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REGRESSION: 

Suppose we collect a response    and   explanatory variables               for the     subject        . We always assume 

that               are fixed and    is related to               by  

                          

where    are i.i.d N(0,  ). If    , it’s simple linear regression (SR). If    , it’s multiple linear regression.      can be an 

interaction (denoted by “:”) , a categorical variable (categ) or a numerical variable (num). For simplicity,    is the jth variable. 

Parameter Estimates and Inference 

All unknown parameters in the model,     are estimated using a least squares method where we find            that minimize 
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   . Once we find least squares estimates,  ̂ , we can make inference about how they 

differ from their true values,   . R will return the following tables below. 
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*     
: standard deviation of   ,     standard deviation of  ,     : correlation between   and    

Terms Equation Notes 

Residual Standard Error:   
  √

   

   
, Degrees of Freedom = DFE 

*  is an estimate of  .  

Multiple R-squared:    
   

   

   
 

*Measures how well the linear regression fits in 
comparison to using just  

F-statistic:       Degrees of Freedom for F test:           

      
   

   
   

   

, 

Testing Framework: “The Goodness of Fit Test” 
                      
                              
 
SR: p-value of   =p-value of       

*DFE: degrees of freedom for    ,    : degrees of freedom for SSR,    : degrees of freedom for SST 

Inference between Reduced and Full /Big Models 

VIFj = 
 

  𝑅 
𝑗       𝑗−  𝑗+     𝑝 

 = 

𝑡 
  𝐹𝑓𝑢𝑙𝑙 “How much is 

collinearity affecting 

coefficient of Xj?” 

𝑅 
𝑗       𝑗   𝑗      𝑝 : R

2 from a 

regression between Xj as 

your predictor and all the 

𝐹𝑟𝑒𝑑: F test 

comparing the 

reduced model 

where jth coefficient 

is removed and the 

full model  



In addition to the basic regression output above, we can compare between a smaller/reduced model and a full/bigger model to 

see whether they are statistically different from each other. We already did some inference above. But, in this section, we’ll 

unify all the inferential questions under one framework, the F test. In particular, we’ll answer the three most frequent questions 

1. Is the entire model useful? Strategy: Full F-test (look at the R tables above) 

2. Are some of the coefficients useful?  

3. Is one of the coefficients useful? 

Strategies to answer ALL of these questions are to (i) Build the reduced and the full/big model, (ii) obtain SSE for reduced and 

full model, and (iii) create an F test where the F-statistic is  

                       
 

              

              

       

       

 

(i) is done through R, but (ii) is difficult to obtain. In particular, getting the degrees of freedom correct for the SSE may be 

difficult. The table below guides determining SSEs for any given model 

Terms Degrees of Freedom Notes 

Sum of Squares 
Error:     

Degrees of Freedom (DFE): DFE = DFT – DFR  
            

* Compute DFR first and then compute DFE 
* SSE is always BIGGER for the smaller model 
than the bigger model 

Sum of Squares 
Reg:     

Degrees of Freedom (DFR): 
X (num) : add one 
X (categ): sum of total factors -1 
X (num:num): add one 
X (num:categ): sum of total factors -1 
X (categ:categ): (sum of total factors for 1st cat)*(sum 
of total factors for 2nd cat) – 1 
DFR = sum of each type of X outlined above.  
        = # of coefficients in your R output  

*DFR equals to the number of coefficients 
(excluding intercept) in your R output! It can 
help you determine the # of non-intercept 
coefficients in your model! 
* Another way to calculate DFR is to count the 
number of coefficients (excluding intercept) in 
your R output 
 

Sum of Squares 
Total:     

Degrees of Freedom (DFR):     
 

*This is always true, regardless of what model 
you fit 

Examples: In these examples, numeric(i) represents ith numeric variable while category variable has three factors (a,b,c)  

 

 

 

 

 

 

 

 

 

 

Testing Framework 

H0: all coefficients not in red. model, but in full model are zero 

Ha: at least one of these coefficients are non-zero 

All three variables are 

numerical and hence 

DFR = 1+1+1=3  

DFE = (n-1)-(3) = n-4 

There are two X (num)+ one (categ) with three 

factors + one X (num:catg). Thus 

DFR = 2 + (3-1) + (3-1) = 6 DFE = (n-1) – (6) = n-7 

There are two X 

(num) + one X (cat). 

with three factors. 

Thus, 

DFR = 2 + (3-1) = 4 

DFE = (n-1) – 4 = n-5 



As an example problem, suppose we want to compare the reduced model (i.e.    numeric(1) + numeric(2)+category) with the 

full/big model (i.e.    numeric(1) + numeric(2) + category + category: numeric(1)). In essence, we’re testing whether the 

interaction term between category and numeric(1) is significant or not. Then, we (i) run the reduced and the full/big model (ii), 

obtain the SSE for the reduced and the full model which are SSEred = (0.94952)(95) = 85.65 and SSEfull = (0.95692)(93) = 85.16, and 

(iii)   

     −     

   −  −  −  

 
     

 − 
 

       . That’s it! You’re done! 

Prediction and Confidence Intervals 

Here are formulas for prediction/confidence intervals for regression. Remember, the interpretation of confidence intervals is 

that after repeated construction of the interval from i.i.d. samples, the interval covers the true parameter       times.  

