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Abstract

Embedded processors for video image recognition re-
quire to address both the cost (die size and power) versus
real-time performance issue, and also to achieve high flex-
ibility due to the immense diversity of recognition targets,
situations, and applications. This paper describes IMAP, a
highly parallel SIMD linear processor and memory array
architecture that addresses these trading-off requirements.

By using parallel and systolic algorithmic techniques,
despite of its simple architecture IMAP achieves to exploit
not only the straightforward per image row data level par-
allelism (DLP), but also the inherent DLP of other memory
access patterns frequently found in various image recog-
nition tasks, under the use of an explicit parallel C lan-
guage (1DC). We describe and evaluate IMAP-CE, a latest
IMAP processor, which integrates 128 of 100MHz 8 bit 4-
way VLIW PEs, 128 of 2KByte RAMs, and one 16 bit RISC
control processor, into a single chip. The PE instruction set
is enhanced for supporting 1DC codes. IMAP-CE is eval-
uated mainly by comparing its performance running 1DC
codes with that of a 2.4GHz Intel P4 running optimized C
codes. Based on the use of parallelizing techniques, bench-
mark results show a speedup of up to 20 for image filter ker-
nels, and of 4 for a full image recognition application.

1. Introduction

Many efforts have been made thus far in designing em-
bedded processors which can provide sufficient perfor-
mance with less cost (die size and power). Although
currently most of them aim at accelerating multimedia ap-
plications such as video processing, speech transcod-
ing, and high-bandwidth telecommunication due to the
huge market, video image processing and pattern recog-
nition (hereafter image recognition) applications such
as vision-based driver support system for ASV (Ad-
vanced Safety Vehicle), natural human interfaces, and robot

vision systems, are also emerging markets for embed-
ded processors. For example, ASV is predicted to spread
to over a considerable amount of the world wide vehi-
cle sales volume within four to five years.

Video image recognition tasks alike conventional multi-
media tasks in some aspects, such as the large amount of
data level parallelism and the requirement of real-time re-
sponses. However, prominent distinction between them are
that, image recognition algorithms are much more diverse,
due to their continuous evolution for coping with the vari-
ety of applications, recognition targets (can be anything),
and changes of situations (day and night, weather condi-
tions, appearances and sizes). These immense diversity de-
mand image recognition processors not only to address the
conventional high performance versus cost issue, but also
to provide high enough flexibility for achieving compiler
based application developments.

In this paper, we first describe our architecture design
strategy of choosing a highly parallel SIMD architecture,
to achieve highest performance at lowest cost, while main-
taining a compiler based programmable flexibility. We next
show that parallel and systolic algorithmic techniques can
be applied for mapping classified memory access patterns
of image recognition tasks onto one of such architecture,
an integrated memory array processor (IMAP), using an ex-
plicit parallel C language design calls 1DC (One Dimen-
sional C). We then describe and evaluate IMAP-CE[27], an
implementation of the IMAP architecture, focusing on its
enhanced RISC PE instruction set for supporting compiler
generated codes of 1DC. IMAP-CE is evaluated by using
various image filter kernels as well as a full application. Its
performance is compared with a 24 times higher frequency
Intel P4, by which a speedup of up to 20 for the image fil-
ter kernels, and of 4 for the full application are obtained,
with a 50 to 100 times better power efficiency.

The rest of the paper is organized as follows. Section 2
describes our architecture design strategy. Section 3 ana-
lyzes the structure of image recognition tasks and derives
techniques for mapping them onto the IMAP architecture.
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Section 4 describes the programming language for IMAP. In
section 5 IMAP-CE are briefly described. In section 6, eval-
uation and the analysis results are shown. Section 7 con-
cludes this paper and shows future directions.

2. Architecture Design Strategy

Generally, total circuitry (= total cost) of a processor
LSI can be roughly classified into two categories:oper-
ational circuitry (datapaths and wired-logics) that deter-
mine its theoretical peak performance, andcontrol cir-
cuitry ( instruction issue management and interface logics)
that contribute mainly for improving flexibility. Based on
this classification, the inevitable trade-off between perfor-
mance, cost, and flexibility can now be illustrated Fig. 1(a),
while Fig. 1(b) shows the Control versus Operational circuit
Ratio (COR) observation of several representative proces-
sor LSI implementations, estimated from their die photos
[31][14][35][32][12], demonstrating a fairly accurate match
between the COR value of each processor category and their
well-known flexibility degree: a larger COR the higher a de-
gree of flexibility.

(a)

(b)

Figure 1. Relationship between performance,
cost, and flexibility, and the Control versus
Operational circuit Ratio (COR).

According to Fig. 1, the category “highly paral-
lel SIMD”, due to its nature of controlling a large amount
of datapath using only a single instruction issue cir-
cuit (the SIMD paradigm), can be the best choice to maxi-
mize performance without raising the total cost, while still
maintaining a compiler programmability. However, com-
paring with GPPs (General Purpose Processors), the re-
duced amount of control circuitry of highly parallel SIMD
processors reveal aflexibility gap, poses the following gen-
eral question to processor architects: ”how are you going to

keep these much of PEs busy?”. In order not to be irrespon-
sible to just pass on the issue to programmers, algorithm
designers, or compiler engineers, architectural considera-
tion should be taken to some extent, which however, hope-
fully not to result in raising its COR value. Our strategy
toward this issue is to, first establish parallelizing tech-
niques for mapping various image recognition tasks onto a
simple highly parallel SIMD working model which has po-
tentially an enough low COR. Then, we fill the inevitable
flexibility gap by feeding back knowledge of those par-
allelizing techniques to the design of hardware and as
well as its programming language, so as to ensure an ef-
ficient use of the highly parallel PE array via high level
programming language codes. The rest of this paper pro-
vides the detail of our approach, and the evaluation re-
sults.

