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Multiple comparison problem

P(at least one significant result) = 1 — P(no significant results)

n>15P>1/2
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Multiple correction

e Family-Wise Error Rate (FWER)

e False discovery rate (FDR)

FDR =E|V/R| L «




Bonferroni correction (FWER)
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Benjamini & Hochberg (FDR)
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Independent filtering

Independent filtering increases detection
power for high-throughput experiments

Richard Bourgon®, Robert Gentleman®, and Wolfgang Huber®'
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‘European Molecular Biology Laboratory, 69117 Heidelberg, Germany

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)

With high-dimensional data, variable-by-variable statistical testing
is often used to select variables whose behavior differs across con-
ditions. Such an approach requires adjustment for multiple testing,
which can result in low statistical power. A two-stage approach
that first filters variables by a criterion independent of the test
statistic, and then only tests variables which pass the filter, can
provide higher power. We show that use of some filter/test statis-
tics pairs presented in the literature may, however, lead to loss of
type | error control. We describe other pairs which avoid this
problem. In an application to microarray data, we found that
gene-by-gene filtering by overall variance followed by a t-test
increased the number of discoveries by 50%. We also show that
this particular statistic pair induces a lower bound on fold-change
among the set of discoveries. Independent filtering—using filter/
test pairs that are independent under the null hypothesis but
correlated under the alternative—is a general approach that can
substantially increase the efficiency of experiments.

gene expression | multiple testing

n many experimental contexts which generate high-dimensional

data, variable-by-variable statistical testing is used to select vari-
ables whose behavior differs across the set of studied conditions.
Each variable is associated with a null hypothesis which asserts
that behavior for that variable does not differ across conditions.
A null hypothesis is rejected when observed data, summarized
into a per-variable p-value, are deemed to be inconsistent with
the hypothesis. In biology, for example, microarrays or high-
throughput sequencing may be used to identify genes (variables)
whose expression level shows svstematic covariation with a treat-

few dozen or hundred. As a consequence, the power of an experi-
ment to detect a given differentially expressed gene could poten-
tially be quite low.

In the microarray literature, several authors have suggested
filtering to reduce the impact that multiple testing adjustment
has on detection power (7-12). Conceptually similar screening
approaches have also been proposed for variable selection in
high-dimensional regression models (13, 14). In filtering for
microarray applications, the data are first used to identify and
remove a set of genes which seem to generate uninformative
signal. Second, formal statistical testing is applied only to genes
which pass the filter. An effective filter will enrich for true differ-
ential expression while simultaneously reducing the number of
hypotheses tested at stage two—making multiple testing adjust-
ment less severe. Such filtering is further motivated by the obser-
vation that the set of genes which are not differentially expressed
can be partitioned into two groups: (i) genes that are not ex-
pressed in any of the conditions of the experiment or whose
reporters on the array lack sensitivity to detect their expression;
and (i) genes that are expressed and detectable, but not differ-
entially expressed across conditions.

This two-stage approach, the use of which need not be re-
stricted to gene expression applications, assesses each variable
on the basis of both a filter statistic (U’) and a test statistic
(U™). Both statistics are required to exceed their respective cut-
offs. Note, however, that the two-stage approach is not equivalent
to standard hypothesis testing based on the joint distribution of
the filter and test statistics: the latter uses a joint null distribution
to compute type I error rate, while the former only considers the
null distribution of the stage-two test statistic.
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Manifold-valued data

NOT a vector space!

Manifold-valued data
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Independent filtering

Two steps:
* Filter out the some variables using filter statistic

* Testing on variables passing the filter using test statistic



iIndependent filtering

Two steps:
* Filter out the some variables using filter statistic

* Testing on variables passing the filter using test statistic

Key: filter statistic and test statistic are marginally
independent. Independent under null hypothesis
and dependent under alternative hypothesis.
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Riemannian Gaussian distribution

F(X;p,0) = ﬁexp(

d(X, u)2>

202

where

(o) = /M exp ( d(§;5)2) dX.

X I1s manifold-valued
d 1S the geodesic distance
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Parametric estimation

Energy function (second moment)
En(X) = 3 d(X, X)?
1=1

MLE: g
3 _ g
o o log ((0) = &EL(X)

The solution Is:

. 7 = $(6a(X)) = (5 (X, Xy)

d

¢ is the inverse function of o — ¢° x %logg(a).

[Salem Said et al. 2016]




Parametric estimation

Energy function (second moment)

MLE:

5 log ((0) = £4(X)

The solution Is:

s  d

X %logC(a).

[Salem Said et al. 2016]

¢ is the inverse function of o — o
IS a strictly increasing function
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lest statistic

LeMean: Log-Euclidean mean-based permutation Test

U = dgeo(Xla XQ)



Jest statistic
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lest statistic

LeMean: Log-Euclidean mean-based permutation Test
U = dgeo(le Xg)

Cramer Test: with intrinsic metric or Log-Euclidean
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1=1 5=1 1=1 1= 31_7
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EXperiment setup

Benchmark:

t-test + SVF

Comparison:

t-test + RVF LeMean+ RVF Cramer+ RVF



Data

Synthetic data HCP

30 subjects: 400 subjects:
15 with effect, 15 without effect 200 male and 200 female
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Experiment results - 1
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EXperiment results - 2

(b) RVF + {-test

changes the
orientation and
eigenvalues
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Data

400 subjects
200 male and 200 female



EXperiment results - 3
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Conclusion

* Filtering (feature selection) Is ubiquitous in data
science and it may change the null distribution of
downstream analysis.

* |ndependent filtering does not change the null
distribution (p-values in downstream analysis
remain valid) while improving statistical power.

 We studied independent filterings for manitold-
valued data.
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