
Opportunistic Transient-Fault Detection
Mohamed A. Gomaa and T. N. Vijaykumar

School of Electrical and Computer Engineering, Purdue University
{gomaa, vijay}@ecn.purdue.edu
Abstract

CMOS scaling increases susceptibility of microprocessors
to transient faults. Most current proposals for transient-fault
detection use full redundancy to achieve perfect coverage
while incurring significant performance degradation. How-
ever, most commodity systems do not need or provide perfect
coverage. A recent paper explores this leniency to reduce the
soft-error rate of the issue queue during L2 misses while incur-
ring minimal performance degradation. Whereas the previous
paper reduces soft-error rate without using any redundancy,
we target better coverage while incurring similarly-minimal
performance degradation by opportunistically using redun-
dancy. We propose two semi-complementary techniques,
called partial explicit redundancy (PER) and implicit redun-
dancy through reuse (IRTR), to explore the trade-off between
soft-error rate and performance. PER opportunistically
exploits low-ILP phases and L2 misses to introduce explicit
redundancy with minimal performance degradation. Because
PER covers the entire pipeline and exploits not only L2 misses
but all low-ILP phases, PER achieves better coverage than the
previous work. To achieve coverage in high-ILP phases as
well, we propose implicit redundancy through reuse (IRTR).
Previous work exploits the phenomenon of instruction reuse to
avoid redundant execution while falling back on redundant
execution when there is no reuse. IRTR takes reuse to the
extreme of performance-coverage trade-off and completely
avoids explicit redundancy by exploiting reuse’s implicit
redundancy within the main thread for fault detection with vir-
tually no performance degradation. Using simulations with
SPEC2000, we show that PER and IRTR achieve better trade-
off between soft-error rate and performance degradation than
the previous schemes.

1  Introduction

CMOS scaling continues to enable faster transistors and
lower supply voltage, improving microprocessor performance
and reducing per-transistor power. Unfortunately, the down-
side of scaling is the increased susceptibility of microproces-
sors to soft errors due to strikes by cosmic particles and
radiation from packaging materials. The result is degraded
reliability in future commodity microprocessors.

Many techniques [14, 12] provide soft-error detection by
redundantly running two copies of the program and comparing
their results. These full-redundancy techniques achieve high
soft-error coverage at the cost of significant performance deg-
radation. Though perfect coverage would be required in
highly-reliable servers and life-protecting custom systems
used in hostile environments such as Space missions, the rest
of the market does not need perfect coverage. This observation
is borne out by the industry practice of employing full-blown

redundancy only in specialized servers (e.g., Tandem Non-stop
[3]), and not in desktops and commodity servers. Except for
the select minority of the specialized servers and custom sys-
tems, the rest of the systems trade-off performance and reli-
ability to arrive at acceptable design points which provide
reasonable, but not perfect, fault tolerance. As such, the high
performance degradation of the full-redundancy techniques
may be unacceptable, given the lack of need for perfect cover-
age in most commodity systems.

The idea of partial coverage should be understood in the
context of technology scaling. Soft-error rates increase expo-
nentially over technology generations [16]. If we assume a
technology node where the soft-error rate is so high that it is
barely within acceptable levels, then techniques that achieve
partial coverage would run out of steam within a few genera-
tions. For example, assuming that soft-error rate doubles every
generation, a 75% coverage would keep the soft-error rate
within acceptable levels only for the next generation beyond
which the rate would increase by a factor of 1.5 and exceed
acceptable levels. It is clear that in such extreme scenarios,
close to full coverage will be needed and partial coverage will
not suffice. However, current soft-error rates are nowhere near
such prohibitive levels and will not be so for many generations
to come even under the exponential trend. As such, in the
intermediate generations soft errors will be an increasing but
not a prohibitive problem (e.g., soft errors will cause an
increasingly non-negligible number of crashes in a data center
and lead to substantial financial loss). In the intermediate gen-
erations, employing partial coverage to achieve a good reliabil-
ity-performance trade-off makes sense.

A recent paper [25] explores the reliability-performance
trade-off to improve the soft-error rate (SER) of high-perfor-
mance microprocessors by reducing, not eliminating, the
architectural vulnerability [8] of the issue queue while incur-
ring minimal performance degradation. The paper observes
that the instructions that wait in the issue queue during L2
(long-latency, off-chip) misses are much more susceptible to
faults than the instructions that move through the issue queue
without stalling. Accordingly, the paper proposes to squash the
instructions in the issue queue upon such a miss and to stop
processor activity until the miss returns. Because the processor
generally ends up stalling during such misses despite out-of-
order issue, the squashing and stopping do not significantly
degrade performance. Though the performance degradation is
small, the technique reduces the vulnerability only of the issue
queue and not of the rest of the pipeline (e.g., functional units,
rename logic, bypass logic, register file).

Whereas [25] reduces soft-error rate without using any
redundancy, we target better coverage while incurring simi-
larly-minimal performance degradation by opportunistically
using redundancy. We propose two semi-complementary tech-
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niques, called partial explicit redundancy (PER) and implicit
redundancy through reuse (IRTR), to explore the trade-off
between soft-error coverage and performance. For PER, we
make the key observation that previous full-redundancy tech-
niques incur performance degradation mostly because the
redundant thread competes with the main thread for processor
resources. Given the lack of need for perfect coverage, we pro-
pose to introduce explicit redundancy only when the redundant
instructions would not compete with the main thread. When-
ever the main thread proceeds at full speed and needs all of the
resources (e.g., during high-ILP phases), we do not introduce
redundancy and there is no soft-error coverage, but there is no
performance degradation either. However, when the main
thread is stalled and under-utilizes the resources (e.g., during
cache misses or low-ILP phases), redundant instructions are
executed to provide some soft-error coverage with minimal
performance degradation.

Rather than empty the pipeline whenever there is a long-
term stall as done in [25], we opportunistically exploit the
pipeline’s idle resources to introduce redundancy. The key
advantage of PER over [25] is increased soft-error coverage
while maintaining comparable performance degradation.
PER’s increased coverage comes from increases in both spatial
and temporal coverage. Our redundancy scheme increases spa-
tial coverage by covering soft errors in all of the pipeline
whereas [25] covers only the issue queue. We increase tempo-
ral coverage by exploiting all low-activity durations (due either
to cache misses or to inherently low-ILP phases in the pro-
gram) while [25] leverages only cache misses. Compared to
previous redundancy-based schemes [14, 12], our advantage is
significantly lower performance degradation while maintaining
reasonable coverage.