3. Parallelizing Techniques

In this section, we first categorize memory access pat-
terns existing in image recognition applications, from a
point of view of their inherent feasibility to be implemented
on parallel architectures. Next, after choosing a linear array
connection of processor elements as our underlying highly
parallel SIMD architecture, we describe techniques for par-
allelizing each of the memory access pattern category onto
that architecture.

3.1. Memory Access Patterns

Generally, tasks involved in an image recognition ap-
plication can be classified into either low-, intermediate-,
or high-level. Low-level tasks perform pixel-to-pixel trans-
formation, while intermediate-level tasks transform pixel
data into symbols, and finally high-level tasks per-
form rule based reasoning upon these symbols to derive
a final recognition result. Within this three-level struc-
ture, by focusing on the most computational intensive
portion, i.e. the low- and intermediate-level tasks, inher-
ent pixel access patterns have been thus far classified into
seven major pixel operation groups[17]: PO(Point Opera-
tion), LNO(Local Neighborhood Operation), SO(Statistical
Operation), GeO(Geometrical Operation), RNO(Recursive
Neighborhood Operation), and OO(Object Operation).
Mathematical definition of these pixel operation groups
can be found in [21]. Fig.2 illustrates their features in re-
spect of source pixel access ranges, and their distribution
among low- and intermediate-level tasks.

For facilitating parallelizing technique design, we
have classified these pixel operation groups into the fol-
lowing four memory access pattern categories, from a
viewpoint of the existence of data locality and pixel updat-
ing order constrains in them: Local/Unconstrained (LU),
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Figure 2. Distribution of the seven typical op-
eration groups.

Global/Unconstrained (GU), Local/Statically-constrained
(LS), and Local/Dynamically-constrained (LD). In our def-
inition, data locality exists if pixel data required by an op-
eration is within a considerable grid distance from the
destination pixel location. We assume that source and des-
tination image pixel of a similar grid location are mutually
possessing data locality. Explanations of our classifica-
tion criteria, including a brief view of each pixel operation
group are presented in below.

In PO, source pixels are accessed according to each des-
tination pixel location. Sample tasks areThresholdingand
Color Conversions. In LNO , the source pixel access range
is extended but still within a local area centered by each
destination pixel location. Sample tasks are the various2-D
image filters. We classifies PO and LNO to the LU cate-
gory due to their local and unconstrained pixel updating se-
quences. InGlO, all source pixels are accessed for calculat-
ing a resulting destination pixel value. A typical sample task
is theFourier Transform. In SO, source pixels are accessed
and (for example) accumulated as to obtain a scalar or a
vector data. Sample tasks areHistogram Calculationor the
Hough Transform. In GeO, source pixels are to be moved
from a certain location to another destination pixel location.
Sample tasks areAffine Transformand Image Transposi-
tion. We classifies GlO, SO, and GeO to the GU category
due to their non-local (global) and unconstrained pixel up-
dating sequences. InRNO, not only local source pixels but
also some previously defined local destination pixel data
are required for calculating each current destination pixel
value, thereby their updating sequences are constrained by
the destination pixel locations they should referred to. RNO
is then classified to the LS category due to this local but stat-
ically constrained pixel updating sequences. Sample tasks

are Distance Transform[3]or Dither Transform. Finally,
OO is classified to the LD category due to its local but
dynamically constrained pixel updating sequence nature, in
most cases depending on image content, i.e. the pixel val-
ues around each destination pixel location. Sample tasks are
Region Growing, or Connected Component Labelling.

With these four memory access patterns in mind, We
next proceed to the choice of array configuration of a highly
parallel SIMD architecture, and also the design of parallel
mapping techniques.

3.2. Parallelizing Technique Design

Highly parallel SIMD architectures for image processing
have been developed since early 80’s. Since then, there ex-
ists four archetypes for the inter PE connection: Linear Pro-
cessor Array (LPA)[8][10][11][20], Square Processor Ar-
ray (SPA)[7][2], PYRamid (PYR)[30][5], and HyPeRcube
(HPR)[16][33]. Among them SPA seems to provide a best
match to the 2-D structure of an image. However, previ-
ous studies[18][13][6][15] have shown that LPA has no less
computational and data I/O efficiency than SPA when the
number of PE is the same, despite its cheapest hardware
cost. Based on the above knowledges, and together based on
the observation that a flexible memory architecture will fa-
cilitate the design of parallelizing techniques, we have cho-
sen a most straightforward memory and processor linear ar-
ray architecture, where each PE is attached with a consider-
able amount of locally addressable memory and connected
in a ring, as our underlying architecture. Hereafter this ar-
ray configuration will be referred to as IMAP (Integrated
Memory Array Processor).

Before proceeding to the explanation of parallelizing
techniques, Fig.3 shows the setup of the IMAP working
model. For simplicity, an image width equal to the PE num-
ber, and a column wise mapping of an image to each PE
is assumed. 2-D memory plane is a collection of all PE lo-
cal memories, where the source, destination, and work im-
ages are assumed to be stored. The dot line drawn upon the
2-D memory plane is called a Pixel Updating Line (PUL).

