Interpolation on the manifold of K component GMMs

Hyunwoo J. Kim ${ }^{1}$, Nagesh Adluru ${ }^{1}$, Monami Banerjee ${ }^{2}$,Baba C. Vemuri ${ }^{2}$, Vikas Singh
${ }^{1}$ University of Wisconsin-Madison
${ }^{2}$ University of Florida

The motivating problem

- Interpolation (weighted mean) in the K-GMM space.
- Applications: diffusion weighted imaging, statistical machine learning

What's new?

This paper : interpolation of k-GMMs in the K-GMM space w.r.t ℓ_{2}-distance and KL-divergence by numerically efficient schemes (GD, EM, and Modified-EM) Connections of our EM algorithm with functional spaces of Gaussians and the mixture of Gaussian processes
Where is this needed?

- Compressing a K-GMM to a $K^{\prime}-\mathrm{GMM}\left(K>K^{\prime}\right)$.

Clustering K Gaussian distributions with K^{\prime} Gaussian mean functions ($K>K^{\prime}$). Identifying the shortest path in the K-GMM space between two K-GMMs.

- Inpainting, registration, and spatial transformation tasks which involve interpolation For vector samples $X \in \mathbf{R}^{d}$, our approach may address (a) noisy observations with known Gaussian error, (b) ill-conditioned covariance matrices by a small number of high dimensional samples or too many clusters.

PDF INTERPOLATION WITH REPARAMETERIZATION AND DISTANCE

The mean of probability densities $\left\{f_{i}\right\}_{i=1}^{N}$ is given by

$$
\hat{f}=\arg \min _{f \in \operatorname{PDF}} \sum_{i=1}^{N} w_{i} d\left(\Phi(f), \Phi\left(f_{i}\right)\right)^{2}
$$

where $\Phi(\cdot)$ is a mapping function for parameterizing the given probability densities, $d(\cdot, \cdot)$ is a distance metric and w_{i} is a weight for t

DISTANCE METRICS AND DISSIMILARITY MEASURE

ℓ_{2}-distance

where f_{1} and f_{2} are PDFs.
KL-divergence

$$
D\left(f_{1} \| f_{2}\right)=\int f_{1}(x) \log \frac{f_{1}(x)}{f_{2}(x)} d x
$$

where f_{1} and f_{2} are PDFs.

> (3)
ℓ_{2}-distance with the normalized PDFs

$$
d_{n-\ell_{2}}\left(f_{1}, f_{2}\right)^{2}=\int\left(f_{1}^{\prime}(x)-f_{2}^{\prime}(x)\right)^{2} d x=2\left(1-\int_{\mathcal{X}} f_{1}^{\prime}(x) f_{2}^{\prime}(x) d x\right)
$$

where $f_{i}^{\prime}(x)=f_{i}(x) /\left\|f_{i}(x)\right\|_{2}$.

Geodesic distance on the Hilbert sphere

$$
\begin{equation*}
d_{g e o}\left(f_{1}, f_{2}\right)=\cos ^{-1}\left\langle f_{1}^{\prime}, f_{2}^{\prime}\right\rangle_{2}=\cos ^{-1}\left(\int_{\mathcal{X}} f_{1}^{\prime}(x) f_{2}^{\prime}(x) d x\right) \tag{5}
\end{equation*}
$$

$$
\text { where } f_{1}^{\prime} \text { and } f_{2}^{\prime} \text { are normalized PDFs or square-root parameterizations of } f_{1} \text { and } f_{2}
$$

ℓ_{2}-MEAN OF k-GMMs

The ℓ_{2}-mean (arithmetic mean) of $\left\{\mathcal{F}_{n}\right\}_{n=1}^{N}$ minimizes the sum of squared ℓ_{2}-distances to each $\mathcal{F}_{i} \in \mathbf{F}$,
where $\pi_{n}^{j}, \mu_{n}^{j}, \Sigma_{n}^{j}$ are the parameters for $j_{t h}$ component of the $n_{t h}$ GMM

