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Abstract

Network Intrusion Detection and Prevention Systems have
emerged as one of the most effective ways of providing se-
curity to those connected to the network, and at the heart of
almost every modern intrusion detection system is a string
matching algorithm. String matching is one of the most crit-
ical elements because it allows for the system to make deci-
sions based not just on the headers, but the actual content
flowing through the network. Unfortunately, checking every
byte of every packet to see if it matches one of a set of ten
thousand strings becomes a computationally intensive task as
network speeds grow into the tens, and eventually hundreds,
of gigabits/second.

To keep up with these speeds a specialized device is re-
quired, one that can maintain tight bounds on worst case
performance, that can be updated with new rules without in-
terrupting operation, and one that is efficient enough that it
could be included on chip with existing network chips or even
into wireless devices. We have developed an approach that
relies on a special purpose architecture that executes novel
string matching algorithms specially optimized for implemen-
tation in our design. We show how the problem can be solved
by converting the large database of strings into many tiny
state machines, each of which searches for a portion of the
rules and a portion of the bits of each rule. Through the care-
ful co-design and optimization of our our architecture with
a new string matching algorithm we show that it is possible
to build a system that is 10 times more efficient than the cur-
rently best known approaches.

1 Introduction

Computer systems now operate in an environment of near
ubiquitous connectivity, whether tethered to a Ethernet cable
or connected via wireless technology. While the availabil-
ity of always on communication has created countless new
opportunities for web based businesses, information sharing,
and coordination, it has also created new opportunities for
those that seek to illegally disrupt, subvert, or attack these
activities. With each passing day there is more critical data
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accessible over the network, and any publicly accessible sys-
tem on the Internet is subjected to more than one break in at-
tempt per day. Because we are all increasingly at risk there is
widespread interest in combating these attacks at every level,
from end hosts and network taps to edge and core routers.

Given the importance of protecting information and ser-
vices, there is a great deal of work from the security com-
munity aimed at detecting and thwarting attacks in the net-
work [21, 31, 7]. Intrusion Detection Systems (IDS) and In-
trusion Prevention Systems (IPS) have emerged as some of
the most promising ways of providing protection on the net-
work, and the market for such systems is expected to grow
to $918.9 million USD by the end of 2007 [20]. Network
based intrusion detection systems can be categorized as ei-
ther misuse based or anomaly based. Both systems require
sensors that perform real time monitoring of network pack-
ets, either by comparing network traffic against a signature
database or by finding out-of-the-ordinary behavior, and trig-
gering intrusion alarms. A higher level interface provides
the management software used to configure, log, and display
alarms generated by the lower level processing. These two
parts, working in concert, alert administrators of suspicious
activities, keep logs to aid in forensics, and assist in the de-
tection of new worms and denial of service attacks. But it is
at the lowest level, where data is actually inspected, that the
computational challenge lays.

To define suspicious activities, most modern network intru-
sion detection/prevention systems rely on a set of rules which
are applied to matching packets. At minimum a rule consists
of a type of packet to search, a string of content to match, a
location where that string is to be searched for, and an asso-
ciated action to take if all the conditions of the rule are met.
An example rule might match packets that look like a known
buffer overflow exploit in a web server; the corresponding ac-
tion might be to log the packet information and alert the ad-
ministrator. Rules can come in many forms, but frequently the
heart of the rule consists of strings to be matched anywhere
in the payload of a packet. The problem is that for the detec-
tion to be accurate, we need to be able to search every byte of
every packet for a potential match from a large set of strings.
For example, the rule set from Snort has on the order of 1000
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strings with an average length of around 12 bytes. Search-
ing every packet for all of these strings requires significant
processing resources, both in terms of the amount of time to
process a packet, and the amount of memory needed. In addi-
tion to raw processing speed, a string matching engine must
have bounded performance in the worst case so that a perfor-
mance based attack cannot be mounted against it [12]. Due
to the fact that rule sets are constantly growing and chang-
ing as new threats emerge, a successful design must have the
ability to be updated quickly and automatically all the while
maintaining continuous operation.

In order to address these concerns, we take an approach
that relies on a simple yet powerful special purpose architec-
ture working in conjunction with novel string matching al-
gorithms specially optimized for that architecture. The key
to achieving both high performance and high efficiency is to
build many tiny state machines, each of which searches for a
portion of the rules and a portion of the bits of each rule. Our
new algorithms are specifically tailored towards implementa-
tion in an architecture built up as an array of small memory
tiles, and we have developed both the software and the archi-
tecture in concert with one another. The result of our efforts
is a device that maintains tight worst case bounds on perfor-
mance, can be updated with new rules without interrupting
operation, has configurations generated in seconds instead of
hours, and is ten times more efficient that the existing best
known solutions.

Specifically, this paper makes the following research con-
tributions:

• We describe a novel configurable String Matching Architec-
ture that can store the entire Snort rule set in only 0.4 MB
and can operate at upwards of 10 Gbit/sec per instance.

• We present a novel String Matching Algorithm that oper-
ates through the conjunction of many small state machines
working in unison that reduces the number of required out-
edges from 256 to as low as 2.

• Our machine is configured by a Rule Compiler that parti-
tions and bit-splits a finite state machine (FSM) represen-
tation of the strings into a set of small implementable state
transition tables. The compiler takes only on the order of
seconds to complete.

