

Multivariate General Linear Models (MGLM) on Riemannian Manifolds

Hyunwoo J. Kim, Nagesh Adluru, Maxwell D. Collins, Moo K. Chung, Barbara B. Bendlin, Sterling C. Johnson, Richard J. Davidson, Vikas Singh

<http://pages.cs.wisc.edu/~hwkim/projects/riem-mglm/>

THE MOTIVATING PROBLEM

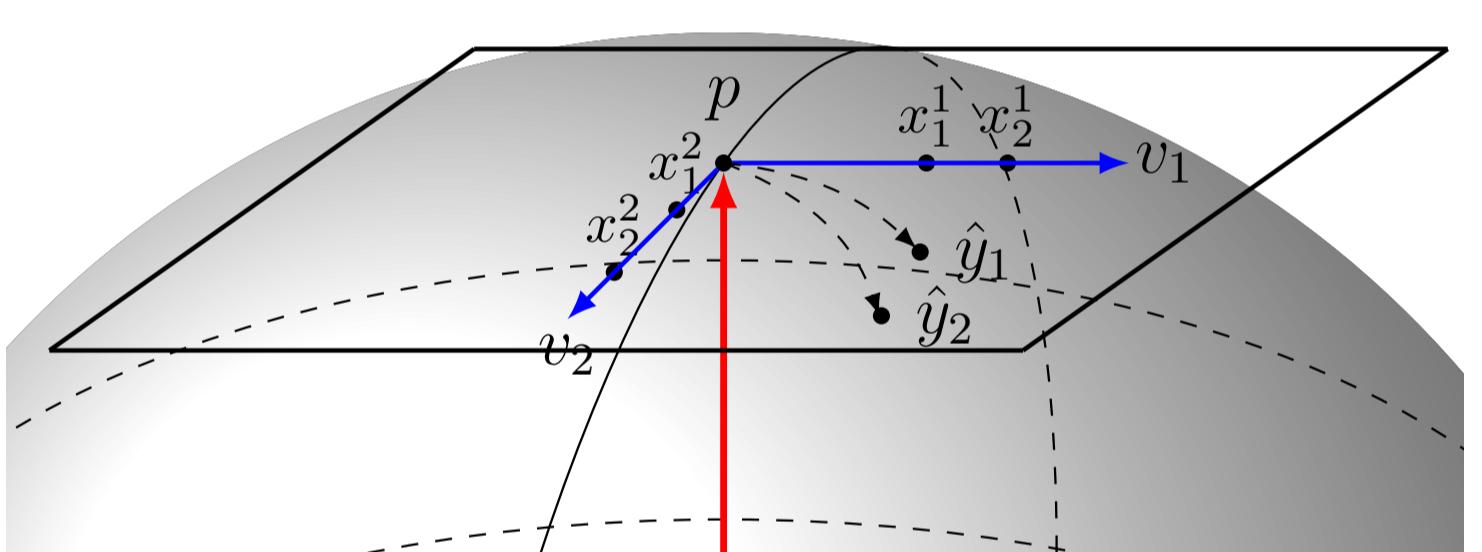
- General linear model (GLM) based statistical analysis of images where voxel-wise measurement is manifold valued.
- Identify how the relationships of voxels **differ** across clinically disparate groups, *while controlling for one or more nuisance variables*.

WHAT IS NEW?

- Fletcher (IJCV, 2013) provides methods for geodesic regression for $f: \mathbf{R} \rightarrow \mathcal{M}$.
- Extended for regressing $f: \mathbf{R} \rightarrow S^\infty$ by Du et al. (NeuroImage, 2014).
- This paper:** multivariate multiple linear regression on manifold data, $f: \mathbf{R}^n \rightarrow \mathcal{M}$.
- The same general recipe works for both cases: $y \in \text{SPD}(3)$ for diffusion tensor images (DTI) and $y \in S^\infty$ for orientation distribution functions (ODFs).
- Main technical highlight:** Exact variational framework for \mathbf{R}^n where $n > 1$ as well as a faster (but approximate) Log-Euclidean framework for optimization.