The extent of our soft-error coverage depends on how much
the main thread under-utilizes the pipeline. However, we still
wish to achieve some coverage without worsening perfor-
mance in the complementary cases of when the utilization is
high. To that end, we employ our second technique, implicit
redundancy through reuse (IRTR). A previous paper [19] dis-
covered the phenomenon of instruction reuse (IR) where an
instruction is re-executed many times with the same input val-
ues. The paper exploits IR to avoid re-execution of a reuse
instruction by storing the inputs and output of the instruction’s
instance in the reuse buffer and looking up the output for a
later instance if the reuse test succeeds—i.e., the input values
of the two instances match. Misses or failed reuse tests result
in updates of the buffer. Avoiding re-execution allows execu-
tion resources to be used by other instructions and achieves
performance improvement. A recent paper [9] observes that IR
can be used to reduce the pressure on execution resources in
full-redundancy schemes. The paper proposes dual instruction
execution instruction-reuse buffer (DIE-IRB) to avoid execut-
ing the redundant thread’s later instances by reusing its earlier
instance. Upon reuse buffer hits, the buffered output is re-used
instead of executing the redundant thread and compared to the
main thread for fault detection. Misses or failed reuse tests
trigger redundant execution. The buffer is updated after the
main and redundant executions are compared.

We take reuse to the extreme of performance-coverage
trade-off in IRTR: we make the key observation that this com-
parison, and consequently the redundant execution, is unneces-
sary for less-than-perfect coverage. The buffer can be updated
using the main thread without any comparison. A subsequent

reuse buffer hit accompanied by the checking of the instruc-
tion’s output against the buffered output suffices for fault
detection. The reuse test done for the hit automatically checks
the inputs, and the explicit checking covers the output. Thus,
reuse detects implicit redundancy within the main thread and
this implicit redundancy allows some coverage without any
explicit redundancy and therefore, without worsening perfor-
mance. Upon misses or failed reuse tests, however, there is no
redundant execution against which to compare the main
thread, unlike DIE-IRB. Consequently, misses and failed reuse
tests result in loss of coverage but there is no performance loss
because there is no explicit redundancy. Thus, whereas IRTR
exploits the lack of need for perfect coverage to achieve some
coverage at virtually no performance loss, DIE-IRB does not
and incurs performance loss for coverage that may not be
needed. In addition, DIE-IRB slows down the issue queue by
adding extra fields whereas IRTR does not need to modify the
issue queue in any way. Finally, IRTR complements PER by
achieving some coverage without worsening performance even
when pipeline utilization is high.

The main contributions of this paper are:
• our two opportunistic techniques, partial explicit redun-
dancy and implicit redundancy through reuse;
• using simulations with SPEC2000, we show that average
processor soft-error-rate reduction and performance loss for
DIE-IRB adapted to Simultaneous and Redundantly Threaded
(SRT) processors [12], squashing on L2 miss, and combined
PER and IRTR are 100% and 15%, 4% and 3.5%, 56% and
2%, respectively. Put differently, our techniques can reduce the
number of crashes caused by soft errors (described in the third
paragraph of this section) by a factor of two at little perfor-
mance degradation. Our techniques achieve better soft-error
rate reduction than the previous schemes at minimal perfor-
mance degradation.

The rest of the paper is organized as follows. Section 2 dis-
cusses redundancy-based schemes—SRT and PER. Section 3
discusses reuse-based schemes—DIE-IRB and IRTR.
Section 4 combines PER and IRTR. Section 5 describes meth-
odology and Section 6 presents results. Section 7 discusses
related work, and Section 8 concludes.

2  Redundancy-Based Fault Detection

There have been a few techniques to provide transient-fault
detection by running two copies of the program and comparing
the instructions in the copies. We base our schemes on one of
them, namely, Simultaneous and Redundantly Threaded (SRT)
processors [12]. Before we explain our schemes, we give a
brief background on SRT.

2.1  SRT: A Full-Redundancy scheme

SRT uses SMT’s ability to process simultaneously multiple
threads and executes both the main thread, called the leading
thread, and the redundant thread, called the trailing thread, on
the same core. SRT assumes that the memory hierarchy is pro-
tected by ECC and that registers are not.

To be able to detect faults, the two threads should not
diverge when there are no faults. Though divergence is not a
problem for most instructions, duplicating cached loads is
problematic because memory locations may be modified by an
external agent (e.g., another processor during multiprocessor
0-7695-2270-X/05/$20.00 (C) 2005 IEEE



synchronization) between the time the leading thread loads a
value and the time the trailing thread tries to load the same
value. The two threads may diverge if the loads return different
data. SRT allows only the leading thread to access the cache,
and uses the Load Value Queue (LVQ) to hold the leading load
values. The trailing thread loads from the LVQ instead of
repeating the load from the cache. Only load values are
obtained non-redundantly, load addresses are computed redun-
dantly in each thread and compared at the time of accessing the
LVQ. The LVQ is protected from soft errors by ECC.

SRT allows both threads to update their respective copies of
register state, but allows only one copy of stores to go the
memory hierarchy. SRT compares the two copies of each store
before the store is committed to the memory hierarchy. Regis-
ter writes, however, are committed in the respective threads
without any checking. Because an incorrect value caused by a
fault propagates through computations and is eventually con-
sumed by a store, checking only stores suffices for soft-error
detection. SRT uses the store buffer (StB) to hold the leading
store address and value until the trailing thread executes the
store and the stores are compared.

SRT employs two key optimizations to enhance perfor-
mance: The leading thread runs ahead of the trailing thread by
a long slack (e.g., 256 instructions), and provides the leading
branch outcomes to the trailing thread through the Branch Out-
come Queue (BOQ). The slack completely hides the leading
thread’s cache misses and branch mispredictions from the trail-
ing thread. By the time the trailing thread needs a load value or
a branch outcome, the leading thread has already produced
it—the load value is available in the LVQ and the branch out-
come in the BOQ. Note the difference between the load value
and the branch outcome. The trailing thread consumes the load
value without redundantly performing the load, whereas the
branch outcome is used as a prediction by the trailing thread
which redundantly executes the branch and verifies that the
outcome is fault-free. Using the leading thread’s branch out-
comes entirely eliminates branch mispredictions in the trailing
thread (in the fault-free case), and reduces the number of trail-
ing instructions.

Although SRT provides high soft-error coverage, it incurs
significant performance degradation which may be unaccept-
able especially because of lack of need for perfect coverage, as
mentioned in Section 1. This degradation is because (1) even
though the redundant thread incurs no branch mispredictions
and executes fewer instructions than the main thread, the
redundant thread still competes with the leading thread for
pipeline resources; and (2) the checking of stores via the StB

causes leading-thread stalls whenever the StB fills up.