• We compare our design to the state of the art in string
matching algorithms and hardware based designs. The key
metric is the efficiency (performance/area) and we beat the
best existing techniques by a factor of 10 or more.

• We propose a replacement update model that allows non-
interrupting rule update which can complete in the order of
seconds while FPGA based methods generally require days
or months to recompile rules.

The rest of the paper is laid out as follows. In Section 2
we begin with a description of the string matching architec-
ture which implements the many state machines and the way
in which the algorithm runs. The actual method of generat-
ing the state machines from a given rule set, the tradeoffs and
heuristics used to do so, and the details of our Rule Com-

piler implementation are all described in Section 3. Section 4
presents an analysis of design in terms of performance and
efficiency and compares our work to past efforts in the area.
In Section 5 a discussion of the related work is presented, and
finally we conclude with Section 6.

2 Architecture
Intrusion Detection/Prevention Systems (IDS or IPS) play

an increasingly important role in network protection. At the
core of most Network IDSs is a computationally challenging
problem because it requires deep packet inspection. Every
byte of every packet must be examined which means giga-
bytes of data must be searched each and every second of op-
eration. In this section we begin by briefly describing the re-
quirements that have driven our design, the main ideas behind
our string matching technique, and the details of our architec-
ture.

2.1 IDS/IPS Requirements

In designing our system we have identified the follow-
ing requirements for Intrusion Detection/Prevention Systems
(IDS/IPS).

Worst Case Performance: In order to check incoming
packets in real time, without degrading the total throughput,
Intrusion Detection/Prevention Systems need string matching
algorithms that can keep up with this speed. More specif-
ically, a robust Intrusion Detection Systems should require
that its string matching algorithm have stringent worst case
performance, otherwise the worst case may be exploited by
an adversary to either slow down the network or to force the
systems to not inspect some packets, which may include an
attack. Neither of these two choices is desirable.

Non-Interrupting Rule Update: Currently the Snort rule
set is updated roughly monthly but researchers are currently
working on systems that will provide a real-time response to
new attacks and worms [26]. In addition to performance re-
quirements, we also want an architecture that can be updated
quickly and that can provide continuous service even during
an update.

High Throughput per Area: The advantages of small area
are twofold. A design that is small enough to be fit completely
on chip consumes less resources and can operate much faster
than one that relies on off chip memory. Furthermore, many
designs use replication to boost performance, and in these
cases efficiency becomes performance because of the sheer
number of copies you can fit onto a single die.

2.2 String Matching Engine

At a high level, our algorithm works by breaking the set of
strings down into a set of small state machines. Each state
machine is in charge of recognizing a subset of the strings
from the rule set. The details of the algorithm are presented in
Section 3, but we begin with a description of our architecture.

Our architecture is built hierarchically around the way that
the sets of strings are broken down. At the highest level is
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Figure 1: The String Matching Engine of the High Throughput Architecture. The left side is a full Device, comprised of a
set of Rule Modules. Each rule module acts as a large state machine and is responsible for a group of rules, g rules. Each
rule module is made of a set of tiles (4 tiles are shown in this figure). The right side shows the structure of a tile. Each tile
is essentially a table with some number of entries (256 entries are shown in this figure) and each row in the table is a state.
Each state has some number of next state pointers (4 possible next states are shown) and a partial match vector of length g.
A rule module takes one character (8 bits) as input at each cycle and output the logical AND operation result of the partial
match vectors of each tile.

the full device. Each device holds the entire set of strings
that are to be searched, and each cycle the device reads in
a character from an incoming packet, and computes the set
of matches. Matches can be reported either after every byte,
or can be accumulated and reported on a per-packet basis.
Devices can be replicated, with one packet sent to each device
in a load balanced manner, to multiply the throughput, but for
our purposes in this paper we concentrate on a single device.

Inside each device is a set of rule modules. The left side
of Figure 1 shows how the rule modules interact with one an-
other. Each rule module acts as a large state machine, which
reads in bytes and outputs string match results. The rule
modules are all structurally equivalent, being configured only
through the loading of their tables, and each module holds a
subset of the rule database. As packet flows through the sys-
tem, each byte of the packet is broadcast to all of the rule
modules, and each module checks the stream for an occur-
rence of a rule in its rule set. Because throughput, not latency,
is the primary concern of our design the broadcast has limited
overhead because it can be deeply pipelined if necessary.

The full set of rules is partitioned between the rule mod-
ules. The way this partitioning is done has an impact on the
total number of states required in the machine, and will hence
have an impact on the total amount of space required for an
efficient implementation. Finding an efficient partitioning is
discussed in Section 3. When a match is found in one or
more of the rule modules, that match is reported to the inter-
face of the device so that the intrusion detection system can
take the appropriate actions. It is what happens inside each
rule module that gives our approach both high efficiency and
throughput.