REGRESSION ON MANIFOLDS: BASIC OPERATIONS

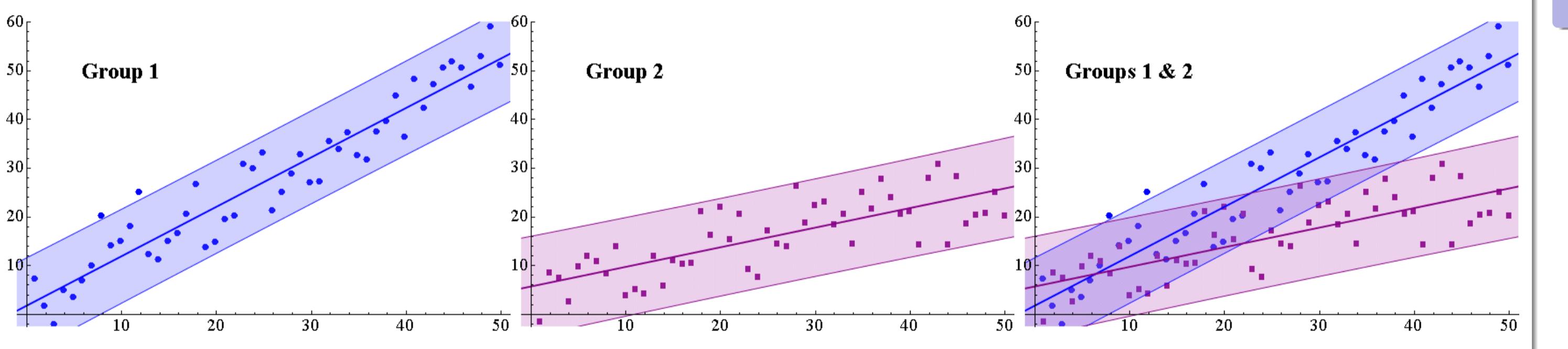
Operation	Subtraction	Addition	Distance	Mean	Covariance
Euclidean	$\bar{x}_i \bar{x}_j = x_j - x_i$	$x_i + \bar{x}_j \bar{x}_k$	$\ \bar{x}_i \bar{x}_j\ $	$\sum_{i=1}^n \bar{x}_i \bar{x}_j = 0$	$\mathbb{E}[(x_i - \bar{x})(x_i - \bar{x})^T]$
Riemannian	$\bar{x}_i \bar{x}_j = \text{Log}(x_i, x_j)$	$\text{Exp}(x_i, \bar{x}_j \bar{x}_k)$	$\ \text{Log}(x_i, x_j)\ _{x_i}$	$\sum_{i=1}^n \text{Log}(\bar{x}, x_i) = 0$	$\mathbb{E}[\text{Log}(\bar{x}, x_i) \text{Log}(\bar{x}, x_i)^T]$



v^1, v^2 are tangent vectors. Each entry of independent variables $(x^1, x^2) \in \mathbf{R}^2$, is multiplied by v_1 and v_2 respectively in $T_p \mathcal{M}$. Here, x_i^j denotes j -th entry of the i -th instance.

MULTIVARIATE GENERAL LINEAR MODELS (MGLM)

High level goal: Identify relationship of response variables with covariates; assess statistical significance of differences of regression coefficients across disparate groups.



EUCLIDEAN AND RIEMANNIAN MGLMs

Euclidean

$$y = \alpha + \beta^1 x^1 + \beta^2 x^2 + \dots + \beta^n x^n + \epsilon,$$

where $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$ and $\epsilon \sim \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp(-\frac{1}{2}(y - \mu)^T \Sigma^{-1} (y - \mu))$.

Riemannian

$$y = \text{Exp}(\text{Exp}(p, v^1 x^1 + v^2 x^2 + \dots + v^n x^n), \epsilon),$$

where $\epsilon \sim \frac{1}{Z(\mu, \sigma)} \exp(-\frac{d(y, \mu)^2}{2\sigma^2})$ and $Z(\mu, \sigma) = \int_{\mathcal{M}} \exp(-\frac{d(y, \mu)^2}{2\sigma^2})$ is the normalization factor.

