Canonical Correlation Analysis on Riemannian Manifolds and its Applications

$$\sigma_{x,y} = \frac{\text{COV}(x,y)}{\sigma_x \sigma_y} = \frac{\mathbb{E}[(x-\mu_x)(y-\mu_y)]}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^N (x_i - \mu_x)^2} \sqrt{\sum_{i=1}^N (x_i - \mu_x)^2}}$$

$$\max_{\mathbf{w}_{x},\mathbf{w}_{y}} \operatorname{corr}(\pi_{\mathbf{w}_{x}}(\mathbf{x}), \pi_{\mathbf{w}_{y}}(\mathbf{y})) = \max_{\mathbf{w}_{x},\mathbf{w}_{y}} \frac{\sum_{i=1}^{N} \mathbf{w}_{x}^{T}(\mathbf{x}_{i} - \boldsymbol{\mu}_{x}) \mathbf{w}_{y}^{T}(\mathbf{y}_{i} - \boldsymbol{\mu}_{x})}{\sqrt{\sum_{i=1}^{N} (\mathbf{w}_{x}^{T}(\mathbf{x}_{i} - \boldsymbol{\mu}_{x}))^{2}} \sqrt{\sum_{i=1}^{N} (\mathbf{w}_{x}^{T}(\mathbf{x}_{i} - \boldsymbol{\mu}_{x}))^{2}}}$$