If we look into what goes into each rule module, we find
that each is made up of a set of tiles. The right hand side of
Figure 1 shows the structure of each and every tile in our de-
sign. Tiles, when working together, are responsible for the ac-
tual implementation of a state machine that really recognizes
a string in the input. If we just generated a state machine in a
naive manner, each state may transition to one of potentially
256 possible next states at any time. If we were to actually
keep a pointer for each of these 256 possibilities, each node
would be on the order a kilobyte. A string of length l requires
l states 1, and then if you multiply that by the total number of
rules you quickly find yourself with far more data than is fea-
sible to store on-chip. So the trade-off is either store the state
off-chip and loose your bounds on worst case performance, or
find a way to compress the data is some way. Past techniques
have relied on run length encoding and/or bit-mapping which
have been adapted from similar techniques used to speed IP-
lookup [30]. Our approach is different in that we split the
state machines apart into a set of new state machines each of
which matches only some of the bits of the input stream. In
essence each new state machine acts as a filter, which is only
passed when a given input stream could be a match. Only
when all of the filters agree is a match declared. While we
briefly describe the way the algorithm runs for the purpose
of describing our architecture here, a full description can be
found in Section 3.

Each tile is essentially a table with some number of entries
(256 entries are shown in Figure 1), and each row in the table
is a state. Each state has two parts. It has some number of next

1Some states can be shared by different strings, the total number of states
is however on the same order of magnitude.
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Figure 2: Non-interrupting Update is supported through the
addition of an extra rule module which covers for a module
taken off-line so it can be updated.

state pointers, which encode the state transitions (4 possible
next states are shown and each is indexed by a different 2 bits
from the byte stream), and it has a partial match vector. The
partial match vector is a bit-vector that indicates the potential
for a match for every rule that the module is responsible for.
If there are up to g rules mapped to a rule module, then each
state of each tile will have a partial match vector of length
g bits (Figure 1 shows a module with g = 16). By taking
the AND of each of the partial match vectors we can find a
full match vector, which indicates that all of the partial match
vectors are in agreement and that a true match for a particular
rule has been found.

Before accepting any input characters and at the beginning
of each packet, all tiles are reset to start from state 0. On
each cycle, the input byte is divided into groups of bits (in
the example the 8-bits are divided into 4 groups of 2). Each
tile then gets its own group of bits. Each tile uses its own
internal state to index a line in the memory tile, and the partial
match vector is read out along with the set of possible state
transitions. The input bits are used to select the next state for
updating, and the partial match vector is sent to an AND unit
where it is combined with the others. Finally all full match
vectors for all modules are concatenated to indicate which of
the strings was matched.

2.3 Support for Non-Interrupting Update

A major weaknesses of past techniques which relied on
FPGA reconfiguration to encode the strings to be matched is
that when the rule database is to be updated, the device needs
to go offline. The Snort database, and other proprietary sig-
nature databases, have been changing at an aggregate rate of
more than one rule every day [30].

It is simply unacceptable to the end user to have their net-
work traffic either uninspected or undelivered for minutes or
even hours while the rule database is recompiled and trans-
fered to the device. This problem is only going to grow in im-
portance in the coming years as more attacks are unleashed.
Automated systems will be put in place that detect new worms
and denial of service attacks to generate useful signatures in
real time. Our architecture can easily support this functional-
ity through the addition of a temporary tile used for updates.

Figure 2 shows the addition of an new rule module which
acts as a temporary state machine. The rule set is already

partitioned into several smaller parts that each fit onto a rule
module. To replace the contents of one rule module, the rules
are first updated and copied to the temporary rule module.
At the start of the next packet, the control bit for the module
about to be overwritten is set to override with the results from
the replacement rule module. The main rule module can then
be written (with the same contents as the replacement mod-
ule) with no stop in service. When the main rule module is
completely updated, the control bit is switched back and the
replacement module is wiped clean and overwritten with the
state machine for the next module in line. Writing to an entire
rule module will take on the order of 1.6 microseconds, and
to finish an entire update would take less than 108 microsec-
onds. While for our architecture the procedure for updating
rules is very straightforward, this is by design and most other
techniques we have examined require at least some amount of
downtime to perform an update.

3 Algorithm Mapping
In Section 2 we presented the architectural issues in im-

plementing a high speed string matching engine, and in this
section we describe the software system, also referred to as
the rule compiler, which makes it work.

Readers may already be familiar with efficient algorithms
for string matching such as Boyer-Moore [8], which are de-
signed to find a single string in a long input. Our problem
is slightly different, as we are searching for one of a set of
strings from the input stream. While simply performing mul-
tiple passes of a standard one-string matching algorithm will
be functionally correct, it does not scale to handle the thou-
sands of strings that are required by modern intrusion detec-
tion systems. Instead, the set of strings that we are looking
for can be folded together into a single large state-machine.
This method, the Aho-Corasick algorithm [2], is what is used
in the fgrep utility as well as in some of the latest versions
of the Snort [21] network intrusion detection system.

3.1 The Aho-Corasick Algorithm
The essence of the Aho-Corasick algorithm involves a pre-

processing step which builds up a state machine that encodes
all of the strings to be searched. The state machine is gen-
erated in two stages. The first stage builds up a tree of all
the strings that need to be identified in the input stream. The
root of the tree represents the state where no strings have been
even partially matched. The tree has a branching factor equal
to the number of symbols in the language. For the Snort rules,
this is a factor of 256 because snort can specify any valid
byte as part of a string 2. All the strings are enumerated from
this root node, and any strings that share a common prefix
will share a set of parents in the tree. The left hand side of
Figure 3 shows an example Aho-Corasick state machine con-
structed for keywords “he”, “she” “his”, and “hers”. To match
a string, you start at the root node and traverse edges accord-
ing to the input characters observed. The second half of the

2this feature can be used to identify a particular 4 byte IP address for
example
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preprocessing is inserting failure edges. When a string match
is not found it is possible for the suffix of one string to match
the prefix of another. To handle this case failure edges are
inserted which shortcut from a partial match of one string to
a partial match of another. In Figure 3 we show the full state
machine with failure edges (however failure edges that point
back to the root node are not shown for clarity).