2.2  Partial Explicit Redundancy

To reduce this degradation, we employ partial explicit
redundancy (PER) which allows the main thread to use all the
resources it needs during high-IPC phases at the cost of no
soft-error coverage. However, when the main thread under-uti-
lizes the available resources, during low-IPC phases or L2-
cache misses, the redundant thread runs providing soft-error
coverage with minimal performance degradation, as illustrated
in Figure 1. We call the mode in which only the main thread
executes as the Single Execution Mode (SEM) whereas the
mode in which the redundant thread executes simultaneously
with main thread as the Redundancy Execution Mode (REM).

PER differs from SRT in that PER’s trailing thread has gaps
in its execution in that it does not include all the instructions.
Other than this difference, PER is similar to SRT in using the
LVQ for load values, BOQ for branch outcomes, and StB for
holding stores. PER also uses the slack but with a small differ-
ence from SRT, as we explain later. Like SRT, PER assumes
that the memory hierarchy is ECC-protected but the registers
are not.

PER’s execution gaps raise three main challenges: First, in
PER, unlike SRT, there is a problem checking only stores.
Because PER provides only partial redundancy, it may not
duplicate the store to which a fault propagates although it may
duplicate the instruction where the fault originated, or vice
versa. The fault will be caught only if the originating instruc-
tion, the store, and all the intervening instructions that propa-
gate the fault are duplicated. Because the probability that all
these instructions are duplicated in PER’s partial redundancy is
low, checking only stores will likely result in low coverage.
Therefore, PER checks all instructions in REM. We validate
this decision in our results, by showing that PER incurs mini-
mal performance loss while achieving good coverage. Second,
when the redundant thread resumes after a gap (e.g., at time c
in Figure 1), it needs the program state corresponding to the
resume point. Finally, we need to determine when to switch
from SEM to REM and back.

2.2.1  SEM and REM in PER

The key issue with the first challenge is that checking all
instructions requires high-bandwidth buffers to avoid perfor-
mance degradation. If coverage were the only issue then avoid-
ing the complexity of the buffers may be an option for systems
that can get by with low coverage. In PER, however, we need

FIGURE 1: SEM and REM
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the buffers anyway to handle the second challenge of provid-
ing the trailing thread with resume-point state. These buffers
represent a performance-complexity trade-off point: On one
hand, SRT avoids this complexity because it employs full
redundancy and does not have gaps in the redundant thread.
On the other, SRT’s full redundancy results in performance
degradation which our scheme reduces while incurring the
complexity. We address the second challenge by using the
main thread to provide the redundant thread with the resume-
point state. Recall that our technique accepts less-than-perfect
coverage to trade-off coverage for performance. Obtaining the
state from the main thread does not degrade coverage any more
than having gaps in the redundant thread. However, providing
the main thread’s state to the redundant thread has one slight
complication: The slack between the threads implies that at the
time the redundant thread resumes, the main thread’s state is
ahead of the resume point by the amount of the slack (see
Figure 2). To obtain the main thread’s processor state (regis-
ters, condition codes) corresponding to the resume point, we
use the register delay queue (RDQ). The main thread inserts
into the RDQ all instructions’ output state, including register
values, branch outcomes, load values and addresses, store val-
ues and addresses, as they commit. Essentially, the RDQ sub-
sumes SRT’s LVQ, BOQ, and StB. As entries are removed
from the RDQ they update the redundant thread’s processor
state (in SMT, the two threads’ processor state are separate).
The RDQ is sized to match the slack, so that the redundant
thread’s state lags behind the main thread’s state by the slack
amount and matches the resume point (as shown in Figure 2).

In both SEM and REM the RDQ entries update the redun-
dant thread’s processor state with one minor difference: In
SEM, the entries empty when new entries are inserted by the
main thread. In REM, the entries are emptied only after the
redundant thread has checked them (see Figure 2). Thus, the
RDQ serves dual purposes of addressing the first issue of
allowing checking of all instructions and not just store instruc-
tions, as well as the second challenge of providing resume-
point state. In SEM the RDQ does not affect the main thread’s
performance because there is no holding up of instructions. In
REM the main thread has to stall if the RDQ is full. However,
such stalling is rare because the redundant thread is much
faster than the main thread due to slack and BOQ optimiza-
tions, as discussed in Section 2.1.

Obtaining the resume-point memory state is trivial because

PER uses the LVQ for load values. For stores, PER first checks
the store copies and then commits the store to the memory
hierarchy, like SRT.

There is one important implementation detail remaining.
Conceptually, the entries in the RDQ should hold only com-
mitted instructions. However, in modern pipelines register val-
ues and load values are available only in the register file at the
time of commit. As such adding ports to the register file to
allow the RDQ to obtain the values would add complexity and
latency to the already-belabored register file. Therefore, we
adopt the solution proposed in [24] which faces the same prob-
lem. [24] uses the register value queue (RVQ) to hold register
values as instructions writeback their values. Upon commit,
the values can be transferred from the RVQ to the RDQ. The
RVQ supports clean-up after branch mispredictions and other
squashes.

Though the RDQ can be avoided by eliminating the slack
(then the main thread’s instructions would directly update the
processor state of the redundant thread), the significant perfor-
mance benefit of the slack makes this option substantially infe-
rior.

2.2.2  Role of slack in SEM and REM

In SEM, the main thread executes similarly to a single-
thread superscalar. REM is similar to SRT except for one dif-
ference in the slack. SRT always tries to maintain the slack
between the leading and trailing threads. SRT modifies SMT’s
ICOUNT [23] to implement the slack. In REM, however,
always maintaining the slack would cause the following diffi-
culty. We use the catching up of the redundant thread with the
main thread as a trigger to check whether we should switch
from REM to SEM, as we explain in the next section. If we
were always to maintain the slack in REM, the trigger would
never occur and we would not switch to SEM even when
redundancy causes performance loss. Therefore, we do not
maintain the slack in REM. We allow the redundant thread to
catch up with the main thread and consume the slack (i.e.,
empty the LVQ, RDQ, BOQ, and StB and let the slack reduce
to zero). We then suspend the redundant thread till the slack is
built up by the main thread (i.e., fill up the queues), as shown
in Figure 1 at times d and f. While consuming the slack, we use
the unmodified ICOUNT to fetch the main and redundant
threads in REM. At the end of the build-up phase, we deter-
mine if execution should continue in REM (at time e in
Figure 1) or switch to SEM (at time g in Figure 1), depending
on the conditions discussed in the next section. Thus, in REM
we alternate between consuming the slack and building up the
slack. In SRT, in contrast, the consumption and subsequent
build-up of the slack occurs only naturally and not by design.
For instance, a long-latency cache miss in the leading thread
results in the trailing thread catching up, followed by the lead-
ing thread building up the slack when the miss returns. In
steady state (i.e., no cache misses), however, SRT maintains
the slack whereas we do not.