Type of Interval:       Coverage Formula: 

Confidence interval for    All:   ̂      

 
      ̂  ̂   

Confidence interval for new prediction  ̂ 
SR:  ̂      

 
     √

 

 
 

   
   ̅  

 

     

,   
  is the value used to predict  ̂ 

Rest: You need R 

Prediction interval for new prediction  ̂ 
SR:  ̂      

 
     √  

 

 
 

   
   ̅  

 

     

,   
  is the value used to predict  ̂ 

Rest: You need R  

General Confidence Interval Formula                         ̂           

Model Diagnostics 

Remember, regressions assume the following (i)    are i.i.d.        , (ii) the relationship between    and Xs are linear. We can 

check violations of these assumptions and diagnose the problem as follows 

Problems Assumption to check How to check? How to fix the problem? 

Outliers (in Y) We don’t like outliers  Use a residual plot and check 
for large deviations in the y-
direction 

Take out the point! 

Homoscedasticity  Checking constant    i. Use a residual plot and check 
for spreading like   or  as x 
increase OR 
ii. Use a Y vs X plot (for SR) and 
see spread along the fitted line 

 If the spread is  , transform Y by log,sqrt, or 
1/x 
 
If the spread is  , transform Y by y2 and ey 

Nonlinearity Checking whether Yi and 
Xs are linearly related 

i. Use a residual plot and check 
for non-linear patterns OR 
ii. Use a Y vs X plot (for SR) and 
see non-linear patterns 
 

 
Non-normality Checking normality of    i.  Use a QQ plot of the residuals Try transformations in Xs that are suggested 

for nonlinearity based on the residual plot. 

Influential and 
Leverage Points 

Influential: if removing 
an obs. causes model to 
change drastically such 
as 

i. Wrong  ̂  or    ̂   ̂  or 

p-values 
ii. Unreasonably high S 

i. Leverage: high     for 
observation   means possible 
influential point 
ii. Cook’s Distance:   >1 for 
observation   is regarded as 
influential 

Remove that point! 

 

  

 



Model Selection 

If you want to select a smaller model from a bigger model, we first decide which direction to remove/add coefficients and 

judge how good the model is by information criterions (IC). Remember, though, that all model selection procedures overstate 

the significance of all inference questions because the procedure is stochastic. 

 

 

 

 

 

 

 

MAXIMUM LIKELIHOOD ESTIMATORS 

We use the joint probability distribution functions of the data and maximize over the parameter using calculus 

Example 1:            max.             ∏        
    max.    (          )           ∑   

 
     ̂       ̅ 

Example 2:               max   (          )              if all      (or equiv.           ) ̂              

Invariance Property: Suppose you want the MLE of the function of the unknown parameter, say     . Then, if the function      

is one-to-one (e.g. x2 is not one-to-one, but log(x) is), then the MLE of the function of the unknown parameter is    ̂    . You 

just plug in the MLE of the original parameter! For example, if you want the MLE of         in a regression, you plug in the MLE 

of   into log to obtain       ̂    , which is the MLE of        . 

Regression and MLE: MLE of     match that obtained using least squares. However, the MLE of   √
   

 
  is different from the 

estimate obtained via least squares√
   

   
. 

 
Collinearity Not really a violation per 

se, but highly collinear 
Xs screw up p-values, in 

i. Variance Inflation Factor (VIF): 
VIFj > 10 for coefficient Xj is 
considered unacceptably 
collinear 
 

√   : Measures inflation 

of    ̂  ̂   by collinearity 

*You can’t fix it per se, but watch out for 

i. High standard errors in  ̂  estimates 

ii. Changes in sign of  ̂  

iii. Changes in value of  ̂  

iii. Changes in significance of   ̂  

iv. R2 does not change too much 

v. Prediction of  ̂ does not change too much 

Leverage values:  𝑖𝑖  

Cook’s Distance: 𝐷𝑖 

Observations: i 

Direction to Add/Remove Coefficients 

1. Forward: Start with the null model choose coef. with 

smallest p-value if p-value < 0.05, add term  repeat 

2. Backward: Start with the full model   choose coef. with 

largest p-value if p-value > 0.05,remove term  repeat 

3. Stepwise: Mix forward and backward 

4. All-Subset: Get IC values for all possible coefficient 

combination  choose the model with the smallest IC value 

Measuring how good the model is (IC values) 

1. AIC: 𝐴𝐼𝐶 𝑀𝑜𝑑𝑒𝑙  𝑛𝑙𝑜𝑔 (
𝑆𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑛
)    𝑝𝑒𝑛  

2. BIC: 𝐵𝐼𝐶 𝑀𝑜𝑑𝑒𝑙  𝑛𝑙𝑜𝑔 (
𝑆𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑛
)      𝑛  𝑝𝑒𝑛  

3. Mallow’s Cp: 𝐶 𝑀𝑜𝑑𝑒𝑙  
𝑆𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑆𝑓𝑢𝑙𝑙
    𝑝𝑒𝑛  𝑛 

𝑝𝑒𝑛  𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑀𝑜𝑑𝑒𝑙   ,𝑆𝑓𝑢𝑙𝑙
  

𝑆𝑆𝐸𝑓𝑢𝑙𝑙

𝐷𝐹𝐸
, 

*Remember, we can use ICs to measure any model’s 

information and choose the one with the smallest IC!  