Let us suppose that the input stream is “hxhe”, which
would match the string “he”. Traversal starts at state 0, and
then proceeds to state 1 (after reading “h”), 0 (after reading
“x”), back to 1 (after reading “h”), and finally ending at state
2. State 2 is an accepting state and matches the string “he”.
In the Aho-Corasick algorithm there is a one-to-one corre-
spondence between accepting states and strings, where each
accepting state indicates the match to an unique string.

3.2 Implementation Issues

The Aho-Corasick algorithm has many positive properties,
and perhaps the most important is that after the strings have
been preprocessed the algorithm always runs in time linear
to the length of the input stream, regardless of the number of
strings. It is impossible for a crafty adversary to construct an
input stream that will cause an IDS to lag behind the network
resulting in either reduced traffic speed or uninspected data.
The problems with the algorithm lie in realizing a practical
implementation, and the problems are two-fold. Both prob-
lems stem from the large number of possible out edges that
are directed out of each and every node. Implementing those
out edges requires a great deal of next pointers, 256 for each
and every node to be exact. In our simple example, we only
have 4 possible characters so it is easier, but in reality encod-
ing these potential state transitions requires a good deal of
space. If we were just to encode the state transitions as 32-bit
pointers the size of the rule database would balloon to 12.5
megabytes, far larger than what could economically fit on a
chip. This brings us to the second problem which is the se-
rial nature of the state machine. The determination of which
state we are to go to is strictly dependent on that state that
we are currently in. The determination of the next state from
the current state forms a critical loop, and because that next
state could be one of 256 different memory locations through-
out a large data structure it is very difficult to make this fast.
While in [30] Tuck et al. show how these structures could be
compressed, they still take on the order of megabytes and the
compression greatly complicates the computation that needs
to be performed.

To examine the behavior of string matching on real data,
we generated the Aho-Corasick state machine for a set of
strings used for actual intrusion detection and packet filtering.
For this we used the default string set supplied with Snort,
which includes, as part of its rule base, a set of over 1000
suspicious strings resulting in an Aho-Corasick state machine
with around 10,000 nodes.

3.3 Splitting Apart the State Machines

While Aho-Corasick state machines can be searched in
constant time per character, a real implementation requires
large amounts of storage and requires a dependent memory
reference for each character searched. Storing each state as
an array of 256 next pointers is wasteful. Furthermore there
is a high variation in the number of next pointers that any
given state needs. Nodes near the root of the tree need more
than 200 next pointers, while nodes near the leafs need only
1 or 2. We need a way of breaking this problem into a set of
smaller problems each of which has more regular behavior.

To solve this problem, we split the state machines apart
into a new set of 8 state machines. (8 is not optimal which we
will show in Section 4.) Each state machine is then responsi-
ble for only one of the eight bits of an input character.

Three advantages of this technique are:

• The split machines have exactly two possible next states
(not a large and variable number as in the original design).
This is far easier to compact into a small amount of memory.

• The 8 state machines are loosely coupled, and they can be
run independently of one another (assuming we can merge
the results back together).

• Each state machine is essentially a binary tree with back
edges. This means we can speed the tree up by traversing
multiple edges at a time (as in a multi-bit trie [25]).

From the state machine D constructed in Aho-Corasick Al-
gorithm, each bit of the 8-bit ASCII code is extracted to con-
struct its own Binary State Machine, a state machine whose
alphabet contains only 0 and 1. Let B0, B1, ..., B7 be these
state machines (1 per bit). For each bit position i we take the
following steps to build the binary state machine B i. Starting
from the start state of D, we look at all of the possible next
states. We partition the next states of D into two sets, those
that come from a transition with bit i set to 1, and those which
transition with bit i set to 0. These sets become two new states
in Bi. This process is repeated until we fill out all of the next
states in the binary state machine in a process analogous to
subset construction (although our binary state machines can
never have more states that D). Each state in Bi maps to one
or more states in D.

After the construction, the mapping to non-output states of
D are not needed any more and so can be eliminated from the
resulting state machines. On the other hand, the mapping to
output states of D still needs to be stored for all states. Be-
cause each output state in D corresponds to a string in the
rule set, these lists of output states for a state a in binary state
machine indicate strings matched when these states are vis-
ited. A resulting state in Bi is an accepting state if it maps
back to any of the accepting states of D. A small bit-vector is
kept for each state in binary state machines, indicating which
of the strings might be matched at that point. Only if all of
the bit-vectors agree on the match of at least one string has a
match actually occurred.
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Figure 3: Extracting bit-level parallelism from the Aho-Corasick algorithm by splitting the state machine into 8 parallel state
machines. The leftmost state machine is the Aho-Corasick state machine (D) constructed for strings “he”, “she”, “his” and
“hers”. Next state pointers pointing back to State 0 is not shown in the graph because it is unrealistic and also unclear to
show all of the 256 next state pointers for each state in this limited space. The other two state machines are two binary state
machines B3 and B4 among the eight state machines, B0, B1 ... , and B7, split from D. State machine B3 is only responsible
for Bit 3 of any input character, while state machine B4 is only responsible for Bit 4 of any input character.