LPA

image width

Local memory for one PE

Column/PE
mapping of an image

one PE

The image to be processed
(the 2-D memory plane)

PUL moving directionPUL

Figure 3. The IMAP working model.
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PUL is consisted of a collection of memory addresses
(or pixel locations), upon which, PEs work on simultane-
ously at each time unit. Thus, trajectory of a PUL over time
can be regarded as the source or destination pixel area cov-
erage of a task running on IMAP. Parallelizing techniques
have been designed based on the idea of sweeping the PUL
in various ways across the 2-D memory plane[24][25]. First
of all, it is easy to understand that parallelizing LU can be
achieved by making a clean sweep by a straight and hor-
izontal row-wise PULupon the 2-D memory plane, from
top to bottom (or vice versa) as shown in Fig.3.Row-wise
PUL can be easily implemented on IMAP by broadcasting
to all PEs a single memory address (the line address) and
increment it (proceed the PUL forward) as many times as
the number of image lines. Parallelizing GU is achieved by
the use of a PUL wrapping around at the leftmost and right-
most end while sweeps across the 2-D memory plane in a tilt
shape and moves in a horizontal direction (therow-systolic
PUL). Therow-systolic PULproceeds through the 2-D im-
age plane and collect global information or perform global
pixel location transformation. An example will be shown in
Section 4.

Parallelizing LS is achieved also by using a tilt PUL but
in combination with an interval activation of each PE (the
slant-systolic PULin Fig.4), for fulfilling the required delay
of updating each neighboring pixel location. Finally, paral-
lelizing LD is achieved by maintaining a software stack in
each PE’s local memory as a temporal storage of ready pixel
location information, for proceeding anautonomous PULas
shown in Fig.4. These software stacks are used in combina-
tion with the follwing three procedures: 1) seed (or starting
point) pixel location pushing, 2) neighboring ready pixel lo-
cation detection and push, and 3) pixel location pop andup-
date. By first initializing the PE stacks using 1), and then it-
erating 2) and 3) until all PE stacks are empty,autonomous
PULs can be controlled to proceed and sweep through re-
gions of interest within the 2-D image plane.

Fig.4 shows the correspondence between the seven pixel
operation groups (PO/LNO/SO/GlO/GeO/RNO/OO), the
four memory access pattern categories (GU/LU/LS/LD),
and the parallelizing techniques (four types of PULs).
Note that usually each parallelizing technique is not
self-contained but is used in a mixture style. For ex-
ample, a 2-D FFT will be implemented by first apply-
ing a row-wise PUL (1D-FFT), continued by applying
a row-systolic PUL (transpose column to row), and fi-
nally by applying anotherrow-wise PUL(1D-FFT). Here-
after, these parallelizing techniques will be collectively
referred to asline methods[29]. Table 1 summarizes the ex-
pected speedup based on the use ofline methodswhen
the number of PE isN, where M represents the maxi-
mum pixel distance between the destination and the re-
ferred pixel location for LNO and RNO tasks.

Figure 4. Correspondence between pixel op-
eration groups, memory access pattern cate-
gories, and parallelizing techniques.

Op. Original Complexity Expected
group complexity on IMAP speed up

PO O(N2) O(N) N
LNO O((2M + 1)2 =< O((2M + 1)2 N

×N2) ×N)
SO O(N2) O(2N) N/2

GlO
O(2N3) x,y separable O(2N2) N

O(N4) otherwise O(N4) 1
GeO O(N2) average case O(2N) N/2
RNO O((2M − 1) raster O(M× O((2M − 1)

×M ×N2) type N + N) ×M ×N
/(M + 1))

OO O(N2) O(N) up toO(N2) up to N

Table 1. Expected speedup of each operation
group on IMAP using line-methods.

Applicability of line methodson IMAP can be evalu-
ated by considering the efficacy of other general paralleliz-
ing methods when applying them to IMAP. For example,
according to the experience of applying the conventional
divide-and-conquertechnique to image processing tasks on
the WARP multi-processor system[37], although at the be-
ginning processing time decreases according to the increase
of the number of PE, gradually the speedup saturates, and
finally processing time starts to increase due to inter PE
communication overhead at theconqueringstage[37]. This
overhead is further maximized if a poor PE inter-connection
configuration such as a LPA, other than a binary tree or a
SPA is used.Line methodsovercome such issue of a LPA,
by using a parallel and systolic way for data communica-
tion between PEs, as shown by therow-systolic PULand
slant-systolic PUL.
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4. Programming Language Design

In order for efficiently implementingline methodson
IMAP using high level programming language, a data par-
allel C extension calls One Dimensional C (1DC)[24] is de-
signed. In 1DC, entities associated with the PE array are de-
clared by using asep(or separate) keyword. Asepdata pos-
sesses as many scalar elements as a multiple of the number
of PE. Usingsep variables in 1DC expressions specifies ex-
plicitly parallel operations. Requirements fromline meth-
ods are fed back to the design of 1DC, resulting into six
primitive extensions from C as shown in Fig.5.

a

b

a

b

b= a op c;

1 0 1 10

b

mif(c) b= a;

c

a
0 a

dOr/And

b= :>a; (or :<a;)

d= :||a; (or :&&a;)

int             d,e;
sep char  a,b,c,ary[256];

a= ary[b];

c
op op op op op op

2)left/right reference 3)index addressing

4)PE grouping 6)status-collection

1)arithmetic

a

d

a:[e:]= d; (or a=d;)

5)scalar-substitution

e

Figure 5. The six primitive 1DC syntax forms.

Table 2 shows the correpsondance between each paral-
lelizing technique and the indispensable 1DC syntax. Ar-
chitectural support ofline methodscan now be put in other
words, that is, to design an IMAP processor which can
achieve efficient execution of 1DC codes consisting of these
syntax extensions.