OBJECTIVE FUNCTION FOR MGLMs ON MANIFOLDS

Input: $x_1, \dots, x_N \in \mathbf{R}^n, y_1, \dots, y_N \in \mathcal{M}$
Output: $p \in \mathcal{M}$ (the anchor point), $v^1, \dots, v^n \in T_p \mathcal{M}$

$$\min_{p \in \mathcal{M}, \forall j, v^j \in T_p \mathcal{M}} \frac{1}{2} \sum_{j=1}^N d(\text{Exp}(p, Vx_i), y_i)^2, \text{ where } Vx_i := \sum_{j=1}^n v^j x_i^j$$

HIGH LEVEL SUMMARY OF OPTIMIZATION SCHEME

Main decision variables to estimate: p and v^1, \dots, v^n

$$E(p, v) = \frac{1}{2} \sum_i \langle \text{Log}(\hat{y}_i, y_i), \text{Log}(\hat{y}_i, y_i) \rangle_{\hat{y}_i} = \frac{1}{2} \sum_i \langle \Gamma_{\hat{y}_i \rightarrow p} \text{Log}(\hat{y}_i, y_i), \Gamma_{\hat{y}_i \rightarrow p} \text{Log}(\hat{y}_i, y_i) \rangle_p, \quad (1)$$

where $\hat{y}_i = \text{Exp}(p, \sum_j x_i^j v^j)$. The model in tangent space $T_p \mathcal{M}$ is given as

$$\min_{p, v} E(p, v) := \min_{p, v} \frac{1}{2} \sum_i \left\| \left(\sum_j v^j x_i^j + p \right) - y_i \right\|^2 \quad (2)$$

Procedure: Given a current estimate of p and V , first update p by calculating error in \hat{y} followed by a parallel transport to p . Same procedure for V but slightly more involved (involves a gradient projection type step). [All details in the paper](#).

OPTIMIZATION ALGORITHMS

Exact Variational Method

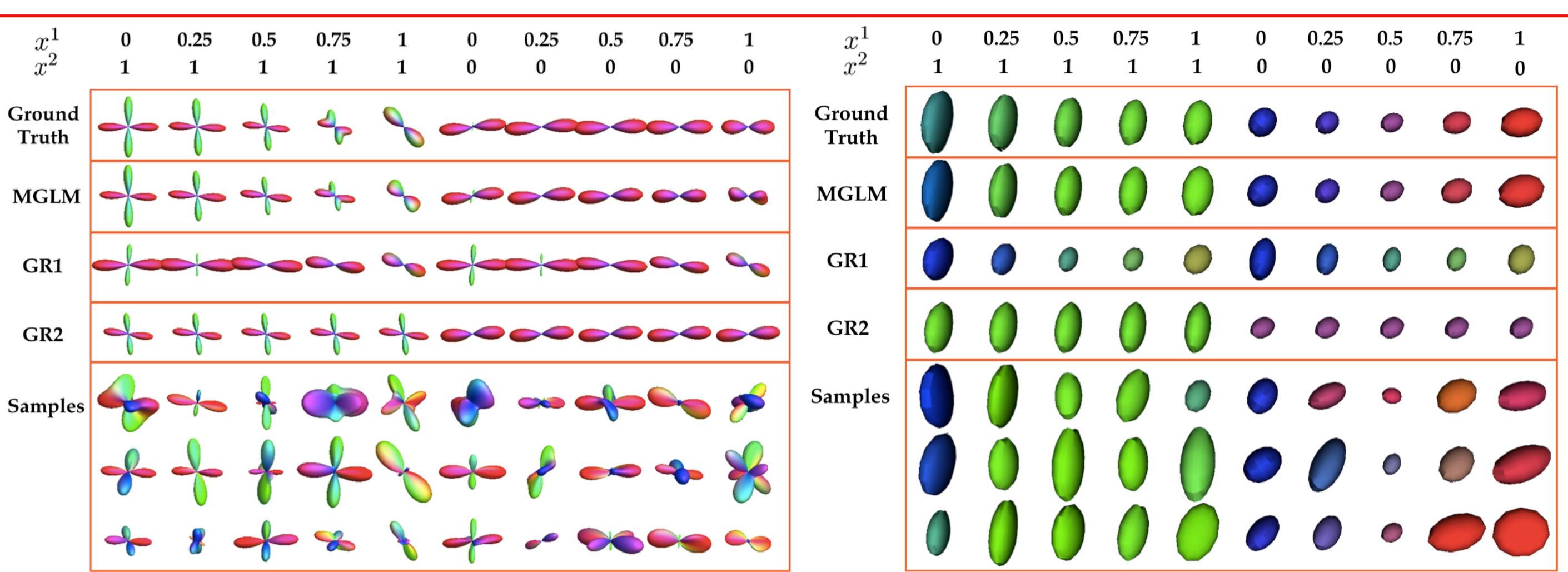
Initialize $p, V, \alpha, \alpha_{\max}$ and center x
while termination condition **do**
 $p_{\text{new}} = \text{Exp}(p, -\alpha \nabla_p E)$
 $V_{\text{new}} = \Gamma_{p \rightarrow p_{\text{new}}} (V - \alpha \nabla_V E)$
if $E(p_{\text{new}}, V_{\text{new}}) < E(p, V)$ **then**
 $V \leftarrow V_{\text{new}}$ and $P \leftarrow P_{\text{new}}$
 $\alpha = \min(2\alpha, \alpha_{\max})$
else
 $\alpha = \alpha/2$
end if
end while