Figure 3 shows two of the binary state machines generated
from the state machine on the left. The state machine in the
middle is state machine B3 which is only responsible for bit 3
of the input and the state machine on the right is state machine
B4. As you can see, state 2 in the original state machine maps
to state 3 and 6 in B3 and state 4, 6, and 8 in B4.

Now let us see how a binary state machine is constructed
from an Aho-Corasick state machine by constructing B3 in
this concrete example. Starting from State 0 in D, which we
call D-State 0, we construct a State 0 for B3, which is called
B3-State 0, with a state set {0}. Numbers in a state set are D-
State numbers. We examine all states kept in the state set of
B3-State 0, which is D-State 0 in this example, and see what
D-States can be reached from them reading in input value “0”
and “1” in bit 3 respectively. For example, D-State 0 and D-
State 1 are reachable from D-State 0 reading in input value
“0”. A new state, B3-State 1, with state set {0,1} is then cre-
ated. Similarly, B3-State 2 with state set {0,3} is created as
the next state for B3-State 0 for input value “1”. Then B3-
State 3 with state set {0,1,2} is created as the next state for
B3-State 1 for input value “0”. The next state for B3-State 1
for input value “1” is an existing state B3-State 2, then there is
no need to create a new state. B3 is constructed by following
this process until next states of all states are constructed. Af-
ter the construction, non-output states kept in state sets, such
as 0, 1 and 3, are eliminated, resulting in B3 shown in the
middle of Figure 3.

Char 0 1 2 3 4 5 6 7
h 0 1 1 0 1 0 0 0
x 0 1 1 1 1 0 0 0
h 0 1 1 0 1 0 0 0
e 0 1 1 0 0 1 0 1

Table 1: Binary Encoding of input stream “hxhe”

3.4 Finding a Match

Let us examine the search processes in both the original
Aho-Corasick state machine and in the corresponding binary
state machines for the example input stream “hxhe” used be-
fore. Reading in “hxhe”, D will be traversed in the order of
State 0, State 1, State 0, State 1 and State 2. The last state
traversed, namely State 2, indicates the match of string “he”.
Because each state machine takes only one bit at a time, we
will need the binary encoding of this input shown in Table 1.
Binary state machine B3 will see only the 3rd bit of the in-
put sequence, which will be 0100. Looking to binary state
machine B3, the state traversal for this input will be State 0,
State 1, State 2, State 4 and State 6. State 6 maps to states
{2, 5} in D. Similarly, the binary state machine B4 will see
the input 1110, and will be traversed in the order of State 0,
State 2, State 5, State 5 and State 8, whose state set is {2, 7}.
The actual output state is the intersection of state sets of all
8 binary state machines. In this example, the intersection is
State 2, which is the same as the result of Aho-Corasick. In
the architecture described in Section 2 this intersection step is
completed by taking the logical AND of bit vectors in the on
chip interconnect.
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The intersection of state sets can be empty, which means
there is no actual output but there is partial output for some
binary state machines. Let us take input “xehs” for example.
The ASCII encoding of bit 3 and bit 4 of “xehs” is 1001 and
1010 respectively. For state machine B3, the state machine in
the middle of Figure 3, the traversal of states is State 0, State
2, State 4, State 6 and State 5, whose state set is {7}. For
state machine B4, the rightmost state machine in Figure 3,
the resulting state set is {2, 5} of State 6. The intersection of
these two sets are empty, hence no string is matched.

3.5 Partitioning the Rules

If we put all of the more than 1,000 strings into a big state
machine and construct the corresponding bit-split state ma-
chines, a partial match vector of more than 1,000 bits, most
of which are zeros, will be needed for each entry in tiles de-
scribed in Section 2. This is a big waste of storage. Our solu-
tion to this problem is to divide the strings into small groups
so that each group contains only a few strings, e.g. 16 strings,
so that each partial match vector is only 16 bits. In this way
each tile will be much smaller and thus faster to be accessed.

Many different grouping techniques can be used for this
purpose and can result in various storage in bits. In order to
find the best dividing methods, we want to consider the fol-
lowing constraints. The number of bits of partial match vec-
tor determine the maximum number of strings each tile can
handle. In addition, each tile can only store a fixed number
of states, i.e. 256 states. We want to make full use of the
storage of both partial match vectors and state entries, which
means we want to pack as many strings in without going over
16 strings or 256 states. Otherwise, we will have to divide
this group into two to let the number of states fit, resulting in
wasted partial match vectors. By analyzing the distribution
of strings in Snort rule set, we find that generally 16 strings
require approximately 256 states. And a more detailed dis-
cussion about selecting the size of each tile can be found in
Section 4.

A good solution is therefore to sort all strings lexicograph-
ically and then divide them sequentially into groups so that
all the common prefixes can share states in state machines
and thus use less states in total. While this is not the opti-
mal solution, it beats the two alternatives, dividing by length
and dividing randomly. The dividing by length method would
consume 21.9% more states and 13.6% more groups than the
method we use, and the random grouping technique would
use 12.1% more states and 4.5% more groups.

