Stat 431 Final Review Guide, Hyunseung Kang
REGRESSION:

Suppose we collect a response Y; and p explanatory variables (X; 4, ..., X; ,) for the it" subjecti = 1, ...,n. We always assume
that (X; 4, ..., Xj,) are fixed and Y; is related to (X; ;, ..., X; ;) by

Y=o+ P1Xi1 + -+ BpXip + €

where ¢; are i.i.d N(0,02). If p = 1, it’s simple linear regression (SR). If p > 1, it’s multiple linear regression. X; j can be an

u.n

interaction (denoted by “:”) , a categorical variable (categ) or a numerical variable (num). For simplicity, X; is the i variable.

Parameter Estimates and Inference

All unknown parameters in the model, 8, are estimated using a least squares method where we find S, B, ..., B, that minimize

2 A
| (Yi - (,80 + 61X+ + ﬁpXi,p)) . Once we find least squares estimates, 5;, we can make inference about how they

differ from their true values, ,Bj. R will return the following tables below.

Coefficients Estimate Std. Error tvalue Pr(> |t])
ﬁj 5"}7(/?}) . [;]. p-value from the t-test
' SE(B;)
(Intercept) SR: ﬁo =Y Degrees of Testing Framework:
Freedom for t-test: | Hy:fj =0
DFE Hy:Bj #0

(fix/control other terms)

X; SR: B, = corr—2— | SR: SE(f;)=—— SR: tf = Fruy
= Sxaxp | T (ﬁ]) VSX1X1 Rest: t? = red SR:
Rest: — =
VIF. = L = SE(2 p-value of t;=p-value of
j 1—RZj;(1,__,j—1,j+1,..,p) (.8]) Ffull

tf = Fpyy “How much is /(VIP}-)S Rest:
collinearity affecting = p-value of t;=p-value of
/SX]X] Freq &_

coefficient of X;?”

S Froq: F test
R2:(1 i1 :R* from a =
Jidr=1,j41P) N comparing the
regression betw?en X; as \/SX].X]_ (1-R%.1,j-1j+1,.p)) reduced model _
*SX].X].: standard deviation of X, s,,: standard deviation of Y, corr: correlation between Y and X; where j" coefficient
isremoved and the |

Terms Equation Notes full model i
Residual Standard Error: S SSE *S is an estimate of 0.

S = DFE Degrees of Freedom = DFE
Multiple R-squared: R? , SSR *Measures how well the linear regression fits in

~SST comparison to using just

F-statistic: Fryy Degrees of Freedom for F test: (DFR, DFE) | Testing Framework: “The Goodness of Fit Test”

e % Hy: all coef ficients = _O_

full = "SSE» H,: at least one coef ficient # 0
DFE
SR: p-value of t;=p-value of Fr,;;

*DFE: degrees of freedom for SSE, DFR: degrees of freedom for SSR, DFT: degrees of freedom for SST

Inference between Reduced and Full /Big Models




In addition to the basic regression output above, we can compare between a smaller/reduced model and a full/bigger model to

see whether they are statistically different from each other. We already did some inference above. But, in this section, we’ll

unify all the inferential questions under one framework, the F test. In particular, we’ll answer the three most frequent questions

1. Isthe entire model useful? Strategy: Full F-test (look at the R tables above)
2. Are some of the coefficients useful?

3. Isoneofth

e coefficients useful?

Strategies to answer ALL of these questions are to (i) Build the reduced and the full/big model, (ii) obtain SSE for reduced and

full model, and (iii)

FpFE, eq—DFE fu1,DFEpu =

(i) is done through R, but (ii) is difficult to obtain.
difficult. The table below guides determining SSEs for any given model

create an F test where the F-statistic is

Testing Framework

SSErea — SSErun
DFEyeq — DFEfyy
SSEfuu
DFEs

Ho: all coefficients not in red. model, but in full model are zero

H,: at least one of these coefficients are non-zero

In particular, getting the degrees of freedom correct for the SSE may be

Terms Degrees of Freedom Notes
Sum of Squares Degrees of Freedom (DFE): DFE = DFT — DFR * Compute DFR first and then compute DFE
Error: SSE SSE = SST — SSR * SSE is always BIGGER for the smaller model

than the bigger model

Sum of Squares
Reg: SSR

Degrees of Freedom (DFR):
X (num) : add one

of total factors for 2™ cat) — 1
DFR = sum of each type of X outlined above.
= # of coefficients in your R output

X (categ): sum of total factors -1

X (num:num): add one

X (num:categ): sum of total factors -1

X (categ:categ): (sum of total factors for 1st cat)*(sum

*DFR equals to the number of coefficients
(excluding intercept) in your R output! It can
help you determine the # of non-intercept
coefficients in your model!