2.2.3  Switching between SEM and REM

The final challenge is to decide when to switch between
SEM and REM. On one hand, staying in SEM while the main
thread is in a low-ILP phase (i.e., processor resources are
under-utilized) reduces soft-error coverage. On the other hand,
staying in REM while the main thread is in a high-ILP phase
degrades performance. Therefore, we need to detect the

FIGURE 2: RDQ operation
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amount of ILP and adjust accordingly.
We first consider switching from SEM to REM. This switch

should occur if the main thread is under-utilizing its resources.
Under-utilization occurs under two conditions: low-ILP phase
(e.g., at time c in Figure 1) and soon after an L2 miss (e.g., at
time j in Figure 1). Because L2 misses are long, even high-ILP
phases suddenly drop to low ILP soon after an L2 miss. Moni-
toring the long-term ILP of the phase as required by the first
condition does not catch this sudden drop. Therefore, we
explicitly include the second condition.

We detect the first condition by stipulating that execute-IPC
of the main thread + execute-IPC of the redundant thread is
less than the processor issue width, where execute-IPC
includes all the executed instructions (speculative and non-
speculative instructions). Because resource usage is more
accurately reflected by execute-IPC and not commit-IPC, we
use execute-IPC. While in SEM, we determine the main
thread’s execute-IPC by monitoring the number of instructions
executed over a sampling time interval (e.g., 10 cycles). How-
ever, determining the redundant thread’s execute-IPC is harder
because the redundant thread does not run in SEM. Therefore
we make an estimate based on the following reasoning:
Because the redundant thread does not mispredict
(Section 2.1), its execute-IPC equals its commit-IPC, averaged
over a long time. Furthermore, because the main thread pro-
vides load values and branch outcomes to the redundant
thread, the commit-IPC of the redundant thread equals the
commit-IPC of the main thread, averaged over a long time.
Note that the instantaneous commit-IPC of the redundant
thread would be higher than the main threads’s commit-IPC
because the slack hides the main thread’s latencies from the
redundant thread. However, here we wish to see the long-term,
and not the instantaneous, commit-IPC of the redundant
thread. Consequently, we evaluate the inequality: execute-IPC
of the main thread + commit-IPC of the main thread < the pro-
cessor’s issue width, and switch to REM if the inequality holds
(e.g., at time c in Figure 1), or continue in SEM otherwise
(e.g., between times a and c in Figure 1).

In addition to the above condition, execution switches from
SEM to REM only if the RDQ is full (e.g., at time c in
Figure 1). It may not be full because execution switched from
REM to SEM back to REM before the main thread had a
chance to build up the slack—i.e., fill up the RDQ (e.g., at time
f in Figure 1). This additional condition ensures that the redun-
dant thread has a full slack so that any delays in the main
thread are hidden from it (e.g., in Figure 1, execution does not
switch to REM at time f and switches to REM at time h after
the slack builds up).

The second condition to trigger switching from SEM to
REM is an L2 miss (e.g., at time j in Figure 1). Unlike the first
condition which requires estimating ILP, the second condition
is straightforward because an L2 miss is known from the cache
without any estimates. However, there is one difficulty. By the
time the cache returns the miss, the pipeline front end and the
issue queue are already filled up by instructions that are (tran-
sitively) dependent on the missing load, as observed for a gen-
eral SMT in [22]. As such even if we decide to switch to REM,
the redundant thread cannot enter. Therefore, we squash the
main thread removing its instructions from the pipeline so that
the redundant thread can enter, as proposed in [22] to improve
general SMT throughput.

Unlike the first condition above, an L2 miss causes execu-

tion switches from SEM to REM even if the RDQ is not full. If
we wait for the main thread to build up the slack, the issue
queue is likely to fill up undermining the reasoning behind our
squashing. Therefore, execution switches to REM immediately
after an L2 miss(e.g., at time j in Figure 1).

Now we consider switching from REM to SEM. Unfortu-
nately, the inequality for the first condition above cannot be
reversed to switch back to SEM. In REM, the execute-IPC of
the main thread is affected by the presence of the redundant
thread. As long as execution remains in REM, there is no easy
way to estimate what the main thread’s execute-IPC would be
running by itself. Our solution is to introduce a sampling
period where the main thread runs by itself and the redundant
thread is suspended temporarily—that is, execution tempo-
rarily returns to SEM. At the end of the sampling period, PER
tests the inequality to decide whether to resume REM or to
continue in SEM. A convenient point to start the sampling is
when the redundant thread has consumed the slack (i.e., has
caught up with the main thread) in REM (e.g., at time d in
Figure 1). This catching up occurs because the redundant
thread’s instantaneous commit-IPC is higher than that of the
main thread (as explained above). After catching up, the redun-
dant thread waits anyway for the main thread to build up the
slack and fill the queues with values. Therefore, temporarily
suspending the redundant thread to allow the sampling does
not unduly slow down the redundant thread. During the sam-
pling period, the main thread builds up the slack, in addition to
providing IPC samples that are unaffected by the redundant
thread. The built-up slack is used to resume the redundant
thread if PER decides to continue execution in REM (e.g. at
time e in Figure 1). Upon resumption, the redundant thread
quickly consumes the slack due to its high instantaneous IPC.
Consequently, the temporary suspension hardly impacts the
redundant thread or soft-error coverage.

As mentioned in Section 1, [25] also squashes the pipeline
on an L2 miss to avoid exposing the instructions waiting for
the miss to particle strikes. The paper claims performance deg-
radation to be minimal in an in-order-issue pipeline. Our eval-
uations, however, are in an out-of-order-issue pipeline which,
unlike an in-order-issue pipeline, can overlap some instruc-
tions with a miss for high-ILP programs. Because [25] does
not resume fetching until the miss returns, such overlap is lost
causing performance loss. In contrast, because PER suspends
the redundant thread upon slack consumption and allows the
main thread to proceed, PER achieves overlap of the main
thread’s instructions with the miss. Consequently, PER per-
forms better than [25]. In addition, [25] reduces the architec-
tural vulnerability of only the issue queue whereas PER covers
all of the pipeline. Also [25] exploits only L2 misses whereas
PER exploits low-ILP phases as well. Therefore, our coverage
is better. However, the extra coverage comes at a cost of some
additional complexity as compared to [25].

