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Extra Models

Problem Setting

Given  tasks and  processors. For , task  has its first available time ,
deadline , duration (workload) , bonus (if completed on time) . Note that for
each , we should have .

Example 1.1: Suppose 's and 's are integers,  for all , then how can we maximize the
total bonus?

This problem is taken from CS 577 Introduction to Algorithms, Spring 2016, and there is an efficient
algorithm using Dynamic Programming. Here we will model it as an optimization problem.

Let . That is, we spend at most  time slots to complete tasks.

Decision Variables:

For  and , define a binary variable  to indicate whether task  is
scheduled at time slot .

Constraints:

1. For each task , we will spend zero or one time slot. That is, . In fact, we only

need to ensure  according to the objective function below.

2. For each time slot , we can do zero or one task. That is, .

Objective:

Maximize the total bonus from tasks that are completed before their deadlines. Task  is completed

before deadline if . Hence the objective function can be expressed as: .

Hence the model can be defined as following:
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The above model is IP. Can we relax it  to a LP and solve it  instead? The answer is YES.

The observation is that each variable  can be viewed as an edge connecting task  and time slot ,
then this problem is in fact a maximum weighted bipartite matching problem. Furthermore, we
can assign zero bonus (weight) to those missing edges without affecting the objective, and now it
becomes the Assignment Problem!

Example 1.2: In reality, tasks may have different workloads. Suppose 's, 's and 's are all
integers, then how can we maximize the total bonus?

Can we modify previous model to solve this problem? It seems that we can use the same decision
variables. For Constraint 1, all we need to modify is to replace right side with . There is no need to
modify Constraint 2.

But something seems missing when modifying the objective function: now task  is completed before

deadline if . Hence for each , we need to add following logic constraint explicitly: if

task  is completed before deadline, we earn bonus .

Decision Variables:

1. For  and , define a binary variable  to indicate whether
task  is scheduled at time slot .

2. For , define a binary variable  to indicate whether task  is completed
before its deadline.

Constraints:

1. For each task , we will spend at most  slots. That is, .

2. For each time slot, we can do zero or one task. That is, .

3. For each task , we need to esure  if . One approach is to express it as 

.

Objective:
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Maximize the total bonus from tasks that are completed before their deadlines. The objective

function can be expressed as: .

Hence the model can be defined as following:

This is an ILP model.

Example 1.3: Now let's consider the scenario that , 's and 's are continuous constants.
How should we model this problem? Note that we have restricted the first available time ( ) to be
zero for all tasks (to make this example easier).

Since now 's and 's are continuous, we cannot define variables using time slots. What should we
do? First, let's review the previous examples: the solutions of models above not only give the
maximized bonus, but also provide the scheduling of tasks. Do we really need the details of
scheduling? The answer is NO.

Let . The key observation is following: given a subset of tasks , if 
, then we cannot complete all tasks in  on time. In other words, all

tasks in  can be completed on time if and only if for every , .

Let's start to model this problem. For each task , let . If we define a binary
variable  to indicate whether task  is completed before its deadline, then  only if 

.

One way to express this logic statment is to find a proper lower bound then represent it with an extra
binary variable for each task . Here we will use an alternative approach: the previous statement is
equivalent to , since when , it always holds due to . But now the

right side contains quadratic combination of binary variables, so we need to add extra binary variables
for each quadratic combination, similar to that learnt in class.

Decision Variables:

1. For , define a binary variable  to indicate whether task  is completed
before its deadline.

2. For  and , define a binary variable  to indicate whether
both tasks  and  are completed before their deadline.
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Constraints:

1. for each task , 

2.  if and only if  and . That is, , , and 

Objective:

Maximize the total bonus from tasks that are completed before their deadlines. The objective

function can be expressed as: .

Hence the model can be defined as following:

This is an ILP model.

Once we figure out the subset of tasks  to be completed on time, we can schedule them with the
greedy approach: sort tasks in  in ascending order of deadline, then complete them in this
order.
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