PUL type row- row- slant- auto-
wise systolic systolic nomous

1) arithmetic X X X X
2) left/right ref. X X X X
3) index addr. - X X X
4) PE grouping - - X X
5) scalar-subs. - - X X
6) status-collect. - - - X

Table 2. Correspondence between paralleliz-
ing techniques and the 1DC syntax.

Three sample 1DC codes:binarize (image thresh-
olding:PO),average(average filter:LNO), andhistogram
(pixel histogram calculation:SO), are shown in Fig.6, where
NROWdesignates the number of image rows, and thesep

array src and dst stores respectively the source and des-
tination image. Also for simplifying explanations for
histogram, we assume eachsep data with 256 ele-
ments (i.e. 256 pseudo PEs), and use a same pixel width
source and destination images.

sep unsigned char src[NROW],dst[NROW];
void binarize(int thres){ /*row-wise*/
int i;
for(i=1; i <NROW-1; i++)

mif(src[i]>thres) dst[i]=0xff; melse dst[i]=0;
}
void average(){ /*row-wise*/
sep unsigned int acc;
int i;
for(i=1; i <NROW-1; i++) {

acc = src[i-1] + src[i] + src[i+1];
dst[i] = (: <acc + acc + :>acc)/ 9;
}

}
sep unsigned int histogram(){

sep unsigned int hst[256], res=0;
sep unsigned char idx=PENUM;/*1*/
int i;
/*2*/for(i=0; i <256; i++) hst[i]=0; /*row-wise*/
/*3*/for(i=0;i <NROW;i++) hst[src[i]]++; /*row-wise*/
/*4*/for(i=0; i <256; i++) { /*row-systolic*/

/*4-1*/res = :<(hst[idx] + res);
/*4-2*/idx = :<idx;

}
return(res);

}
Figure 6. 1DC sample codes.

In binarizeandaverage, resulting pixel data are calcu-
lated line by line, controlled by a scalar variablei of the ar-
ray controller. The “PE grouping” (mif. . .[melse. . .] ) syntax
is used for dividing PEs into two groups, where one substi-
tutes0 and the other0xff, into eachdst[i] , i.e. one line of
the destination image. Inaverage, acc is the vertical sum
of 1×3 pixels, and the 3×3 pixel sum is calculated by us-
ing the “left/right reference” (”:> ” and ”:< ” ) operators to
refer to adjacent PEs’acc. In histogram, each PE first in-
dependently calculates the histogram of an image column
within its local memory and stores the result into a local
separrayhst (/*2*/ and /*3*/) using row-wise PUL. Next,
the row-systolic PUL(/*4*/) is used to combine these dis-
tributedhsts across all PEs.PENUM, asepconstant whose
value is zero at the leftmost PE and increases one by one
until 255 (the maximum PE number), is used as the initial
value of idx (/*1*/) which is used in /*4-1*/ for indexing
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hst while rotating its value between PEs(/*4-2*/), thereby
generating a tilt and wrapped around PUL. Fig. 7 shows the
breakdown of the loop /*4*/ focusing on the movement of
one scalar data ofhst[1]. According to Fig. 7, in the end of
loop /*4*/, everyN th element ofhsts on PEs are shown to
be summed up intores of theN th PE, thus thesep datares
stores the final histogram result (in a distributed way).

i=0: res of PE0 = {hst[1] + 0} of PE1
i=1: res of PE255 = {hst[1]+res} of PE0

= {hst[1] of PE1} +
{hst[1] of PE0}

i=2: res of PE254 = {hst[1]+res} of PE255
= {hst[1] of PE255}+

{hst[1] of PE1} +
{hst[1] of PE0}

..........
i=255:res of PE1 = {hst[1]+res} of PE2

= {hst[1] of PE2} +
{hst[1] of PE1} +
{hst[1] of PE0} +
{hst[1] of PE255}+
............
{hst[1] of PE3}

Figure 7. The histogram summing loop.

5. The IMAP-CE Linear Processor Array

This section describes the design of IMAP-CE, includ-
ing its building blocks, memory and video data I/O system,
its enhanced features for efficient support ofline methods,
and the software system. Connections of multiple IMAP-
CE chips to form a larger SIMD or multi-SIMD system are
also supported by the chip in hardware, however in this pa-
per we focus only on the single chip configuration.

5.1. Building Blocks

Main building blocks of IMAP-CE are the control pro-
cessor (CP), the 128 PE array (PE8×16, PE8 is a group
8 PEs), and the external memory interface (EXTIF). Fig.8
shows the block diagram and die photo of the chip, which is
fabricated using 0.18um CMOS process integrating 32.7M
transistors into a 11x11mm2 die, and packaged using 500-
pin TBGA. Application level power consumption is esti-
mated to be in average around 2 Watts.

CP is a 6 stage pipelined general purpose 16-bit RISC
processor equipped with a 32KB program cache, a 2KB
data cache, and host interfaces. CP issues up to 4 instruc-
tions per cycle, out of which one is for itself, and up to 4
are broadcasted to the PE array. Each PE of the PE array is
a 3 stage pipelined 8b RISC datapath attached with a 2KB
single port RAM (IMEM), 24 8b general purpose registers,
an 8b ALU, an 8bx8b multiplier, a load-store unit (LSU),

a reduction unit (RDU) for communicating with CP, and
an inter PE communication unit (COMM) using the ring
inter-connection between PEs. Each PE can execute up to
4 instructions per cycle (4-Way VLIW). EXTIF contains a
DMA engine for data transfer between IMEMs and EMEMs
(SDRAM), a hardware image line data scaling unit (from
25% to 400%) attached to the DMA engine, and a SDRAM
controller with an arbiter for arbitrating accesses from 1)
CP (during program/data cache misses), 2) host (via bus in-
terfaces), and 3) the DMA engine.