PER covers the entire pipeline including the register file in
REM. For register values that are redundantly stored in the
register file, either via the update of the redundant thread state
or through execution in REM, a fault in one of the copies will
be detected. However, faults affecting non-redundant register
values will go undetected.

3  Reuse-Based Fault Detection

PER’s soft-error coverage depends on how much the main
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thread under-utilizes the pipeline. We employ our second tech-
nique, implicit redundancy through reuse (IRTR), to achieve
some coverage without worsening performance in the comple-
mentary cases of when the utilization is high.

3.1  Background

Dynamic Instruction Reuse (or IR) was originally proposed
to improve performance by not re-executing the instructions
that have been executed before with the same inputs [19]. In
such cases, IR simply uses the previous result stored in a reuse
buffer (RB). Such re-execution occurs due to branch mispre-
diction squashes which squash not only the control-flow
dependent incorrect segment but also the post-if-else-reconver-
gent segment which is control-flow independent. The indepen-
dent segment would re-execute with possibly the same inputs.
Another example is simply repeated execution of code seg-
ments (due to loop or repeated calling of the same function)
whose operands change infrequently for a particular user input
set.

[19] proposes three implementation schemes for IR—one
based on register values (scheme Sv), another on register
names (scheme Sn), and the third based on register dependen-
cies (scheme Sn+d). We use the value-based implementation
because it is the simplest. In this implementation, the RB holds
input and output values for instructions to check if their current
inputs match the stored inputs and use the stored output upon
match. Because the RB is indexed by PC, this scheme checks
for reuse among different dynamic instances of the same static
instruction. If the RB misses or if the reuse test fails—i.e., the
current inputs do not match the inputs stored in the RB entry—
then the RB entry is updated with the current inputs and out-
put. For loads there is one complication: because the RB holds
the load addresses and values, a store writing to a matching
address has to invalidate the matching RB entries. We refer the
reader to [19] for descriptions of the other implementation
schemes.

A recent paper [9] observes that IR can be used to reduce
the pressure on execution resources in a full-redundancy
scheme. This paper presents a recovery scheme, whereas our
paper targets detection. However, this difference is not impor-
tant for this discussion because the reuse part is common irre-
spective of detection or recovery. The paper uses a baseline
full-redundancy-based fault-recovery scheme called dual
instruction execution (DIE) [11]. Instead of fetching redun-
dantly, DIE duplicates the fetched instruction and inserts them
together into the issue queue. Consequently, DIE does not
exploit the slack and BOQ optimizations. Because of lack of
BOQ, DIE redundantly executes both correctly-speculated and
misspeculated instructions and the pressure on the functional
units is far worse in DIE than in SRT. In addition, the lack of
slack makes DIE perform poorly. [9] alleviates the functional-
unit pressure by using IR so that reused instructions can
lookup the results in the RB instead of executing on the func-
tional units. This scheme is called DIE-IRB.

DIE-IRB uses the value-based IR implementation described
above in its fault-detection scheme. In DIE-IRB, the main
thread does not benefit from IR at all and executes without any
changes; only the redundant thread uses IR. If there is a reuse
buffer hit, the redundant instruction is removed from the issue
queue and not executed. Instead, the buffer value is compared
against the main instruction for fault detection. Misses or
failed reuse tests trigger redundant execution. The buffer is

updated after the main and redundant executions are checked.
Unfortunately, there are some complications in DIE-IRB’s

implementation. The decision to avoid executing the redundant
instruction must occur before the redundant instruction issues.
This constraint implies that DIE-IRB needs the redundant
instruction’s inputs before the instruction issues so that the RB
can be looked up. However, in modern pipelines, an instruc-
tion’s input values are available after issue (in register read or
via bypass). Therefore, the redundant instruction looks up the
RB with just the fetch PC in the pipeline front end well before
issue stage. The redundant instruction stores the RB entry—
i.e. input values and output value stored in the RB—in the
issue queue. In modern pipelines, instruction input values are
available after issue to avoid making the issue queue large and
consequently slow. By holding the RB entry values in its issue
queue, DIE-IRB incurs these considerable disadvantages.

Although the RB entry is available, the redundant instruc-
tion still needs its inputs to decide if there is a match with the
RB entry. Only on a match can the output in the RB entry be
compared with the main instruction for fault detection. But the
main problem is that the redundant instruction does not have
its inputs before it issues. Instead, DIE-IRB uses the main
instruction’s inputs to match against the RB entry, and upon a
match the redundant instruction is not executed and the RB
entry output is compared with the main instruction’s output.
Using the main instruction’s inputs instead of the redundant
instruction’s inputs is correct because a fault in the main
instruction’s inputs would cause the RB entry not to match, the
redundant instruction to execute, and the comparison between
the main and redundant instructions’ outputs to fail; a fault in
the main instruction’s output would cause the comparison with
the RB entry to fail.

In a brief description, the DIE-IRB paper claims that values
in the issue queue can be avoided by using a “non data-capture
scheduler” where the register read occurs before instruction
selection. However, such a design has many problems: First,
wake-up and select are now in different cycles preventing
back-to-back issue of dependent instructions which is crucial
to performance. Second, wake-up produces a variable number
of ready instructions all of which need to go to the register file
whose ports may not match the number of the instructions.
Third, in select some instructions may not be selected due to
exceeding the number of available functional units in which
case the excess has to be held back in a buffer other than the
issue queue to be selected in the future.

The only simplification in DIE-IRB is that because load
values are passed from the main thread to the redundant thread,
there is no reuse of load values; though there is reuse of load
address calculation. Consequently, DIE-IRB’s IR does not
need to invalidate the RB on stores.