http://pages.cs.wisc.edu/~hwkim/projects/riem-cca	¹ University
THE MOTIVATING PROBLEM	FORMULATION WITH FIRST ORDER OPTIMALIT
 Canonical correlation analysis (CCA) based statistical analysis of images where voxel-wise measurement is manifold valued. CCA on the <i>product Riemannian manifold</i> representing SPD matrix-valued fields Correlations between diffusion tensor images (DTI) and Cauchy deformation tensor fields derived from T1-weighted magnetic resonance (MR) images 	$\rho(\boldsymbol{w}_{x}, \boldsymbol{w}_{y}) = \max_{\boldsymbol{w}_{x}, \boldsymbol{w}_{y}, \boldsymbol{t}, \boldsymbol{u}} f(\boldsymbol{t}, \boldsymbol{u}) \text{ s.t. } \nabla_{t_{i}} g(t_{i}, \boldsymbol{w}_{x}) = 0, \nabla_{u}$ $f(\boldsymbol{t}, \boldsymbol{u}) := \frac{\sum_{i=1}^{N} (t_{i} - \overline{t})(u_{i} - \overline{u})}{\sqrt{\sum_{i=1}^{N} (t_{i} - \overline{t})^{2}} \sqrt{\sum_{i=1}^{N} (u_{i} - \overline{u})^{2}}}$ $g(t_{i}, \boldsymbol{w}_{x}) := \ \text{Log}(\text{Exp}(\boldsymbol{\mu}_{x}, t_{i} \boldsymbol{w}_{x}), \boldsymbol{x}_{i})\ ^{2}, g(u_{i}, \boldsymbol{w}_{y}) :$
	OBJECTIVE FUNCTION FOR CCA ON MANIFO
 Extensions of CCA to nonlinear spaces e.g., KCCA, ANN, Deep CCA (ICML 2013) Adaptive CCA (ICML 2012) uses matrix manifold optimization but it's NOT for manifold-valued data This paper : generalization of CCA for Riemannian manifolds Main technical highlight: Exact iterative method as well as single path algorithms with approximate projections (inner product and log-Euclidean) Relationship between transformations on SPD(n) for more accurate approximation 	Given a constrained optimization problem max $f(\mathbf{x})$ s.t. Lagrangian method (ALM) solves a sequence of the form $\max f(\mathbf{x}) + \sum_{i} \lambda_i c_i(\mathbf{x}) - \nu^k \sum_{i} \lambda_i c_i(\mathbf{x}) - \nu^k \sum_{i} \lambda_i c_i(\mathbf{x}) + \sum_{i} \lambda_i c_i(\mathbf{x}) - \nu^k \sum_{i} \lambda_i c_i(\mathbf{x}) + \sum_{i} \lambda_i c$
CCA IN EUCLIDEAN SPACE	$\max_{\boldsymbol{w}_x, \boldsymbol{w}_y, \boldsymbol{t}, \boldsymbol{u}} \mathcal{L}_{\mathcal{A}}(\boldsymbol{w}_x, \boldsymbol{w}_y, \boldsymbol{t}, \boldsymbol{u}, \boldsymbol{\lambda}^{\prime}; \nu^{\prime}) = \max_{\boldsymbol{w}_x, \boldsymbol{w}_y, \boldsymbol{t}, \boldsymbol{u}} f(\boldsymbol{t}, \boldsymbol{u})$
Pearson correlation for $x \in \mathbf{R}$ and $y \in \mathbf{R}$ $\rho_{x,y} = \frac{\text{COV}(x, y)}{\sum_{i=1}^{N} (x_i - \mu_x)(y - \mu_y)} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)} $ (1)	$\sum_{i}^{N} \lambda_{u_i}^k \nabla_{u_i} g(u_i, \boldsymbol{w}_y) - \frac{\nu^k}{2} \left(\sum_{i=1}^{N} \nabla_{t_i} g(t_i, \boldsymbol{w}_y) - \frac{\nu^k}{2} \right) = 0$
$\sigma_x \sigma_y \qquad \qquad$	ITERATIVE ALGORITHM BY AUGMENTED LAGI
$\max_{\boldsymbol{w}_{x}, \boldsymbol{w}_{y}} \operatorname{corr}(\pi_{\boldsymbol{w}_{x}}(\boldsymbol{x}), \pi_{\boldsymbol{w}_{y}}(\boldsymbol{y})) = \max_{\boldsymbol{w}_{x}, \boldsymbol{w}_{y}} \frac{\sum_{i=1}^{N} \boldsymbol{w}_{x}^{T}(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{x}) \boldsymbol{w}_{y}^{T}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{y})}{\sqrt{\sum_{i=1}^{N} (\boldsymbol{w}_{x}^{T}(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{x}))^{2}} \sqrt{\sum_{i=1}^{N} (\boldsymbol{w}_{y}^{T}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{y}))^{2}}} $ (2) where projection coefficient $\pi_{\boldsymbol{w}_{x}}(\boldsymbol{x}) := \arg\min_{t \in \mathbf{R}} d(t\boldsymbol{w}_{x} + \boldsymbol{\mu}_{x}, \boldsymbol{x})^{2}.$ $\frac{\mathbf{CCA on Manifolds: Basic Operations}}{\mathbf{Subtraction} \mathrm{Addition} \mathrm{Distance} \mathrm{Mean} \mathrm{Covariance}}{\mathbf{Euclidean} \overline{x_{i}} \overline{x_{j}} = x_{j} - x_{i} x_{i} + \overline{x_{j}} \overline{x_{k}} \ \overline{x_{i}} \overline{x_{j}}\ \sum_{i=1}^{n} \overline{x} \overline{x_{i}} = 0 \mathbb{E}\left[(x_{i} - \overline{x})(x_{i} - \overline{x})^{T}\right]}$	1: $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{M}_x, \mathbf{y}_1, \dots, \mathbf{y}_N \in \mathcal{M}_y$ 2: Given $\nu^0 > 0, \tau^0 > 0$, starting points $(\mathbf{w}_x^0, \mathbf{w}_y^0, \mathbf{t}^0, \mathbf{u}^0)$ and λ^0 3: for $k = 0, 1, 2 \dots$ do 4: Start at $(\mathbf{w}_x^k, \mathbf{w}_y^k, \mathbf{t}^k, \mathbf{u}^k)$ 5: Find an approximate minimizer $(\mathbf{w}_x^k, \mathbf{w}_y^k, \mathbf{t}^k, \mathbf{u}^k)$ of $\ \nabla \mathcal{L}_A(\mathbf{w}_x^k, \mathbf{w}_y^k, \mathbf{t}^k, \mathbf{u}^k, \lambda^k; \nu^k)\ \le \tau^k$ 6: if a convergence test is satisfied then 7: Stop with approximate feasible solution 8: end if 9: $\lambda_{t_i}^{k+1} = \lambda_{t_i}^k - \nu^k \nabla_{t_i} g(t_i, \mathbf{w}_x), \forall i \text{ and } \lambda_{u_i}^{k+1} = \lambda_{u_i}^k - \nu^k \nabla_{u_i} g(u_i, \mathbf{u})$ 10: Choose new penalty parameter $\nu^{k+1} \ge \nu^k$ 11: Set starting point for the next iteration 12: Select tolerance τ^{k+1} 13: end for
$Riemannian \overrightarrow{x_i x_j} = Log(x_i, x_j) Exp(x_i, \overrightarrow{x_j x_k}) \ Log(x_i, x_j)\ _{x_i} \sum_{i=1}^n Log(\bar{x}, x_i) = 0 \mathbb{E}\left[Log(\bar{x}, x_i)Log(\bar{x}, x_i)^T\right]$	SINGLE PATH ALGORITHM WITH APPROXIMAT
$\pi_{\boldsymbol{w}_{\boldsymbol{x}}}(\boldsymbol{x}) := \arg\min_{t \in \mathbb{R}} d(Exp(\boldsymbol{\mu}_{\boldsymbol{x}}, t \boldsymbol{w}_{\boldsymbol{x}}), \boldsymbol{x})^2 \tag{3}$	$\Pi_{\mathcal{S}}(oldsymbol{x}) pprox Exp(oldsymbol{\mu}, \ \sum_{i=1}^{d}oldsymbol{v}_i \langle oldsymbol{v}_i, Log)$
$\mathcal{M}_{x} \qquad \begin{array}{c} \mathcal{M}_{x} \\ \mathcal{M}_{y} \\ \mathcal{M}_{x} \\ \mathcal{M}_{y} \\ \mathcal{M}$	1: Input $X_1, \ldots, X_N \in \mathcal{M}_y, Y_1, \ldots, Y_N \in M_y$ 2: Compute intrinsic mean μ_x, μ_y of $\{X_i\}, \{Y_i\}$ 3: Compute $X_i^{\wr} = \text{Log}(\mu_x, X_i), Y_i^{\wr} = \text{Log}(\mu_y, Y_i)$ 4: Transform (using group action) $\{X_i^{\wr}\}, \{Y_i^{\wr}\}$ to the $T_I\mathcal{M}_x, T_I\mathcal{M}_y$ 5: Perform CCA between $T_I\mathcal{M}_x, T_I\mathcal{M}_y$ and get axes $W_a \in T_I\mathcal{M}_x$ 6: Transform (using group action) W_a, W_b to $T_{\mu_x}\mathcal{M}_x, T_{\mu_y}\mathcal{M}_y$
	WHY GROUP ACTION IS NEEDED?
Input: $x_1, \ldots, x_N \in \mathcal{M}, y_1, \ldots, y_N \in \mathcal{M}$ Output: $w_x \in T_{\mu_x} \mathcal{M}, w_y \in T_{\mu_y} \mathcal{M}$ (submanifolds), $t_i, u_i \in \mathbf{R}$ (projection coefficients) $\sum_{i=1}^{N} (t_i - \overline{t})(u_i - \overline{u})$	 Transformations to the Identity of SPD(n) for more a Group action is equivalent to the parallel transport f Group action is computationally more efficient
$\rho_{\boldsymbol{x},\boldsymbol{y}} = \max_{\boldsymbol{w}_{\boldsymbol{x}},\boldsymbol{w}_{\boldsymbol{y}},\boldsymbol{t},\boldsymbol{u}} \frac{\sum_{i=1}^{N} (u_{i} - u_{i})}{\sqrt{\sum_{i=1}^{N} (t_{i} - \overline{t})^{2}} \sqrt{\sum_{i=1}^{N} (u_{i} - \overline{u})^{2}}}$	THEOREM
$s.t. t_i = \arg \min_{\substack{t_i \in (-\epsilon,\epsilon)}} \ \text{Log}(\text{Exp}(\mu_x, t_i \boldsymbol{w}_x), \boldsymbol{x}_i)\ ^2, \forall i \in \{1, \dots, N\} $ $u_i = \arg \min_{\substack{u_i \in (-\epsilon,\epsilon)}} \ \text{Log}(\text{Exp}(\mu_y, u_i \boldsymbol{w}_y), \boldsymbol{y}_i)\ ^2, \forall i \in \{1, \dots, N\} $ (4)	On SPD manifold, let $\Gamma_{p \to I}(w)$ denote the parallel transpected geodesic from $p \in \mathcal{M}$ to $I \in \mathcal{M}$. The parallel transport $p^{-1/2}wp^{-T/2}$, where the inner product $\langle u, v \rangle_p = \operatorname{tr}(p^{-1/2})$