\section*{Interpolation on the manifold of K-GMMs 	ℓ_{2}-distance	
$\mathcal{G}^{*}=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}} \sum_{n}^{N}\left\\|\mathcal{F}_{n}-\mathcal{G}\right\\|_{2}^{2} \quad$ (7)	$\mathcal{G}^{*}=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}} \sum_{n=1}^{N} D\left(\mathcal{F}_{n} \\| \mathcal{G}\right) \quad$ (8)	}

LEMMA 1

The mean of functions $\left\{\mathcal{F}_{n}\right\}_{n=1}^{N}$ w.r.t. ℓ_{2} metric is the closest \mathcal{G}^{*} to the ℓ_{2}-mean $\overline{\mathcal{F}}=\sum_{n}^{N} \frac{\mathcal{F}_{n}}{N}$.

$$
\begin{equation*}
\mathcal{G}^{*}=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}} \sum_{n}^{N}\left\|\mathcal{F}_{n}-\mathcal{G}\right\|_{2}^{2}=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}}\|\overline{\mathcal{F}}-\mathcal{G}\|_{2}^{2} \tag{9}
\end{equation*}
$$

KL-DIVERGENCE AND CROSS ENTROPY MINIMIZATION

$\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}} D(\overline{\mathcal{F}} \| \mathcal{G})=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}} \int \overline{\mathcal{F}}(x) \log \frac{\overline{\mathcal{F}}(x)}{\mathcal{G}(x)} d x=\arg \min _{\mathcal{G} \in \mathbf{G}^{(k)}}-\int \overline{\mathcal{F}}(x) \log \mathcal{G}(x) d x$. (10)

LEMMA 2

Given GMM $f(x):=\sum_{i}^{L} \pi_{i} f_{i}(x)$, where $f_{i}(x)$ is a Gaussian distribution, the minimum cross entropy / KL-divergence between $f(x)$ and an unknown single Gaussian $g:=\mathcal{N}(x ; \mu, \Sigma)$ is

$$
\left(\mu^{*}, \Sigma^{*}\right)=\arg \min _{\mu, \Sigma} H(f(x), \mathcal{N}(x ; \mu, \Sigma)),
$$

where $H(\cdot, \cdot)$ is the cross entropy, $\mu^{*}=\mathbb{E}_{f(x)}[x]$ and $\Sigma^{*}=\mathbb{E}_{f(x)}\left[\left(x-\mu^{*}\right)\left(x-\mu^{*}\right)^{T}\right]$.

EM ALGORITHM FOR MINIMIZING CROSS ENTROPY

E-step: Let $\Theta=\left\{W_{j}, \mu_{j}, \Sigma_{j}\right\}_{j=1}^{K}, \overline{\mathcal{F}}(x)=\sum_{i=1}^{N K} \pi_{i} f_{i}(x)$ and X_{i} be a set of points with density function $f_{i}(x)$.

$$
\gamma_{i j}:=p\left(z_{i}=j \mid X_{i}, \theta\right)=\frac{w_{j} \exp \left[-H\left(f_{i}, g_{j}\right)\right]}{\sum_{j}^{K} w_{j} \exp \left[-H\left(f_{i}, g_{j}\right)\right]}
$$

$H\left(f_{i}, g_{j}\right)$ is analytically obtained as

$$
\frac{1}{2}\left\{k \log 2 \pi+\log \left|\Sigma_{j}\right|+\operatorname{tr}\left[\Sigma_{j}^{-1} \Sigma_{i}\right]+\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma_{j}^{-1}\left(\mu_{i}-\mu_{j}\right)\right\}
$$

$$
\begin{equation*}
\text { M-step: } \quad w_{j}=\frac{\sum_{i=1}^{N K} \pi_{i} \lambda_{i j}}{\sum_{j=1}^{K} \sum_{i=1}^{N K} \pi_{i} \gamma_{i j_{j}}}, \quad \mu_{j}=\mathbb{E}_{\bar{F}_{(}(x)}[x]=\sum_{i=1}^{N K} \pi_{i}^{\prime} \mu_{i} \tag{12}
\end{equation*}
$$

where $\overline{\mathcal{F}}^{\prime}=\sum_{i=1}^{N K} \pi_{i}^{\prime} f_{i}(x)$, and $\pi_{i}^{\prime}=\frac{\pi \pi_{i n}}{\pi_{i} \pi_{n j i}}$, for fixed j.

