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THE MOTIVATING PROBLEM

» General linear model (GLM) based statistical analysis of images where voxel-wise
measurement is manifold valued.

» ldentify how the relationships of voxels differ across clinically disparate groups, while
controlling for one or more nuisance variables.

OBJECTIVE FUNCTION FOR MGLMs ON MANIFOLDS

SYNTHETIC EXPERIMENTS FOR f : R — M

WHAT IS NEW?

Input: x1,.... xveR", yq,....,yn EM

Output: p € M (the anchor point), v',... v" € T,M
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If the response variable y has a dependence on two covariates, x' and x2, a multivariate
GLM model is essential; geodesic regression solving for f : R — M will not suffice.

» Fletcher (IUCV, 2013) provides methods for geodesic regression for f : R — M.

» Extended for regressing f : R — S by Du et al. (Neurolmage, 2014).

» This paper: multivariate multiple linear regression on manifold data, f : R" — M.

» The same general recipe works for both cases: y € SPD(3) for diffusion tensor images
(DTI) and y € & for orientation distribution functions (ODFs).

» Main technical highlight: Exact variational framework for R” where n > 1 as well as a
faster (but approximate) Log-Euclidean framework for optimization.

HIGH LEVEL SUMMARY OF OPTIMIZATION SCHEME

REGRESSION ON MANIFOLDS: BASIC OPERATIONS

Operation Subtraction Addition Distance Mean Covariance
Euclidean XX = Xj — X; X; + XXk |1xX| D X% =0 E [(xi — X)(x; — X) ]
Riemannian ~ xX; = Log(xi, )  Exp(xi,Xxk)  Log(xi,X)llx, S Log(X,x)=0 E [Log(X,x;)Log(x,x;)T]

v!, v2 are tangent vectors. Each entry
of independent variables (x', x?) € R,
Is multiplied by v4 and v»> respectively in
T,M. Here, x; denotes j-th entry of the
_I-th instance.

Main decision variables to estimate: pand v',... v"
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where y; = Exp(p, D x/vf) The model in tangent space [, M is given as

rgln E(p', V) = m|n ns Z I( Z vixl + p) — yit||? (2)

Procedure: Given a current estimate of p and V, first update p by calculating error in
y followed by a parallel transport to p. Same procedure for V but slightly more involved

“(involves a gradient projection type step). All detalls in the paper.
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PERMUTATION TESTING FOR STATISTICAL SIGNIFICANCE, P-VALUE MAPS

OPTIMIZATION ALGORITHMS

MULTIVARIATE GENERAL LINEAR MODELS (MGLM)

High level goal: Identify relationship of response variables with covariates; assess
statistical significance of differences of regression coefficients across disparate groups.
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» Full: y = Exp (Exp (p, vIx" + vex2 + ...
» Restricted: y = Exp (Exp (p,vx' + v?x? + ...
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NEUROIMAGING EXPERIMENTS: DATA AND DESIGN

» Data: (a) AD Risk: Group € {APOE+, APOE-}, y € SPD(3), N = 343; (b)
Contemplative Neuroscience (CN): Group € {LTM, WLC}, y € S N = 49.
» MGLMs: Full: y = Exp(p, v'Group + v?Gender + v3Age); For group effect:
y = Exp(p, v?Gender + v3Age); For age effect: y = Exp(p, v'Group + vGender)

EUCLIDEAN AND RIEMANNIAN MGLMs

'Exact Variational Method
Inltl-allze P, V, &, Qtmax annl S 2¢ Faster Log-Euclidean Approximation
while termination condition do Compute X! — x; — X > center x
Prew = EXp(p, —aVpE) " P - ’
View = Tpsp. (V — aVyE) » Compute Karcher mean y of {y;}!,, ©
if E(Pnew, Voew) < E(p, V) then p-ry 2 .
V  Vipew and P+ Ppey ~ Compute y; = Log(y, yi)
a = min(2a, Amax) » Parallel transport y; from Ty M to T}M
else » V=YX () > Via V
a=a/2 » Parallel transport V from T)M to Ty M
end if ‘ ’
end while
PROPOSITION
LetY ={y1,...,yn} be a subset of a manifold M. Suppose that Y is in a sufficiently

small open cover B such that the exponential and logarithm maps are bijections. Suppose
that ally ¢ Y are on a curve Xl that is the unique geodesic curve between some y; and y;
in Y. Then there exists y in {2 such that ) yey LOgyy = 0 (the first order condition for
Karcher mean).

Further, if y is the unique Karcher mean of Y C 0, and it is obtained in B, then y € Q1. And
for some v € Ty M and each y, there exists x € R such that y = Exp(y, vx).

Euclidean

y=a+ 8" x"+ x5+ ...+ 8"+,

where x ¢ R"and y € R and ¢ ~ \/mexp (—3(y — )=y — ).
Riemannian
y =Exp (Exp (p, vIx" + v2x% + ...+ V'X") J¢)
z(fw) ( d(y” ) and Z(p,0) = [,, exp( gy ) IS the normalization factor.

MANIFOLDS IN DIFFUSION WEIGHTED IMAGE ANALYSIS
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» Diffusion tensors: Symmetric positive definite (SPD) matrix estimated at each voxel,
SPD(n). Forms a quotient space GL(n)/O(n).

» Orientation distributions: Using the square root parameterization, ODFs form a unit
Hilbert sphere (S), ¥ = {¢ : §* — R"|Vs € §%,¢(s) > 0; [, . ¥°(s)ds = 1}.
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Figure : Effect of Group controlling for age and gender. AD study (left); CN study (right).

(ODF')

MGLM (DTI)

MGLM (ODF)

Figure : Effect of Age controlling for group and gender. AD study (left). CN study (right).
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