3.2  Implicit Redundancy Through Reuse

We take IR to the extreme of performance-coverage trade-
off in implicit redundancy through reuse (IRTR) by making the
following observation: DIE-IRB’ s comparison of the main
and redundant executions to update the reuse buffer, upon
reuse buffer misses or failed reuse tests, is unnecessary for
less-than-perfect coverage. Not performing the comparison
leads to loss of coverage in some cases. Because redundant
execution is needed only for this comparison, the comparison
becoming unnecessary makes the redundant execution unnec-
essary as well. No redundant execution implies no perfor-
0-7695-2270-X/05/$20.00 (C) 2005 IEEE



mance loss.
In the case of reuse buffer misses or failed reuse tests, IRTR

updates the reuse buffer using the main thread without any
comparison. The lack of comparison leads to loss of coverage
in some but not all cases, as illustrated by Figure 3. Assume
that the main thread inserts the first instance of an instruction
into the RB without any comparison (e.g., instruction (i) in
Figure 3). When the second instance probes the RB there are
three possibilities: (1) There is an RB hit but outputs differ. If
there was a fault in one of the output values— either in the
reuse entry or the second instance of the main thread—then
this fault would be detected because the reuse test would suc-
ceed but the outputs would not match (e.g., instruction (ii)
shows how no-fault case is covered and instruction (iii) shows
how faulty case is covered). Thus, in this possibility, there is
no loss of coverage. Specifically, a fault even in the first
instance is covered though the first instance was put in the RB
without checking. (2) There is an RB hit but the reuse test fails
because the inputs differ. This case occurs if there is a fault in
the input values of either the reuse buffer entry (because it was
not checked) or the second instance. This case also occurs even
if there is no fault but the second instance uses different input
values. This possibility leads to loss of coverage. In Figure 3, if
we assume that instruction (iv)’s input r2 = 15 is faulty and
should have been r2 = 7, then this fault would go undetected.
Also, if instruction (iv)’s input r2 = 15 is not faulty, then we
still lose coverage in that a fault in instruction (iv)’s output
would go undetected if there is no reuse later. (3) There is an
RB miss (i.e., the first instance was evicted from the RB before
the second instance probes the RB) (e.g., instruction (vi)). This
possibility leads to loss of coverage because a fault in the out-
put of the first instance would go undetected.

Thus, reuse detects implicit redundancy within the main
thread and this implicit redundancy allows some coverage
without any explicit redundancy and therefore, without wors-
ening performance. Recall that IRTR accepts less-than-perfect
coverage to trade-off coverage for performance. In contrast,
DIE-IRB does not explore this trade-off and incurs perfor-
mance loss for perfect coverage which may not be needed.

IRTR also uses the value-based IR implementation but has
none of the complications of DIE-IRB. In IRTR, the instruc-
tions check the RB after execution by which time the input and
output values of the instruction are available. Because the RB

is checked after execution, there is no need to place values in
the issue queue or modify the issue queue in any way. Note
that DIE-IRB always places the redundant instruction in the
issue queue and removes the instruction if the reuse test suc-
ceeds. However, in the time duration in which the main
instruction waits for its wake-up in the issue queue, the redun-
dant instruction increases the occupancy of the issue queue
even though it is removed later. This extra occupancy impacts
DIE-IRB’s performance especially because DIE-IRB does not
use the BOQ and inserts both correctly-speculated and mis-
speculated redundant instructions. IRTR avoids this extra
occupancy by not even placing the redundant instruction in the
issue queue if the reuse test succeeds.

In addition, DIE-IRB has to access the RB between fetch
and issue whereas IRTR can access the RB any time between
execute and commit. Because fetch to issue is much shorter in
duration than execute to commit, our RB can be much larger
than DIE-IRB’s RB to achieve more reuse. Therefore, IRTR
uses a 2-way set associative RB, while DIE-IRB used a direct-
mapped IRB.

Finally, similar to DIE-IRB, IRTR does not allow the reuse
of loads for simplicity.

4  Putting PER and IRTR Together

PER and IRTR are orthogonal and can be implemented sep-
arately or together. Though PER and IRTR target complemen-
tary cases of low- and high-ILP phases, the techniques are not
entirely complementary. For instance, an RB hit in a low-ILP
phase is an overlap between PER and IRTR. However, there
are many cases where there is no overlap and combining the
techniques is beneficial. Because the overlap lessens the bene-
fit of applying PER and IRTR together, we present two optimi-
zations in which PER and IRTR enhance each other when
combined. These optimizations mitigate the effect of the over-
lap. PER improves IRTR’s reuse buffer hit rate by avoiding
pollution of the buffer with the instructions that are covered by
PER; and IRTR improves the utilization of PER’s implementa-
tion resources by avoiding pollution of the resources with the
instructions that are covered by IRTR.

When applied together, instructions that are checked by
IRTR need not be executed redundantly in PER. To that end,
we slightly modify the RDQ. Upon an RB hit, the main thread
instruction marks its RDQ entry. Depending upon whether the
mode is REM or SEM the entry has different purposes. In
REM, the marked RDQ entry causes the redundant instruction
to be discarded and not inserted in the issue queue. The entry
updates the redundant thread state as usual.

In SEM, there is no redundant thread but there is an oppor-
tunity for IRTR to enhance PER. The marked RDQ entry
updates the redundant thread processor state slightly differ-
ently than usual (Section 2.2.3). In the absence of IRTR, there
is an incentive to keeping instruction values in the RDQ for a
long time in anticipation that execution will switch from SEM
to REM and the values can be compared to their redundant
counterparts. Accordingly, SEM emptied the RDQ to update
the redundant thread state only when the RDQ was full. How-
ever, in the presence of IRTR, the incentive is gone. A marked
RDQ entry implies that the instruction has already been
checked by IRTR and there is no need to keep the value in the
RDQ. Instead, updating the redundant thread state without
waiting for the RDQ to fill has the benefit that newer instruc-

FIGURE 3: Example of IRTR

// r1=5, r2=7, RB miss => not checked,
r3=r1+r2=12, insert into RB

// r1=5, r2=7, RB hit & reuse test succeeds
and output (r3 = 12) matches the RB entry
=> no fault

// r1=5, r2=7, RB hit & reuse test succeeds
but fault in the output (r3 = 14) => does not
match the RB entry => fault detected

// r1=5, r2=15, RB hit & reuse test fails =>
not checked, r3=r1+r2=20, insert into RB

// maps to the same RB entry as instruction
(iv) which is evicted before being checked

// r1=5, r2=15, RB miss => not checked,
r3=r1+r2=20, insert into RB

(i) add r3, r2, r1
. . .
. . .

(ii) add r3, r2, r1
. . .
. . .
. . .

(iii) add r3, r2, r1
. . .
. . .
. . .

(iv) add r3, r2, r1
. . .
. . .

(v) sub r5, r6, r7
. . .
. . .

(vi) add r3, r2, r1
. . .
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tions can come into the RDQ earlier. Then these newer instruc-
tions stay in the RDQ longer and have a better chance of being
covered by PER.

