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# of errors = 
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Multiple correction

• Family-Wise Error Rate (FWER) 

• False discovery rate (FDR) 

Reduce statistical power (recall) !! 
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n voxels

n’ voxels
n’ < n

Improve the statistic power

Control the type I error!
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Scalar variables



Manifold-valued data

DTI

D =

0

@
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A xTDx > 0, x 6= 0

Manifold-valued data

NOT a vector space!



Independent filtering

Two steps: 

• Filter out the some variables using filter statistic 

• Testing on variables passing the filter using test statistic



Independent filtering

Key: filter statistic and test statistic are marginally 
independent. Independent under null hypothesis 
and dependent under alternative hypothesis.

Two steps: 

• Filter out the some variables using filter statistic 

• Testing on variables passing the filter using test statistic
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Null distribution

voxels for hypothesis tests

Filter by test statistic
Independent filtering statistic
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MLE:

The solution is: 

Energy function (second moment)

Parametric estimation

� is the inverse function of � 7! �3 ⇥ d
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[Salem Said et al. 2016]



MLE:

The solution is: 

Parametric estimation

[Salem Said et al. 2016]

� is the inverse function of � 7! �3 ⇥ d

d�
log⇣(�).

_
� = �(En(X)) = �(

1

n

nX

i=1

d2(X,Xi)), (1)

Energy function (second moment)

is a strictly increasing function



Our scheme

Riemannian 
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Riemannian 
manifold statistics



43

M

ȳ
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Test statistic

LeMean: Log-Euclidean mean-based permutation Test
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Test statistic

LeMean: Log-Euclidean mean-based permutation Test

Cramer Test: with intrinsic metric or Log-Euclidean

No distribution assumption



t-test + SVF

Experiment setup

Benchmark:

t-test + RVF

Comparison:

LeMean+ RVF Cramer+ RVF
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15 with effect, 15 without effect

Data
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Experiment results - 1
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FA based methods failed!



Experiment results - 2

60% filtered out

changes the 
orientation and 

eigenvalues 



Simulated data HCP

400 subjects:  
200 male and 200 female

30 subjects:  
15 with effect, 15 without effect

Data

 



Experiment results - 3

(FDR,              )



• Filtering (feature selection)  is ubiquitous in data 
science and it may change the null distribution of 
downstream analysis.  

• Independent filtering does not change the null 
distribution (p-values in downstream analysis 
remain valid) while improving statistical power.  

• We studied independent filterings for manifold-
valued data.

Conclusion
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