3.6 Filling the Tables

Until now, we have shown how to break a rule set into a set
of groups, the way to construct Aho-Corasick state machines
for each group, and the algorithm to split these Aho-Corasick
state machines into new sets of state machines. The final step
to mapping a rule set onto our architecture is then filling the
tables in all modules. As described in Section 2.2 , each en-
try in a table is for one state. The next state pointers and
the partial match vector for state x is stored in entry x. Fig-

n Fanout Storage in bits Tn,g

2 16 n�S
g � ∗ 2p ∗ (g + g + 32p)

4 4 n�S
g � ∗ 2p ∗ (g + 3g + 16p)

8 2 n�S
g � ∗ 2p ∗ (g + 7g + 16p)

Table 2: Optimal Module Sizes. �log2(gL)� is denoted by p for
clarity.

ure 4 shows an example of 4 state machines split from the
Aho-Corasick state machine in Figure 3 mapped onto our ar-
chitecture. Here instead of splitting into 8 state machines, we
split the Aho-Corasick state machine into 4 state machines,
which is optimal in terms of storage which we will show in
Section 4. Each of these 4 state machines is responsible for 2
bits of an input byte. Still taking “hxhe” as an example input
stream, the transitions of all of the 4 state machines starting
from state 0 are shown by arrows. At each cycle, a partial
match vector is produced by each tile, and the logic AND
of these partial match vectors are outputted. According to
different requirements of Intrusion Detection/Prevention Sys-
tems, our architecture can output only after an entire packet
is scanned instead of at each cycle.

4 Analysis of Design

Now that we have presented our string matching architec-
ture and the algorithm used to construct its configuration from
a set of strings, we now present an analysis of several impor-
tant design options and compare against prior work.

4.1 Theoretical Optimal Partitioning

As we mentioned in the prior section, we can divide the
Aho-Corasick state machine into 8 binary state machines,
each of which processes only 1 bit at a time. While 8 binary
state machines is the easiest to understand, we could also split
the Aho-Corasick algorithms into 4 state machines, each of
which processes 2 bits at a time, or 2 state machines that pro-
cess 4 bits at a time. A different way to divide up the original
state machine is to partition the strings into groups of differ-
ent sizes, such as 8, 16, 32, 64 and 128 strings per group.
We would like to know which combination of the two param-
eters, module size n (the number of state machines per rule
module) and group size g (the number of strings per group),
is the best in terms of total storage in bits among all possible
combinations.

Given a rule set of S strings, each of which has L characters
per string on average (length), the total number of bits our
architecture requires is approximately,

Tn,g = n�S
g �2�log2(gL)�(�log2(gL)�2 8

n + g)
From this formula, we can see that the smaller the group

size g is the smaller Tn,g is.

The effect of n on Tn,g is not that direct from the formula
above. We can see this effect more clearly if we plug nu-
merical n into Tn,g. The concrete results after variable n is
plugged in are shown in Table 2 where fanout is the number
of next state pointers for each state.
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Figure 4: The state transitions of input stream “hxhe” on the rule module for strings “he”, “she”, “his” and “hers”. Only
the first 4 bits of 16-bit Partial Match Vectors (PMV) are shown in this diagram because the rest of 12 bits are all zeros for
only 4 strings are mapped onto the Rule Module. Here instead of splitting into 8 state machines, we split the Aho-Corasick
state machine into 4 state machines, each of which is responsible for 2 bits of an input byte. The Full Match Vector output on
Cycle 3+P, 1000, shows that by this cycle string “he” is matched.

We can see from Table 2 that T4,g is minimum when the
constraint g < 8p is satisfied, which is always true in practice
when g is not very big, say less or equal to 64.

4.2 Practical Optimal Partitioning

We have obtained the theoretical optimal parameters for
our architecture in the previous section. We are now going to
confirm some of these results, point out some of the problems
with them and obtain the optimal parameters in practice.

There are three problems with the theoretical analysis
above. First, the approximation of the number of rule mod-
ules used in Tn,g, �S

g �, is for the ideal case and in reality
more rule modules may be needed. Second, p = �log 2(gL)�
is used as the approximation of the number of bits to encode
each state. If the longest string is longer than gL, requiring
more than gL states, more bits than p will be needed to do the
encoding. The length of the longest string in the Snort rule set
we use is between 64 and 128, which means at least 7 bits are
needed. In short, p values that is not large enough to accom-
modate the longest string have to be eliminated. Finally, the
total storage consists of the total number of bits and some cir-
cuit overhead, e.g. decoder and multiplexer. The more groups
the strings are divided into, the more overhead the entire sys-
tem will have.

We tune the two parameters on the real Snort rule set and
these practical results are shown in Figure 5. The X-axis is the
group sizes g on a logarithmic scale, and the Y-axis is mem-
ory in megabytes. The four lines in the figure correspond to
data for four different levels of state-machine fanout. We can

see from the graph that the line for a fanout of 256 is high
above the other lines which indicates that the traditional way
to implement state machines (with 256 next state pointers)
uses far more storage than our bit-split state machines. Even
if the group size is as small as 8, 3.74MB are needed, which is
more than 7 times of the storage of the other fanouts. The fact
that all lines increase monotonically confirms that the smaller
the group size the smaller the total memory needed. We can
see that the two best points are for fanout 4 with group size
8 and group size 16. These configurations use only 0.4MB to
store the entire Snort rule set. We chose a group size of 16
which allows for longer strings, with the concern that string
length is growing and that larger tiles sizes cause less over-
head.