Faster Log-Euclidean Approximation

- Compute $x_i^l = x_i - \bar{x}$, \triangleright center x
- Compute Karcher mean \bar{y} of $\{y_i\}_{i=1}^n$, \triangleright $p^* \approx \bar{y}$
- Compute $y_i^l = \text{Log}(\bar{y}, y_i)$
- Parallel transport y_i^l from $T_{\bar{y}} \mathcal{M}$ to $T_i \mathcal{M}$
- $V = Y^l X^{lT} (X^l X^{lT})^{-1}$, $\triangleright V^* \approx V$
- Parallel transport V from $T_i \mathcal{M}$ to $T_{\bar{y}} \mathcal{M}$

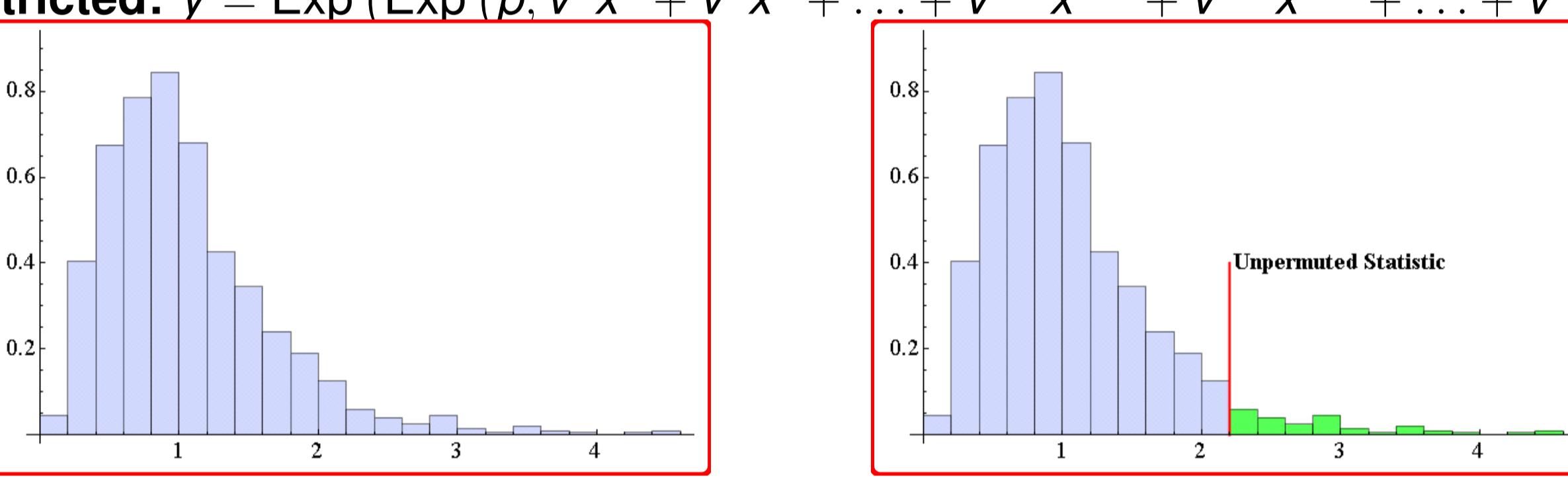
SYNTHETIC EXPERIMENTS FOR $f: \mathbf{R}^2 \rightarrow \mathcal{M}$