* Another way to calculate DFR is to count the
number of coefficients (excluding intercept) in
your R output

Sum of Squares
Total: SST

Degrees of Freedom (DFR): n — 1

*This is always true, regardless of what model
you fit

Call:

Residuals:
Min 1Q
-2.19704 -0.73793

Median
0.03438

Coefficients:
Estimate 5

{Intercept) o
numericl 0
numeric2 3.0610 0.
numeric3 0.1355 1]

Residual standard error: 0.

Im(formula = ¥y ~ numericl + numeric? + numeric3

L2871 €.759 1.07e-09
.3286

. 3430

Signif. codes: 0O Yx&%r 0,001 ‘**f 0,01

Examples: In these examples, numeric(i) represents i'" numeric variable while category variable has three factors (a,b,c)
1

All three variables are
L. numerical and hence
DFR = 1+1+1=3 >

3R Max
0.65752 2.2518%

or t walue Pr(>|t]

DFE = (n-1)-(3) =n-4

.579 0.000543

3 i
3086 9.919 2.22e-16
0.395 0.693798
*#7 0,05 " 0.1 " 1

9652 on 96 degrees of freedom

Multiple R-sguared: 0.5365, Adjusted R-squared: 0.522

F-statistic: 37.04 on % and 96 DF, p-value: 5.42e-16

ca1l: ] ] There are two X

Im({formula = y ~ numericl + numeric? + category)

Resiuals: L. (num) + one X (cat).
Min 1iQ Median 30 .

-2.03735 -0.67058 0.00326 0.64338 )”th three faCtors‘

Coefficients:

. Error t

Thus,

(Intercept) 0.2683 . 1.76e-11 #%%

numericl ; 3.383 0.00104 #* DFR=2+ (3_1) =4
numericz2 .3040 9.869 3.15e-16 #**

categorvb q 0.2410 1.083 0.28136

categoryc -0.2174 0.2389 -0.910 0.36516 (

- DFE=(n-1)—4=n-5
Signif. codes: 0 ‘*#*' 0,001 ‘**’ 0,01 ‘** 0.05 *.” 0.1

Residual standard error: 0.
Multiple R-sguared: 0.5561,
F-statistic:

29.76 on 4 and 95 DF,

Call:
Im(formula = y ~ numericl * category + numeric?)

Residuals:

Min iQ Median 3 Max
-2.07854 -0.64073 -0.02634 0.71622 2.03036
Coefficients:

Estimate 5td. Error t wvalue Pr(>|t]

{Intercept) 2.1716 0.3472 6.255 1.20e-08 #**
numericl 0.8303 0.68328 1.313 0.183
categoryb 0.13918 0.43979 0.385 0.701
categoryec —-0.4922 0.4604 -1.089 0.288
numericz2 .0010 0.3168 9.474 2.66e-15 #**
numericl 0.8579 0.208 0.836
numericl: 0.8336 0.695 0.489

‘&%r 0,01 ' 0.05 *." 0.1 " 1
93 degrees of freedom

ted R-sguared: 0.5302

: 1.127e-14

9495 on 9% degrees of freedom
Adjusted R-sguared: 0.5374
p-value: 4.821e-16

A )
There are\/o X (num)+ one (categ) w}hthree
factors + one X (num:catg). Thus

DFR =2 + (3-1) + (3-1) = 6 >DFE = (n-1) — (6) = n-7




As an example problem, suppose we want to compare the reduced model (i.e. Y ~ numeric(1) + numeric(2)+category) with the
full/big model (i.e. Y ~ numeric(1) + numeric(2) + category + category: numeric(1)). In essence, we’re testing whether the
interaction term between category and numeric(1) is significant or not. Then, we (i) run the reduced and the full/big model (ii),
obtain the SSE for the reduced and the full model which are SSE,eq = (0.9495%)(95) = 85.65 and SSEq = (0.9569%)(93) = 85.16, and

85.65—85.16

(i) F = % = 0.2676. That’s it! You’re done!

n-7

Prediction and Confidence Intervals

Here are formulas for prediction/confidence intervals for regression. Remember, the interpretation of confidence intervals is
that after repeated construction of the interval from i.i.d. samples, the interval covers the true parameter (1 — ) times.

Type of Interval: (1 — a) Coverage Formula:

Confidence interval for f3; All: ﬁj + tl_gDFEs’E(Bj)
>

Confidence interval for new prediction ¥

’N 1, (X7-X1)? o« . . O
SR:Y ¢, e .S [-+——— X isthevalue used to predict Y
2’ n SX1X1

est: You need R

Prediction interval for new prediction ¥ (X;-X,)?