Figure 8. IMAP-CE Block Diagram/Die-photo.

5.2. Memory System and Video Data I/O

The collection of all IMEMs (256KB) forms the 2-D
memory plane as described in Fig.3, and provides work-
ing spaces for applyingline methodbased algorithms. The
1DC compiler for IMAP-CE explicitly maps allsep data
in default onto IMEMs, while mapssep data with an ad-
ditional outside declaration onto the EMEM. EMEM (in
max. 64MB) provides both swapping area for the 2-D mem-
ory plane, and the program and data memory area (each up
to 16MB) for CP.

Data exchanges betweensep and outside sepspaces
must be done by explicitly invoking the DMA engine from
the user program. The DMA engine contains two prior-
ity request queues of 32 depth, to allow software sched-
uled data transfers of any specified rectangle area of the 2-
D memory plane in burst modes. During each DMA data
transfer, the 128 single port IMEMs of the PE array are ef-
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ficiently shared by the DMA engine using line-buffers, i.e.
a sixteen shift register configuration, where each shift reg-
ister is 64b and mapped to one PE8. The DMA engine oc-
cupies only one single IMEM access cycle of the PE array,
during which the 12.8GB bandwidth is used for transfer-
ring one complete row of image or 128B of data between
IMEMs and line-buffers, while an extra 16 continuous cy-
cles are further required for shifting them into or out from,
between line-buffers and the EMEM space (via EXTIF).
These actions are done in parallel with the PE array execu-
tion thereby overcoming memory latency and fully exploit
the 0.8GB/s memory bandwidth although 1/16 of that be-
tween the PE array and the IMEMs.

Four video shift register channels (SR0-SR3, 128x8b
each shown at the bottom of Fig.8) are used for efficient I/O
of stereo or color(R/G/B or YCrCb) video data of cameras.
These SRs operate in video clock and each element of all
four SRs are mapped to each PE. Connection between inter-
PE SR elements are re-configurable, exchanging a mapping
of from 1 up to 4 video pixel data to each PE, with the num-
ber of available SR channels[27]. Whenever each video im-
age line has been completely shifted into a SR channel, it
is transferred to a pre-assigned work space of the EMEM
by the DMA engine invoked from a software interrupt rou-
tine, which is in term activated by a hardware interrupt sig-
nal generated by internal control-logics which count video
clock ticks based on the NTSChorizontal sync.andvalid
video signal inputs provided by an off-chip video decoder.

5.3. The Enhanced PE Design

Fig. 9 shows the pipeline stages of CP and the PE array.
Most PE instructions perform register to register operation,
and accomplish in one cycle (RISC instruction set). Table
3 shows representative PE instructions.ir∗ andcr∗ are re-
spectively general purpose registers of the PE array and CP.
ir ∗ P represents a pair ofir∗. While a cr∗ represents a
scalar data, a ir* represents a vector data of 128 length.ped
is a special purpose CP register for storing collected PE sta-
tus information. The notationfs(ir3, expr) represents the
value of a resulting flag ofexpr operation, where the flag
type is specified byir3. mr andmf are two single bit spe-
cial registers: if themask bit fieldof an instruction is 1, then
for PEs whosemr is 0, write-back action of the instruction
is inhibited.mf is a temporal storage for keeping the re-
versed value ofmr. Both of them are implicitly defined by
a group ofmif PE instructions.

Enhancements of IMAP-CE toward efficient execution
of the six primitive 1DC syntax are summarized in below.

1. Arithmetic Operation: A 4-way VLIW design en-
ables each PE to execute in maximum three different
sepdata operations and one memory access in one cy-

Scalar data
broadcast

IF ID

BC2

ADD

CP 

LOG

cWBpecRF cWBcEX

MUL

iWB

LSU

iRF

iRF

iRF

BC1

iRF

iWB

iWB

iWB

PE

RDU

PE
Instruction
broadcast

PF

Tightly-coupled 
CP-PE pipeline

0

127
COMM iWBfr. left/

right PE

Status collection/
Scalar data extraction

PE
Array 

4 Inst.
per cycle

in max.

1 inst. per cycle

Figure 9. CP and the PE array pipeline stages.

cle, exploiting instruction level parallelism within the
single instruction stream broadcasted from CP.

2. Left/right Reference Operation: Each PE can per-
form a single cycle register to register data access of
neighboring PEs using a 16b wired inter PE connec-
tion (mvrp,mvlp in Table 3).