PER can also enhance IRTR. The idea is to increase the
chance of covering those instructions by IRTR that are not cov-
ered by PER. Therefore, we have to increase the chance of RB
hit for such instructions. One way to improve the hit rate is to
avoid polluting the RB with instructions which are likely to be
covered by PER. To determine this likelihood, we make the
key observation that low-IPC phases in a program tend to be
low-IPC when executed again. The same observation is also
correct for high-IPC phases. A similar observation is also valid
for loads; certain loads tend to be problematic and cause L2
misses. Therefore, when using PER, the probability that a cer-
tain phase of a program will be executed in SEM (or REM)
mode is high given that it was previously executed in SEM (or
REM) mode, respectively. Accordingly, we update the RB
only in SEM and not in REM to avoid polluting the RB.

5  Methodology

We modify the Simplescalar 3.2b out-of-order simulator [2]
to simulate SRT, [25] which squashes on L2 misses to reduce
soft-error rate (we denote it as SL2), PER, and IRTR. Table 1
shows the simulation parameters used throughout our simula-
tions unless otherwise specified.

Estimating soft-error rate (SER) would involve device and
circuit details. However, [8] provides an abstract, architectural
metric for SER called the architectural vulnerability factor
(AVF). AVF of a processor structure is the probability that a
fault in that structure will result in a visible error in the final
output of a program [8]. Because SER is directly proportional

to AVF (SER = AVF * raw soft-error rate), and because our
techniques affect only the AVF and not the raw soft-error rate,
we show the AVF in our results. We use the methodology
described in [8] to compute the AVF of the individual pipeline
structures such as the issue queue, ALUs, and the register file.
For each structure, we trace the number of bits required for
architecturally correct execution (ACE) [8] that go through
that structure during execution time. Then we divide that num-
ber by the total number of bits that can be held by that struc-
ture during that time. All the bits of instructions that are
executed redundantly, instructions that are checked using
IRTR, dead instructions, and the registers that have redundant
copies during redundant execution are considered un-ACE bits
because a fault in the bits either can be detected or will not
affect the program output.

Extending [8], which computes each individual structure’s
AVF in isolation, we combine the individual AVFs to produce
the overall AVF for the entire processor. Assuming the reason-
able assumption that logic density is similar among pipeline
structures, the probability of a soft error is directly propor-
tional to the area of the structure. Then, the overall AVF is the
weighted sum of each individual structure’s AVF weighted by
the fraction of the structure’s area. We take area estimates from
Hot Spot [17] for the structures shown in Table 1 and compute
the overall processor AVF.

We use a representative subset of SPEC2000 suite. We skip
the number of instructions specified by SimPoint [15] to each
benchmark’s early single simulation point. We warm-up the
caches during the last 1 billion instructions of the skipped
instructions if the benchmark is skipped by more than 1 billion
instructions. Otherwise, we warm-up the caches during the
skipping period. Then, we run the SimPoint for 100 million

Table 1: System parameters

Architectural parameters

Instruction issue 6, out-of-order

Branch prediction 8k hybrid of bimodal and
gshare, 16-entry RAS, 4-
way 1K BTB (15-cycle
misprediction penalty)

L1 I- and D-cache 64KB 4-way, 2-cycle

L2 unified cache 1M 8way 12-cycle

RUU/LSQ 128/64 entries

Functional units 6 Integer ALUs, 2 Integer
mul/div units, 4 FP ALUs,
2 FP mul/div units

Memory ports 2

Off-chip memory latency Infinite Capacity, 300
cycles

SRT parameters

BOQ/LVQ/StB 96/128/20 entries

Slack 256 instructions

PER parameters

RDQ 300 entries

IRTR parameters

RB 1024 entries, 2-way

Table 2: Benchmarks
Bench-
mark

Commit
IPC

Execute
IPC

misses per
1000 insts

RB
hit %

Redun-
dancy %

sixtrack 3.20 3.29 0.51 17 10

mesa 2.60 3.57 0.14 36 6

vortex 2.19 2.52 0.27 51 35

apsi 1.58 1.84 1.95 10 62

crafty 1.57 3.18 0.40 33 42

bzip 1.42 2.74 1.00 40 54

eon 1.40 3.13 0.00 39 53

fma3d 1.14 1.24 10.59 26 65

gcc 1.12 1.14 3.71 32 68

facerec 1.01 1.51 5.14 26 70

applu 0.91 0.91 22.95 10 74

mgrid 0.79 0.80 8.98 7 72

twolf 0.59 1.26 3.58 26 75

swim 0.49 0.49 21.70 2 84

vpr 0.47 0.73 6.29 41 82

art 0.40 0.58 84.44 26 92

equake 0.35 0.36 26.63 33 87

lucas 0.24 0.24 17.52 55 91
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instructions. Our base case is a non- fault-tolerant execution
where the benchmarks execute without redundancy or instruc-
tion reuse. Table 2 shows the base-case commit- and execute-
IPC (instructions per cycle), the number of L2 misses per 1000
committed instructions, the reuse buffer hit rate (i.e., hit in the
RB and reuse test success), and the fraction of committed
instructions covered by PER. The benchmarks are ordered in
decreasing commit IPC from top to bottom.

6  Experimental Results

We begin our analysis by comparing the performance of the
previous work and our techniques. Then we study the trade-off
between AVF and performance for the various techniques.
Finally, we study the impact of RB size on the performance of
IRTR and PER-IRTR. We do not vary the RDQ size because
the RDQ size is related to the L2 miss latency and should not
be varied independently.

6.1  Performance

In Figure 4, we compare the performance of SRT, SL2,
PER, and PER-IRTR (which is PER and IRTR together). We
do not compare against DIE-IRB because SRT outperforms
DIE-IRB due to SRT’s slack fetch and the BOQ optimizations.
Instead, we implement SRT-IRB which exploits reuse in SRT
to avoid redundant execution whenever there is reuse. Because
SRT by itself outperforms DIE-IRB, and SRT-IRB outper-
forms SRT, our comparison is fair. We do not show IRTR
because it does not incur any performance loss and therefore
its performance is the same as the base case. The Y axis shows
performance relative to the base case (note that the Y axis
starts at 0.5). The X axis shows the benchmarks in roughly
decreasing commit IPC (shown in Table 2) from left to right,
and the average at the far right. The X axis ordering makes it
easier to see trends.

SRT degrades performance by 17% on average. Because
SRT is a full-redundancy scheme, it significantly degrades
high-IPC programs (to the left) due to their high utilization of
resources. The low-IPC programs (to the right) incur less deg-
radation. For example, sixtrack with commit IPC of 3.20
incurs nearly 45% performance degradation and lucas with
commit IPC of 0.24 incurs 7% performance degradation. (It
may be easier for the reader if the Y axis were percent degra-
dation instead of relative performance. However, in that case,
many of the bars for SL2, PER, and PER-IRTR would become

invisible.) We see that SRT incurs significant performance deg-
radation to achieve full coverage via full redundancy.

