\times}$	\times	×	×	×	×	1	×	×	×	×	్≻	><	×	~		~	24	≫	⊁	×	×	×	×	×	×
< >	<	×	74				بد	2	≻	≻	×	×	×	×	×	8	×	×	╳	×	×	*	*				•	▶₹	≫	×	×	×	×	×	\
• >	~	*						20	×	×	×	•	×	×	1	1	8	Х	×	×	*	**	-			-	_	24	⋗₹	×	☓	×	×	~	\mathbf{i}
. ,	×	*	-				-	~	×	×	×	•	×		1	1	8	8	*	⊁	*	-	-					-	×	×	*	∿	~	>	~
G	ล			sia	n	fil	te	ri	nr	1 r	G	E)						(4 <i>\</i> _	Δ	ni		ו†ר	\mathbf{O}	nia	\mathbf{r}	filt		rir	ทก	(]	ΔĒ	-)		