3. Index Addressing Operation: Each PE has a private
RAM (IMEM), enabling all PEs to access to a mutu-

name action name action
Instructions for arithmetic operations (39 in total)

add ir3=ir1+ir2 sub ir3=ir1-ir2
mul ir3P=ir1 x ir2 ssub ir3=saturate(ir1-ir2)
abs ir3= | ir1-ir2 | sadd ir3=saturate(ir1+ir2)
max ir3=max(ir1,ir2,ir3) min ir3=min(ir1,ir2,ir3)
sll ir3=ir1À1 mv ir3=ir1

Instructions for left/right reference operations (6 in total)
mvr ir3=ir1 of left PE mvl ir3=ir1 of right PE
mvrp ir3P=ir1P of left PE mvlp ir3P=ir1P of right PE
Instructions for normal/indexed addressing operations (8 in total)

ld ir3=IMEM[cr1+cr2] st IMEM[cr1+cr2]=ir1
ldt ir3=IMEM[cr1+ir2P] stt IMEM[cr1+ir2P]=ir1

Instructions for PE grouping operation (4 in total)
mif mr=fs(ir3,ir1-ir2)&mr, mf=fs(ir3,ir1-ir2)∧1)&mr
mifc mr=fs(ir3,ir1-ir2-carry)&mr, mf=fs(ir3,ir1-ir2)∧1)&mr

Instructions for scalar substitution operation (4 in total)
mv2 ir3=cr1 pdp ir3 of PE(cr1) = ped

Instructions for status collection operation (3 in total)
sml zero clear each PE’smr except the leftmost non zero one
sts ped = bit-wise OR all PEs’ ir1

Table 3. Representative PE instructions.
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ally different memory address simultaneous within one
cycle (ldt, stt in Table 3).

4. PE Grouping Operation: Hard-wired instructions,
which are combinations of 8/16 bit subtraction, flag
reference, and several simple logical operations, are
added for achieving a PE grouping operation, i.e. set-
ting the proper value tomr, in one cycle, which will
otherwise requires five cycles(mif, mifc in Table 3).

5. Scalar Substitution Operation: A tightly coupled
CP-PE pipeline is designed for a pipelined commu-
nication between CP and the PE array of one cycle
throughput (mv2, pdp in Table 3).

6. Status Collection Operation: bit-wise OR of all
PE data for calculating the PE array status are per-
formed in the RDU stage in a hierarchical way(Fig. 9).
The tightly coupled CP-PE pipeline also contributes to
maintain a single cycle throughput of this PE status
collection(sml, sts in Table 3).

5.4. Software Tools

The IMAP-CE software system provides the compile-
time and run-time support necessary for debugging and run-
ning 1DC programs. As shown in Fig.10, the software sys-
tem includes an 1DC optimizing compiler, an assembler and
a linker, for converting 1DC programs into IMAP executa-
bles, and also a symbolic debugger.

The 1DC compiler performs various automatic code op-
timization such as loop-unrolling and software pipelining
for increasing the chance of filling the 4 Way VLIW PE in-
struction slots. The 1DC symbolic debugger provides not
only the basic break-point insertion functionalities, but also
various debug-time and run-time support of 1DC programs,
such as profiling commands for isolating performance bot-
tlenecks, and GUI tools for dynamically adjusting control
variables, respectively for performance tuning and run-time
debugging using parameter tuning.

Figure 10. Software tools and the IMAP-CE
PCI board.

6. Evaluation

6.1. Operation Group Kernels

1DC codes running on a 100MHz IMAP-CE are com-
pared with a 2.4 GHz Intel P4 running C codes generated
by Intel C++ compiler Ver.7 with full speed optimizations.
Note that the same operation frequency of both IMAP-CE
and GPP, and the same compilation condition for C codes
will be assumed throughout this section.

In our first benchmark, the seven typical image process-
ing kernels, each corresponding to one of the pixel operation
group described in Section 3.1, are written in 1DC based on
the use ofline methods, while the corresponding C codes are
based on conventional sequential algorithms. Size and pre-
cision of the source image is 128x240 and 8b/pixel, while
the pixel precision of destination images vary from 8b (for
rot90) to 32b (forfft).

Fig.11 shows the benchmark results together with the ex-
pected parallelism of each kernel under the use ofline meth-
ods. The speedup gained by IMAP-CE are shown to be pro-
portional to the expected parallelism of each kernel under
the use ofline methods, demonstrating that the combina-
tions of IMAP-CE and theline methodsbased 1DC codes
achieve in exploiting inherent parallelism of these kernels.

Figure 11. Performance compared with a
2.4GHz GPP using operation group kernels.

On the one hand, Table 4 summarizes instruction per cy-
cle (IPC) and PE instruction active cycle ratio data (the Ac-
tive column) of IMAP-CE. In average, PE instructions are
issued at 87.4% of the total cycle, i.e. 12.6% of them are
occupied by bookkeeping single CP instructions. Such PE
array idling ratio reaches in maximum 22.8% in the case
of the labelling kernel. The 22.8% of CP instructions are
mainly consisted of function call overheads, loop control
overheads, and waiting cycles of the DMA engine due to the
insufficient IMEM capacity of keeping all required working
image spaces in IMEM at the same time. The average IPC
is 1.44, showing in average 1.44 slots out of the 4 VLIW
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(a) Speedup of 1DC codes and MMX codes compared 
    with C codes.

Speedup

(b) Speedup of 1DC codes compared with MMX codes

Speedup
# of if-clause
per pixel op.

Figure 12. Speedup ratio compared with MMX codes and C codes running on a 2.4 GHz GPP.

Op. Kernel IPC Active Remarks
Grp. (%)

PO hsi2rgb 1.40 94.6 Color format trans.
LNO ave3 1.33 90.6 3x3 average filter
SO hist 1.66 91.0 Histogram calc.
GlO fft 1.55 80.2 Fast Fourier Trans.
GeO rot90 1.23 89.5 90 Degree Rotation
RNO dtrans 1.52 88.9 Distance trans.[3]
OO labelling 1.40 77.2 Connected

Component Labeling

Average 1.44 87.4 -

Table 4. Performance data of IMAP-CE for
each operation group kernel.

instruction slots are used. This result is reasonable if tak-
ing into account the use of compiler generated codes, and
the existence of in average over 13% of bookkeeping CP
instructions. The design choice to include only one ALU
and use a single ported IMEM are also found to limit effi-
cient instruction insertion by the compiler. Based on these
insights, to increase the number of ALU can be one choice
for a future IMAP LSI design, however, should be carefully
examined by evaluating the trade-off between IPC improve-
ment and the increase of hardware cost, as any additional
circuitry of a PE will be amplified by 128 times into the to-
tal chip cost.