4.3 Detailed Throughput and Area Comparison

As we mentioned in Section 2, IDS/IPS have three main
requirements on string matching algorithms, which are worst
case throughput, non-interrupting update and area efficiency.
So here we compare these three requirements on our de-
sign and a number of other designs. In Section 2, we
have described our architectural support for incremental
and non-interrupting update, therefore we concentrate on
the other two requirements, the worst case throughput and
area efficiency, as well as performance per area (Through-
put*Characters/Area) in the rest of this section.

From Table 3, we can see that our design can achieve worst
case throughput of over 10 Gbit/sec even if only 1 byte is
read in each cycle, while the best of all FPGA-based meth-
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Figure 5: Practical Memory Comparison for Different Fanout and
Group Sizes. X-axis is the number of strings per rule module, also
referred to as group sizes, on a logarithmic scale. The four lines
correspond to data for four different fanout.

ods we examined can only achieve a throughput of just over 3
Gbit/sec with this read-in rate. Even the smallest throughput
configuration of our design handles over 8 Gbit/sec, with a
great increase in area efficiency and performance per area.
In addition to throughput, we compare area efficiency (in
char/mm2) among different designs. We explore tradeoffs
in SRAM memory bank sizes using a modified version of
CACTI 3.2 [23]. Area results of FPGA-based methods are
calculated from the number of LUTs and area needed by
each LUT and are normalized to the same technology (0.13
µm). Our design achieves an area efficiency of 320.972
characters/mm2, which is more than 4 times of that of the
best FPGA-based designs examined. The performance per
area of our design is near 12 times of that of the best exam-
ined FPGA-based methods.

Figure 6 shows the efficiency comparison of our bit-split
FSM design and FPGA-based designs. The X-axis is the area
efficiency, the number of characters per square millimeter the
design can support. The Y-axis is the throughput in Gbit/sec.
All points on the same dashed line in the figure have the same
performance per area value. Dashed lines on the upper right
part of the figure have higher performance per area value. So
the points on the upper right part denote more efficient de-
signs. We can clearly see that even the least efficient configu-
ration of our bit-split FSM design beats the best FPGA-based
designs examined and most of the bit-split FSM design are
far better than these FPGA-based designs.

Our method is also better than the best software method
we examined. Tuck et al. [30] optimized the Aho-Corasick
algorithm by looking at bitmap compression and path com-
pression to reduce the amount of memory needed to 2.8MB
and 1.1MB respectively, which are still at least about 3 times
of that of our design, which is only requires 0.4MB.

5 Related Work

Recently there has been a flurry of work related to string
matching in many different areas of computer engineering.
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Figure 6: Efficiency (Throughput*Char/Area) Comparison of
String Matching Designs. Each dashed line is aggregation of all
points that have the same performance per area value. The points
on the upper right part denote more efficient designs. We can clearly
see that even the least efficient configuration of our bit-split FSM de-
sign beats the best FPGA-based designs examined and most of the
bit-split FSM design are far better than these FPGA-based designs.

This work can be broadly broken down by the target of its
intended implementation, either in software, or in an FPGA.
While we could not hope to provide a comprehensive set, we
attempt to contrast our work with several key representatives
from each area.

Software-based: Most software based techniques concen-
trate on the reducing the common case performance. Boyer-
Moore [8] is a prime example of such technique, as it lets its
user search for strings in sub-linear time if the suffix of the
string to be searched for appears rarely in the input stream.
While Boyer-Moore only searches for one string at a time,
Fisk and Varghese [14] present a multiple-pattern search algo-
rithm that combines the one-pass approach of Aho-Corasick
with the skipping feature of Boyer-Moore as optimized for
the average case by Horspool. The work by Tuck, et al. [30]
takes a different approach to optimizing Aho-Corasick by in-
stead looking at bitmap compression and path compression to
reduce the amount of memory needed.

FPGA-based: The area that has seen the most amount of
string matching research is in the reconfigurable computing
community [11, 17, 24, 15, 5, 6, 10, 13, 4, 9, 3]. Proponents
of the work in this area argue intrusion detection is a perfect
application of reconfigurable computing because it is com-
putationally intensive, throughput oriented, and the rule sets
change overtime but only relatively slowly. Because FPGAs
are inherently reconfigurable, the majority of prior work in
this area focuses on efficient ways to map the a given rule
set down to a specialized circuit that implements the search.
The configuration (the circuit implemented on the FPGA) is
custom designed to take advantage of the nature of a given
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Description Throughput
(Gbps)

Char/Area
(1/mm2)

Throughput*
Char/Area
(Gbps/mm2)

Notes

10.074 55.219 556.306 Bank size 64B
9.759 72.592 708.424 Bank size 128B

Bit Split FSM 9.326 156.569 1460.092 Bank size 256B
9.042 198.442 1794.316 Bank size 512B

(Group Size 16) 8.706 285.676 2487.194 Bank size 1024B
8.408 320.972 2699.210 Bank size 2048B