X1X1

SR:Y + tl_gn_zSJl + % + , X1 is the value used to predict ¥
>

Rest: You need R

General Confidence Interval Formula Estimate + Samp. Distri.x SE (Estimate)

Model Diagnostics

Remember, regressions assume the following (i) €; are i.i.d. N(0, a?), (ii) the relationship between Y; and Xs are linear. We can
check violations of these assumptions and diagnose the problem as follows

Problems

Assumption to check

How to check?

How to fix the problem?

Outliers (in'Y)

We don’t like outliers ©

Use a residual plot and check
for large deviations in the y-
direction

Take out the point!

Homoscedasticity

Checking constant o2

i. Use a residual plot and check
for spreading like > or <as x
increase OR

ii. Use a Y vs X plot (for SR) and
see spread along the fitted line

If the spread is <, transform Y by log,sqrt, or
1/x

If the spread is >, transform Y by y* and €’

Nonlinearity

Checking whether Y; and
Xs are linearly related

i. Use a residual plot and check
for non-linear patterns OR

ii. Use a Y vs X plot (for SR) and
see non-linear patterns

I—»ﬁ.logr,lf \r%rﬁ or
z— 22 or
T — vz, logz, 1/ or ’

Non-normality

Checking normality of ¢;

i. Use a QQ plot of the residuals

Try transformations in Xs that are suggested
for nonlinearity based on the residual plot.

Influential and
Leverage Points

Influential: if removing
an obs. causes model to
change drastically such
as

i. Wrong BJ- or §E([3}) or
p-values

ii. Unreasonably high S

i. Leverage: high h;; for
observation i means possible
influential point

ii. Cook’s Distance: D;>1 for
observation i is regarded as
influential

Remove that point!




Leverage values: h;; N

ues (phila it1)

hatval

0.0 0.2 04 06 08

0 20 40 60 80 100 Center city

Cook’s Distance: D; ﬂ

—~

Observations: i

T T & T T T
0 20 40 60 80 100

Index

nce(phila.fit1)
0 5 15 25

cooks.distar

Collinearity Not really a violation per | i. Variance Inflation Factor (VIF): | *You can’t fix it per se, but watch out for
se, but highly collinear VIF; > 10 for coefficient X; is i. High standard errors in ﬁj estimates
Xs screw up p-values, in | considered unacceptably ii. Changes in sign of 3},
collinear

iii. Changes in value of [?j

iii. Changes in significance of ﬁj

iv. R? does not change too much

v. Prediction of Y does not change too much

VVIF: Measures inflation
of SE(f;) by collinearity

Model Selection

If you want to select a smaller model from a bigger model, we first decide which direction to remove/add coefficients and
judge how good the model is by information criterions (IC). Remember, though, that all model selection procedures overstate
the significance of all inference questions because the procedure is stochastic.

Direction to Add/Remove Coefficients Measuring how good the model is (IC values)
1. Forward: Start with the null model = choose coef. with 1. AIC: AIC(Model) = nlog ( EModel) + 2(pen)

smallest p-value 2if p-value < 0.05, add term = repeat

_ EModel
2. Backward: Start with the full model = choose coef. with % BIC: BIC(Model) = nlog( ) +log(n)(pen)

largest p-value =2if p-value > 0.05,remove term - repeat SSEmodel
3. Mallow’s Cp: C(Model) = —5**¢ + 2(pen) — n
fu

3. Stepwise: Mix forward and backward

SSEfull
DFE

7

4. All-Subset: Get IC values for all possible coefficient pen = penaltyyoger + 1 Sfull

combination = choose the model with the smallest IC value

*Remember, we can use ICs to measure any model’s

information and choose the one with the smallest IC!

MAXIMUM LIKELIHOOD ESTIMATORS
We use the joint probability distribution functions of the data and maximize over the parameter using calculus

Example 1: X; ~ Exp(1) > max. fo(Xy, ..., Xp) = [T e~ *i> max. log(fo (X1, .. Xp)) = nlog(D) — A X%, X; >Aue = 1/X
Example 2: X; ~ Unif(6,1) > maxlog(fg(Xl, ...Xn)) = —nlog(1 — 8) ifall 8 < X; (or equiv. 8 < min(X;))>8,.r = min(X;)

Invariance Property: Suppose you want the MLE of the function of the unknown parameter, say h(8). Then, if the function h(0)

is one-to-one (e.g. X* is not one-to-one, but log(x) is), then the MLE of the function of the unknown parameter is h(8;,z). You
just plug in the MLE of the original parameter! For example, if you want the MLE of log(c) in a regression, you plug in the MLE
of g into log to obtain log(G,.), Which is the MLE of log(o).

Regression and MLE: MLE of ,Bj match that obtained using least squares. However, the MLE of o, ’SSTE, is different from the

. . . ,555
estimate obtained via least squares —