6.2. Highly Parallel vs. Sub-word Level SIMD

Fig.12 shows the result of comparing the performance of
the following two SIMD approaches: highly parallel SIMD
with enhanced PE designs (IMAP-CE), and the sub-word
SIMD parallelism using media extended instructions (re-
cent GPPs and DSPs). In this benchmark we use the MMX

instruction set of Intel GPPs. Table 5 describes the ker-
nels being used. Due to the limited support of memory ac-
cess patterns of most media extended instructions, only ker-
nels belonging to PO (Add2) and LNO (others) are used.
Processing time of these kernels in 1DC codes running on
IMAP-CE, and both in MMX codes and in C codes running
on the Intel P4, are measured and compared. MMX codes
are generated automatically by compiling the same 1DC
code for IMAP-CE using a MMX 1DC compiler, which has
been shown in [28] to be able to generate codes with compa-
rable performance to hand-optimized MMX codes for 2-D
filter 1DC programs.

Kernel Description Complexity(# of
if-clause/pixel op.)

Add2 simple dyadic arithmetic 0
GreyOpen3 grey-level Morph. (3x3) 4
Gauss5 Gaussian filter (5x5) 0
Mexican13[34] edge analysis (13x13) 0
Var5oct[34] texture analysis (5x5) 0
Canny[4] precise edge 13

detection (3x3)
Smooth edge preserving 18

smoothing (7x7)

Table 5. PO and LNO Kernel descriptions.

According to Fig.12(a), 1DC codes achieve an average
speedup of respectively 3 and 8, compared with MMX
codes and C codes, while further insights of these results
can be found from Fig.12(b) which focuses on performance
differences between 1DC and MMX codes. The speedup
gained by 1DC codes starts from approximately 1.3, which
is a figure conforming to the byte precision peak perfor-
mance difference between the two target processors. How-
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Processor Name Cycle counts proc. time (us) word size MHz die-size (mm2) power Tech. (um)

Imagine(Float.) 2176 7.4 16 296 12*12 4W 0.15
Morphosys2 2636 5.8 16 450 16*16 4W 0.13
IMAP-CE 5000 50.0 8 100 11*11 2W(ave.) 0.18
VIRAM 5280 26.4 16 200 15*18 2W(ave.) 0.18

Table 6. 1024 point 1D-FFT performance compared with other media processors.

ever, the speedup gradually increases in proportion to the
increase of kernel complexity, i.e. the number of condi-
tional branch statements, while such tendency is not ob-
served from performance differences between 1DC and C
codes shown in Fig.12(a). The above speedup behavior dif-
ference reveals the importance of supporting efficient SIMD
style conditional branch executions in hardware, such as the
PE grouping instructions of IMAP-CE.

6.3. Comparison with Recent Media Processors

The programming style of IMAP is based on an ex-
tensive use of a 2-D memory plane, which is physically
a collection of hundreds of (banks of) single cycle reach-
able non-cached on-chip RAMs. Similar approaches of us-
ing suchscratch pad memoriescan be found in the Stream-
ing Register File (SRF) of Imagine[1], the Frame Buffer of
Morpohsys[36][19], and the Local Store of each SPE (Syn-
ergistic PE) in CELL[9]. However, most of them are orga-
nized in one to several banks. The highly banked local mem-
ory configuration of IMAP thus provide the highest flexibil-
ity for each PE to freely address image pixels. The cost of
this flexibility is estimated to be approximately a 10% larger
chip size, when compared with a condition of unifying eight
2KB (8b/W) RAMs into a 16KB (64b/W) RAM.

There exists also similarities between IMAP architecture
and vector microarchitectures. VIRAM[22] partitions verti-
cally a vector and assign them to four vector lanes, while
IMAP-CE statically partitions thesep data (a vector whose
size is a multiple of 128) and assign them to the 128 PE ar-
ray. CODE[23] issues multiple vector instructions in paral-
lel by using a vector cluster configuration and implements
vector chaining by synchronized inter cluster communica-
tions, while the VLIW PE design of IMAP-CE enables exe-
cution of multiplevector instructionsuponsep data in each
cycle, andvector chainingare fully supported by complete
operand forwarding across the PE pipeline stages.

Table 6 shows a quick performance comparison of four
multimedia processors including IMAP-CE, using a 1024
point 1D-FFT kernel. Figures for other processors are based
on the data from [19], while cycle counts for IMAP-CE are
estimated by porting the fixed point sequential C program
of a radix-2 1-D FFT into 1DC, execute the 1DC compiler
generated code on every PE, and then divide the process-
ing time by the PE number, in order to take into account

the highly parallel nature of the architecture. The reason of
the double cycle counts of IMAP-CE compared with Imag-
ine and Morphosys2 can be explained by the miss match
of the 32 bit precision FFT algorithm with a 8 bit architec-
ture. Bit width expansion can be a future design choice for
the IMAP architecture, but again must be carefully exam-
ined by evaluating the trade-off between its effect toward
real world image recognition applications and the total in-
crease in hardware cost.