Input:
$$x_1, \ldots, x_N \in \mathcal{M}, y_1, \ldots, y_N \in \mathcal{M}$$

Output: $w_x \in T_{\mu_x} \mathcal{M}, w_y \in T_{\mu_y} \mathcal{M}$ (submanifolds), $t_i, u_i \in \mathbf{R}$ (projection c
 $\rho_{\mathbf{x},\mathbf{y}} = \max_{w_x,w_y,t,\mathbf{u}} \frac{\sum_{i=1}^N (t_i - \overline{t})(u_i - \overline{u})}{\sqrt{\sum_{i=1}^N (t_i - \overline{t})^2} \sqrt{\sum_{i=1}^N (u_i - \overline{u})^2}}$
s.t. $t_i = \arg\min_{t_i \in (-\epsilon,\epsilon)} \|\text{Log}(\text{Exp}(\mu_x, t_i w_x), \mathbf{x}_i)\|^2, \forall i \in \{1, \ldots, u_i = \arg\min_{u_i \in (-\epsilon,\epsilon)} \|\text{Log}(\text{Exp}(\mu_y, u_i w_y), \mathbf{y}_i)\|^2, \forall i \in \{1, \ldots, u_i = \arg\min_{u_i \in (-\epsilon,\epsilon)} \|\text{Log}(\text{Exp}(\mu_y, u_i w_y), \mathbf{y}_i)\|^2, \forall i \in \{1, \ldots, u_i = \arg\min_{u_i \in (-\epsilon,\epsilon)} \|\text{Log}(\text{Exp}(\mu_y, u_i w_y), \mathbf{y}_i)\|^2$

European Conference on Computer Vision (ECCV) 2014

Research supported in part by NIH R01 AG040396, NIH R01 AG037639, NSF CAREER award 1252725, NSF RI 1116584, Waisman Center CIHM, Wisconsin ADRC.

