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THE MOTIVATING PROBLEM

I General linear model (GLM) based statistical analysis of images where voxel-wise
measurement is manifold valued.

I Identify how the relationships of voxels differ across clinically disparate groups, while
controlling for one or more nuisance variables.

WHAT IS NEW?

I Fletcher (IJCV, 2013) provides methods for geodesic regression for f : R→M.
I Extended for regressing f : R→ S∞ by Du et al. (NeuroImage, 2014).
I This paper: multivariate multiple linear regression on manifold data, f : Rn →M.
I The same general recipe works for both cases: y ∈ SPD(3) for diffusion tensor images

(DTI) and y ∈ S∞ for orientation distribution functions (ODFs).
I Main technical highlight: Exact variational framework for Rn where n > 1 as well as a

faster (but approximate) Log-Euclidean framework for optimization.

REGRESSION ON MANIFOLDS: BASIC OPERATIONS
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v1, v2 are tangent vectors. Each entry
of independent variables (x1, x2) ∈ R2,
is multiplied by v1 and v2 respectively in
TpM. Here, x j

i denotes j-th entry of the
i-th instance.

MULTIVARIATE GENERAL LINEAR MODELS (MGLM)

High level goal: Identify relationship of response variables with covariates; assess
statistical significance of differences of regression coefficients across disparate groups.

EUCLIDEAN AND RIEMANNIAN MGLMS

Euclidean
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is the normalization factor.

OBJECTIVE FUNCTION FOR MGLMS ON MANIFOLDS

Input: x1, . . . , xN ∈ Rn, y1, . . . , yN ∈M
Output: p ∈M (the anchor point), v1, . . . , vn ∈ TpM
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1
2

N∑
i=1

d(Exp(p,Vxi), yi)
2, where Vxi :=

n∑
j=1

v jx j
i

HIGH LEVEL SUMMARY OF OPTIMIZATION SCHEME

Main decision variables to estimate: p and v1, . . . , vn
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Procedure: Given a current estimate of p and V , first update p by calculating error in
ŷ followed by a parallel transport to p. Same procedure for V but slightly more involved
(involves a gradient projection type step). All details in the paper.

OPTIMIZATION ALGORITHMS

Exact Variational Method
Initialize p, v , α, αmax and center x
while termination condition do

pnew = Exp(p,−α∇pE)
Vnew = Γp→pnew(V − α∇VE)
if E(pnew ,Vnew) < E(p,V ) then

V ← Vnew and P ← Pnew
α = min(2α, αmax)

else
α = α/2

end if
end while

Faster Log-Euclidean Approximation
I Compute x oi = xi − x̄ , . center x
I Compute Karcher mean ȳ of {yi}n

i=1, .
p∗ ≈ ȳ

I Compute y oi = Log(ȳ , yi)

I Parallel transport y oi from TȳM to TIM
I V = Y oX oT (X oX oT )−1, . V ∗ ≈ V
I Parallel transport V from TIM to TȳM

PROPOSITION

Let Y = {y1, . . . , yN} be a subset of a manifoldM. Suppose that Y is in a sufficiently
small open cover B such that the exponential and logarithm maps are bijections. Suppose
that all y ∈ Y are on a curve Ω that is the unique geodesic curve between some yi and yj
in Y . Then there exists ȳ in Ω such that

∑
y∈Y Logȳy = 0 (the first order condition for

Karcher mean).
Further, if ȳ is the unique Karcher mean of Y ⊂ Ω, and it is obtained in B, then ȳ ∈ Ω. And
for some v ∈ TȳM and each y, there exists x ∈ R such that y = Exp(ȳ , vx).

MANIFOLDS IN DIFFUSION WEIGHTED IMAGE ANALYSIS

I Diffusion tensors: Symmetric positive definite (SPD) matrix estimated at each voxel,
SPD(n). Forms a quotient space GL(n)/O(n).

I Orientation distributions: Using the square root parameterization, ODFs form a unit
Hilbert sphere (S∞), Ψ = {ψ : S2→ R+|∀s ∈ S2, ψ(s) ≥ 0;

∫
s∈S2 ψ

2(s)ds = 1}.

SYNTHETIC EXPERIMENTS FOR f : R2→M

If the response variable y has a dependence on two covariates, x1 and x2, a multivariate
GLM model is essential; geodesic regression solving for f : R→M will not suffice.

PERMUTATION TESTING FOR STATISTICAL SIGNIFICANCE, P-VALUE MAPS

I Full: y = Exp
(
Exp

(
p, v1x1 + v2x2 + . . . + v i−1x i−1 + v ix i + v i+1x i+1 + . . . + vnxn

)
, ε
)
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)
, ε
)

NEUROIMAGING EXPERIMENTS: DATA AND DESIGN

I Data: (a) AD Risk: Group ∈ {APOE+,APOE-}, y ∈ SPD(3), N = 343; (b)
Contemplative Neuroscience (CN): Group ∈ {LTM,WLC}, y ∈ S14, N = 49.

I MGLMs: Full: y = Exp(p, v1Group + v2Gender + v3Age); For group effect:
y = Exp(p, v2Gender + v3Age); For age effect: y = Exp(p, v1Group + v2Gender)

Figure : Effect of Group controlling for age and gender. AD study (left); CN study (right).

Figure : Effect of Age controlling for group and gender. AD study (left). CN study (right).
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