Modified EM ALGorithm for Limited GPMMs

E-step: Estimate the responsibilities of data PDFs $\{f\}$ to components of our model

$$
\begin{equation*}
\gamma_{i j}=\frac{w_{j} C_{j}^{-1} \exp \left(-\frac{1}{2 c^{2}}\| \|_{i}-g_{j} \|_{2}^{2}\right)}{\sum_{k=1}^{K} w_{k} C_{k}^{-1} \exp \left(-\frac{1}{2 c^{2}}\left\|f_{i}-g_{k}\right\|_{2}^{2}\right.} \tag{13}
\end{equation*}
$$

M-step: Maximize cross entropy given assignments over model parameters (a weight w_{j}, mean function $\mathcal{N}\left(\mu_{j}, \Sigma_{j}\right)$ and a covariance function $\left.C_{j}\right)$.

$$
\begin{equation*}
C_{j}^{2}=\sum_{i=1}^{N K} \gamma_{i j} \pi_{i}\left\|\left.\right|_{i}-g_{j}\right\|_{2}^{2} / \sum_{i=1}^{N K} \gamma_{i} \pi_{i} \pi_{i} \tag{14}
\end{equation*}
$$

w_{j} and μ_{j}, Σ_{j} are updated using (12)

Ensemble average propagator (EAP)

Ensemble average propagator $P(R \mathbf{r})$ describes the probability of diffusion
displacements of water molecules at radius R. Assuming antipodal (radial) symmetries (i.e., $E(q \mathbf{u})=E(-q \mathbf{u})$ and $P(R \mathbf{r})=P(-R \mathbf{r})$), the following relationship holds

$$
P(R \mathbf{r})=\int_{\mathbb{R}^{3}} E(q \mathbf{u}) \cos \left(2 \pi q R \mathbf{u}^{\top} \mathbf{r}\right) \mathrm{d} q \mathbf{u} .
$$

where \mathbf{u}, \mathbf{r} are unit vectors in \mathbb{R}^{3}, q is proportional to the amplitude of the magnetic field gradient along \mathbf{u}. The EAP is a PDF whose domain is \mathbb{R}^{3}.

Figure: The distributions of angular deviations of the peaks(Left) Comparison bet/ projected and noisy data (Right) Comparison bet/ AF with K-GMM (ours) and ℓ_{2} interpolation.
INTERPOLATION PATH ON K-GMM SPACE W.R.T ℓ_{2} DISTANCE

The objective function to identify the path is given by | 0.0 |
| :--- |
| 0.0 |
| 0.2 |
| 2 |

$$
\text { where } \mathcal{G}_{0}\left(\mathcal { G } _ { T + 1 } \text { resp.) is } \mathcal { G } _ { \text { start } } \left(\mathcal{G}_{\text {end }}\right.\right. \text { resp.). }
$$

Figure: ℓ_{2} distance between \mathcal{G}_{0} and \mathcal{G}_{T} is d_{1}. GMMs by the sum of ℓ_{2} distances between many intermediate GMMs. $d_{1} \leq d_{2} \leq \ldots \leq d$ and converg to the true distance d.

$$
\min _{\left\{\mathcal{G}_{t} \in \mathbf{G}^{(k)}\right\}_{t=1}^{T}} \sum_{t=0}^{T}\left\|\mathcal{G}_{t}-\mathcal{G}_{t+1}\right\|_{2}^{2}
$$

The approximate path length is given as

$$
\lim _{T \rightarrow \infty} \sum_{t=0}^{T}\left\|\mathcal{G}_{t}-\mathcal{G}_{t+1}\right\|_{2}=d
$$

formen