If the response variable y has a dependence on two covariates, x^1 and x^2 , a multivariate GLM model is essential; geodesic regression solving for $f: \mathbf{R} \rightarrow \mathcal{M}$ will not suffice.



PERMUTATION TESTING FOR STATISTICAL SIGNIFICANCE, P-VALUE MAPS

- Full:** $y = \text{Exp}(\text{Exp}(p, v^1 x^1 + v^2 x^2 + \dots + v^{i-1} x^{i-1} + v^i x^i + v^{i+1} x^{i+1} + \dots + v^n x^n), \epsilon)$
- Restricted:** $y = \text{Exp}(\text{Exp}(p, v^1 x^1 + v^2 x^2 + \dots + v^{i-1} x^{i-1} + v^{i+1} x^{i+1} + \dots + v^n x^n), \epsilon)$



NEUROIMAGING EXPERIMENTS: DATA AND DESIGN

- Data:** (a) **AD Risk:** Group $\in \{\text{APOE+}, \text{APOE-}\}$, $y \in \text{SPD}(3)$, $N = 343$; (b) **Contemplative Neuroscience (CN):** Group $\in \{\text{LTM}, \text{WLC}\}$, $y \in S^{14}$, $N = 49$.
- MGLMs:** **Full:** $y = \text{Exp}(p, v^1 \text{Group} + v^2 \text{Gender} + v^3 \text{Age})$; **For group effect:** $y = \text{Exp}(p, v^2 \text{Gender} + v^3 \text{Age})$; **For age effect:** $y = \text{Exp}(p, v^1 \text{Group} + v^2 \text{Gender})$