6.4. Application Level Evaluation

The application used in the benchmark is a vehicle detec-
tion program described in [26]. As shown in Fig.13(a), the
source image is first divides into four overlapping regions
A to D, upon each of which a sequence of image recogni-
tion tasks are applied: normalization of image pixel values
within the each region, (thePreparetask), edge detection
(theDetectedgetask), and edge segment selection based on
sizes and strengths of each detected edges (theSelectedge
task, also refer to Fig.13(c)). Selected edge segments of all
four regions are then grouped together for identifying loca-
tions ofpotential vehicles, based on priori knowledge such
as, 1) apotential vehiclepossesses prominent vertical edge
pairs, 2) each pair edges should locate at an adequate hori-
zontal distance according to their position within the image
(theGroupingtask, refer to Fig.13(d)). Finally,potential ve-
hiclesare verified by grey level pattern information within
their square-shaped regions (theSelectrect task), by which
final vehicle detection decisions are made.

(b)source image(for search window B)

(c) edge detection 
performed after 

image normalization

(d)the result of 
abstract edge 

segment grouping.

AD
B C

(a) Positioning sample of search windows

Figure 13. The vehicle detection algorithm.
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Fig.14(a) shows the performance comparison of 1DC
codes running on IMAP-CE and C codes running on a GPP
(Intel P4). C codes are functionally equal to that of the
1DC code, except that sequential algorithms for each task
are used. The 1DC program is designed based on the use
of line methods. As shown in Fig.14(a), IMAP-CE outper-
forms GPP approximately 4 times in total processing time.
When considering of the 2 Watt in average power consump-
tion of IMAP-CE, the application level power efficiency of
IMAP-CE can be estimated as of 50 to 100 times better than
that of the GPP.

(a) Comparison of processing time

(b) Comparison of processing time distributions

ms

Figure 14. The application benchmark result.

However, the processing time breakdown of both proces-
sors (Fig.14(b)) show that IMAP-CE outperforms GPP for
Prepareand Detectedge, while GPP outperforms IMAP-
CE 2 to 4 times forSelectedge, Grouping, andSelectrect.
In SelectedgeandGrouping, although edge segment (pair)
examinations are performed in parallel by the PE array, the
number of edge segment being detected byDetectedgeare
usually modest compared with the PE number, i.e. exist-
ing parallelism are smaller than the number of PE. InSe-
lect rect, aspotential vehicleregions may appear in a scat-
tered and overlapped way within the whole source image,
sequential examination of each region is inevitable due to
the rather high cost of re-distributing pixel data of allpoten-
tial vehicleregions into an un-overlapped layout for facili-
tating examination of them in parallel by the PE array. The
sequential examination approach limits the parallelism to
only the pixel width of eachpotential vehicleregion, which
is usually rather smaller than the number of existing PE.

According to the processing time distribution of IMAP-
CE shown in Fig.14(b), the processing time consumed by
tasks of coarse grain parallelism (Selectedge, Grouping,
andSelectrect) now occupies up to 55% of the total pro-
cessing time, partly due to the successful acceleration of
data intensive fine grain tasks (PrepareandDetectedge))
which originally occupy over 95% of the GPP processing
time. The results suggest that, in order to fruitfully apply
highly parallel SIMD architectures to real world applica-
tions, enhancement of the architecture towards not only an
efficient support of data intensive fine grain parallelism, but
also towards a more flexible way of supporting other lev-
els of parallelism, such asregion parallelism, is becoming
one of the important future issues to be addressed.

7. Conclusions and Future Directions

Multimedia processing on embedded systems is an
emerging computing area with significantly different needs
from the desktop domain. This paper focused on im-
age recognition applications, which unlike other multime-
dia applications such as video CODEC, strongly demand
the embedded processor to provide not only high per-
formance under low cost, but also high flexibility due
to the algorithmic diversity which come from the inher-
ent open air scene analysis complexity.

In this paper, we have demonstrated the efficacy of the
IMAP architecture for the image recognition application
domain, by evaluating various kernel benchmarks and a
vision-based ASV application, using one of its LSI real-
ization, IMAP-CE. In our kernel benchmarks of high level
language (1DC) codes, a speedup in proportion to the in-
herent parallelism of each operation group kernel shows
the efficacy of using IMAP-CE in combination withline
methods, while the average speedup is respectively 3 and 8
for data intensive image filter kernels, comparing with sub-
word SIMD instruction codes and C codes, running on a
GPP of 24 times higher operation frequency. A benchmark
of 1024 point 1D-FFT also shows that IMAP-CE has an
equivalent performance even when using compiler gener-
ated codes, compared with recent parallel media processors
based on the same SIMD paradigm. Finally the flexibility of
the IMAP architecture is demonstrated by a full application
benchmark written in 1DC, showing that a 100MHz IMAP-
CE consuming only 2 Watts in average obtain a promising
speedup of 4 compared with a 2.4GHz GPP that consumes
near 100 Watts.

On the other hand, one potential draw back of the IMAP
architecture is its pure SIMD model, which may in some
cases inhibit a more efficient usage of the PE array. Such in-
efficiency has been demonstrated by some of the vehicle de-
tection application benchmark results. However, as highly
parallel SIMD is a best architectural choice regarding its
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low COR as described in Section 2, extensions toward the
SPMD or MIMD model will not be a future choice. We
think that, reinforcement of performance and array control
flexibility of the control processor, an approach that makes
little change to the COR value of the architecture, will be
one important issue to be addressed, for both achieving a
better sequential task performance to avoid the Amdahl’s
law, and also for achieving a more flexible PE array con-
trol and load balancing for real world applications.
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