Sourdis and Pnevmatikatos [24] 9.708 23.482 227.968 4B/cc, Virtex2-6000
4.913 22.682 111.434 4B/cc,Spartan3-5000
3.080 64.990 200.170 Virtex2-3000, g=64

Pre-decoded 2.975 76.035 226.203 Virtex2-3000, g=128
CAMs 2.678 86.076 230.510 Virtex2-3000, g=256

2.086 56.709 118.295 Spartan3-1500, g=64
2.107 65.350 137.693 Spartan3-1500, g=128
2.000 75.851 151.703 Spartan3-1500, g=256

Hutchings et al. [17] 0.248 32.496 8.059 1B/cc, Virtex-1000
Regular 0.400 32.496 12.998 1B/cc, Virtex-1000

Expressions 0.396 33.353 13.208 1B/cc, Virtex-2000
Cho et al. [10] Dis. Comparators 2.880 ∼ 7.911 ∼ 22.785 1B/cc, Altera EP20K

Clark et al. [11] NFAs-Shared Decoders 0.800 ∼ 74.733 ∼ 59.787 1B/cc, Virtex-1000

Table 3: Detailed Comparison of Our Bit Split FSM Design and existing FPGA-based Designs. Throughput, density, and efficiency are
shown for a variety of different design options. g = group size. 1B/cc = read in one byte per cycle time.

specific rule set, and any change to the rule set will require
the generation of a new circuit (usually in a hardware descrip-
tion language) which is then compiled down through the use
of CAD tools. The work of Sourdis and Pnevmatikatos [24]
describes an approach that is specifically tuned to the hard-
ware resource available to devices available from Xilinx to
provide near optimal resource utilization and performance.
Because they demonstrate that there mapping is highly effi-
cient, and they compare against prior work in the domain of
reconfigurable computing, we compare directly against their
approach. Even though every shift-register and logic unit is
being used in a highly efficient manner, the density and reg-
ularity of SRAM are used to a significant advantage in our
approach resulting in silicon level efficiencies of 10 times
or more. It should be also noted that most FPGA based ap-
proaches are usually truly tied to an FPGA based implemen-
tation because they lie on the underlying reconfigurability to
adjust to new rule sets. In our approach this is provided sim-
ply by updating the SRAM and can be done in a manner that
does not require a temporary loss of service.

While in this paper we have explored an application spe-
cific approach, it is certainly feasible that the techniques
we have developed and presented would allow for the effi-
cient mapping of string matching to other tile based archi-
tectures. For example Cho and Mangione-Smith presented a
technique for implementing state machines on block-RAMs
in FPGAs [9] and concurrent to our work Aldwairi et. al. [3]
proposed mapping state machines to on-chip SRAM. Another
example where the optimizations we present would still be
valuable is where the application is mapped down to more
general purpose programmable memory tiles [18, 29, 27].

6 Conclusions

While in this paper we examine the use of our technique
strictly for intrusion detection with Snort, our methodology is
general purpose enough to be useful across a variety of other
application domains. String matching plays a crucial part in
the execution of many spam detection algorithms (to match
strings which are most likely spam) [1]. Even outside of
security we see opportunities for high-speed string matching.
For example, in peephole optimization, we want to replace a
sequence of instructions with another functionally equivalent
but more efficient sequence to achieve higher overall perfor-
mance of programs [28, 19]. A sequence of instructions to be
replaced can be of different lengths and can appear at any lo-
cation of programs. A faster string matching algorithm could
boost optimization speed and enable the creation of simplified
run-time optimizers for embedded systems. There may also
be opportunities to apply our technique to well studied areas
of IP lookups [22], and packet classification [16].

In addition to improve string matching performance, our
bit-split FSM scheme can be detached from string matching
to be applied to general search problems on general state ma-
chines. Any such state machine problem where there is a high
fanout from each of the nodes may be improved dramatically.

One great way to improve throughput is to read in more
than one byte at a time. This scheme is infeasible, however,
for original Aho-Corasick Algorithm due to the high fanout
from nodes in the state machines. On the other hand, our
bit-split FSMs only have two next states for each node and
thus can be easily expanded to read in more than one byte
at a time to multiply throughput with reasonable increase in
storage size.
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As security becomes an increasingly important concern,
computer systems will almost certainly need to change to
help address this problem. While Network Intrusion Detec-
tion and Prevention Systems are certainly not a silver bullet
to the complex and dynamic security problems faced by to-
day’s system designers, they do provide a powerful tool. Be-
cause network IDSs require no update or modification to any
of the systems they help to protect, they have grown rapidly
in recent years both in adoption and power. In this paper we
present an architecture and algorithm that is small enough to
be included on existing network chips as a separate accelera-
tor, that is fast and efficient enough to keep up with aggressive
network speeds, and that supports always on capability with
tight worst case bounds on performance. To provide this func-
tionality we rely on the combination of a simple yet scalable
special purpose architecture working in tandem with a new
specialized rule compiler which can extract bit-level paral-
lelism from the state of the art string matching algorithms. In
the end, we have shown how the problem of high-speed string
matching can be addressed by converting the large database of
strings into many tiny state machines, each of which searches
for a portion of the rules and a portion of the bits of each rule.
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