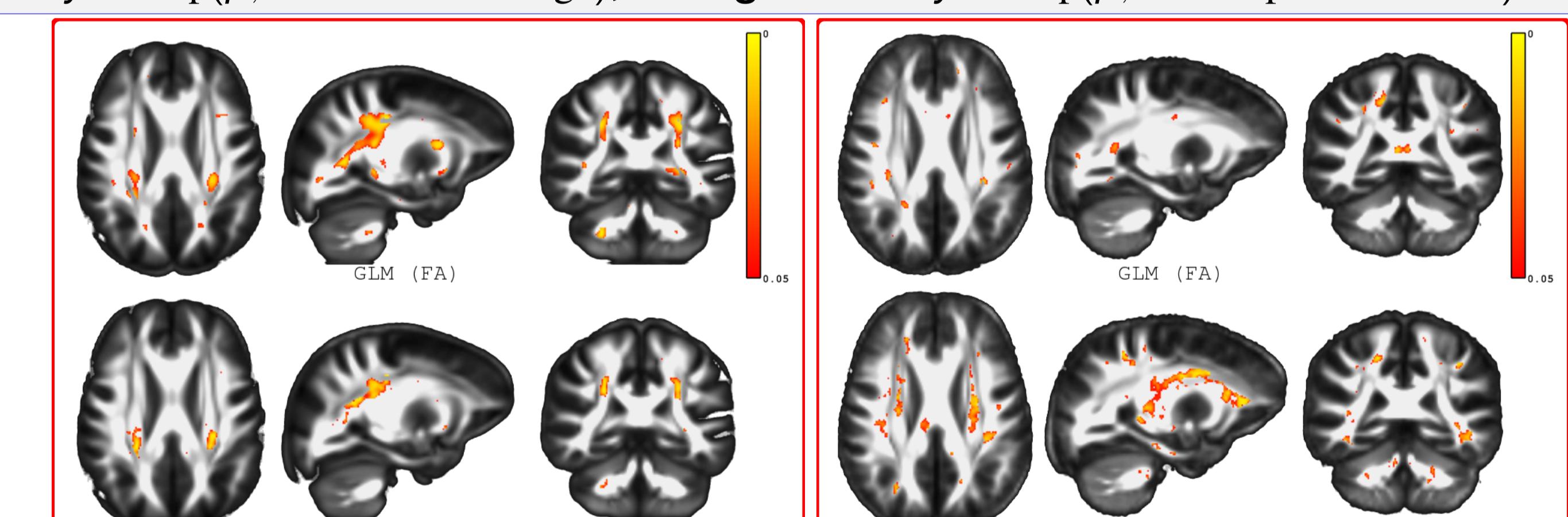


Figure : Effect of Group controlling for age and gender. AD study (left); CN study (right).

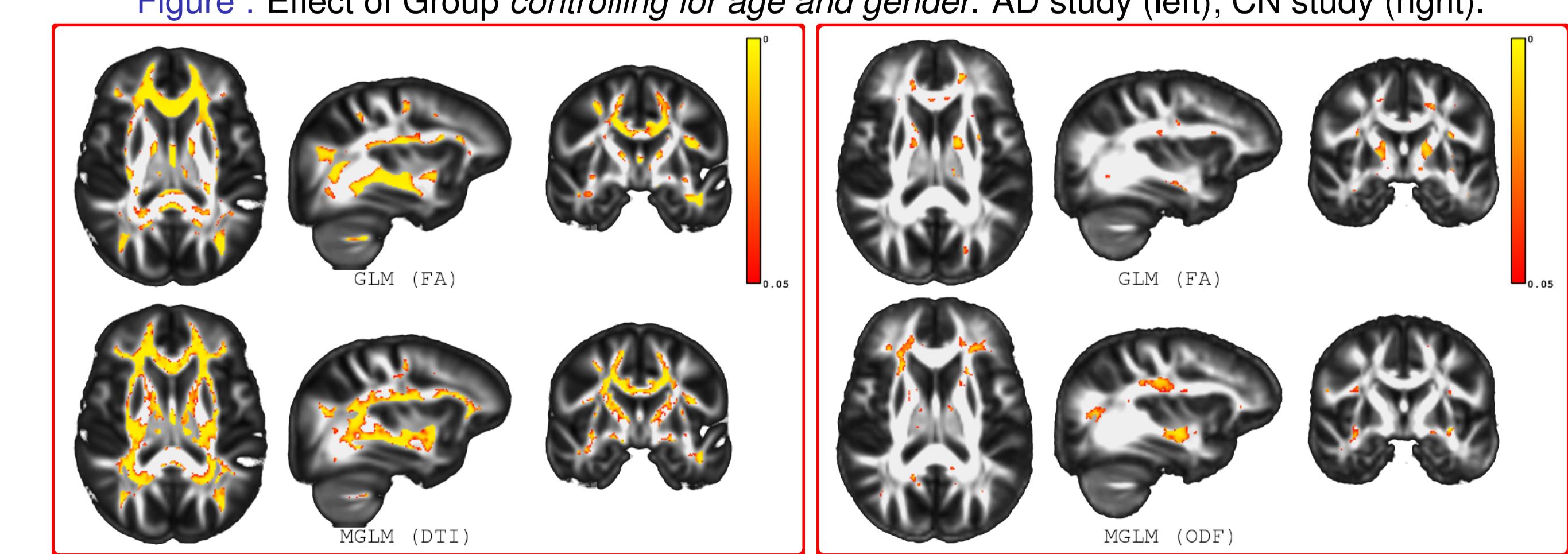


Figure : Effect of Age controlling for group and gender. AD study (left). CN study (right).