SRT-IRB performs slightly better than SRT, but otherwise
closely follows SRT’s trends.

Because L2 misses are relatively infrequent and SL2
squashes on L2 misses, SL2 degrades performance only by
3.5% on average. However, there is some degradation for high-
miss-rate programs (see Table 2 for miss rates) whereas low-
miss-rate programs incur virtually no performance loss. For
example, art, equake, applu, and swim incur 9% performance
degradation whereas sixtrack and eon are virtually unchanged.
Though SL2 performs better than SRT, SL2 does not provide
the same coverage as SRT.

Our techniques, PER and PER-IRTR, incur about 2% aver-
age performance degradation, which is close to that of SL2. In
some of the high-miss-rate programs, however, PER and PER-
IRTR perform better than SL2 (e.g., art, equake, and applu).
Recall that PER and PER-IRTR switch to REM and start exe-
cuting from both threads immediately after an L2-miss squash,
whereas SL2 waits for the miss to return before starting to
fetch from the main thread. Allowing the main thread to exe-
cute under misses helps these programs.

These results show that (1) our techniques incur minimal
performance degradation whereas SRT and SRT-IRB incur sig-
nificant degradation; (2) our techniques are comparable to SL2
in performance. In the next section, we show the reduction in
SER achieved by the techniques. Then, we summarize where
the techniques stand in terms of performance-SER trade-off.

6.2  Soft-Error Rate

As mentioned in Section 5, we use AVF as our metric for
soft-error rate. We compare the issue queue AVF relative to the
base case (whose AVF is normalized to 100%) for all the tech-
niques except SRT and SRT-IRB because their AVF is 0% due
to full redundancy. Because SL2 covers only the issue queue,
the gains in the issue queue AVF will be overwhelmed by the
AVF of the rest of the pipeline, preventing us from seeing
SL2’s SER improvements. Therefore, we first show the issue
queue AVF separately in Figure 5, and then show the overall
processor AVF.

SL2 reduces the issue queue AVF by 21% on average.
Because SL2 exploits L2 misses, it reduces the AVF more for
programs with higher miss rates (see Table 2) (e.g., art,
equake, applu, and swim).

IRTR reduces the issue queue AVF by 29% on average,

FIGURE 4: Effect of fault tolerance on performance
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which is more than SL2’s reduction. The RB-hit-% column
in Table 2 shows the reuse buffer hit rate (i.e., hit in the RB
and reuse test success) for the programs. The issue queue
AVF depends on the time spent by an instruction in the issue
queue, and this time is not captured by the RB hit rate. Nev-
ertheless, the AVF reduction correlates well with the RB hit
rate. For instance, vortex and lucas with high RB hit rates
achieve large reduction in AVF, and applu, mgrid, and swim
with poor RB hit rates achieve little reduction. Because
IRTR incurs virtually no degradation, this result illustrates
the power of implicit redundancy.

PER reduces the issue queue AVF by 57% on average.
The redundancy% column in Table 2 shows the percent of
committed instructions covered by PER. The AVF reduction
correlates well with this column. As expected, PER works
better for low-IPC programs (to the right) (e.g., vpr, art,
equake, and lucas) and not so well for high-IPC programs
(to the left) (e.g., sixtrack, mesa, and vortex).

Finally, PER-IRTR reduces the issue queue AVF by 65%
on average. PER-IRTR’s AVF reduction = PER’s reduction
+ IRTR’s reduction + the two enhancements’ reduction -
overlap between PER’s reduction and IRTR’s reduction.
Section 4 describes the enhancements and the overlap. PER-
IRTR exploits the enhancements described in Section 4 to
achieve better coverage than PER or IRTR alone. PER-IRTR
achieves better coverage than either PER or IRTR whenever

both PER and IRTR achieve reasonably good coverage (e.g.,
bzip, fm3d, gcc, facerec, and lucas). PER-IRTR does not
improve upon the better of PER or IRTR whenever the other
(i.e., the worse of PER and IRTR) achieves poor coverage
(e.g., mesa where PER’s coverage is poor, and swim where
IRTR’s coverage is poor). This trend is because when one of
PER and IRTR achieves poor coverage then that technique’s
coverage is subsumed by the other’s and our enhancements
cannot prevent this subsumption. However, when both PER
and IRTR achieve good coverage our enhancements can
reduce the overlap between the two.

We compare the overall processor AVF for SL2, IRTR,
PER, and PER-IRTR in Figure 6. Because SL2 covers only
the issue queue which contributes only 15% to the processor
AVF, SL2’s processor AVF reduction is about 4% on aver-
age. Because our schemes, IRTR, PER, and PER-IRTR,
cover the whole pipeline, they achieve better processor AVF
reduction of 22%, 44%, and 56%, respectively. Each of
IRTR’s, PER’s and PER-IRTR’s coverage of the rest of the
pipeline matches that of the issue queue (i.e., if a technique’s
issue queue coverage is high (low) then its coverage of the
rest of the pipeline is high (low)). Consequently, the trends
in the issue queue AVF for these techniques in Figure 5
closely match the trends in the overall processor AVF in
Figure 6.

Finally, we put these AVF numbers together with the per-

FIGURE 5: Issue queue soft-error rate
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FIGURE 6:  Processor soft-error rate
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formance degradation numbers from Figure 4 in Table 3. We
see that PER and IRTR can reduce the number of crashes
caused by soft errors (described in the third paragraph of
Section 1) by a factor of two at little performance degradation.
The table shows that our techniques achieve better trade-off
between performance and soft-error rate than the previous
schemes. Thus, our techniques are a better choice than the pre-
vious schemes for systems which do not need perfect cover-
age.

6.3  Effect of RB size

Figure 7 shows the effect of RB size on IRTR and PER-
IRTR coverage. We compare the overall processor AVF for RB
sizes of 512, 1024, and 2048. We see that for both IRTR and
PER-IRTR, the processor AVF improves gradually over these
RB sizes, showing that our techniques are robust with respect
to the RB size. We also see that increasing the RB size from
512 to 2048 reduces the AVF from 83% to 75% and 50% to
41% for IRTR and PER-IRTR. Thus, our techniques benefit
from a larger RB. Although DIE-IRB can also benefit from a
larger RB, DIE-IRB has a limit on the RB access time because
the RB is accessed between fetch and issue, as described in
Section 3.2. Therefore, it is not easy for DIE-IRB to use a large
RB. However, IRTR and PER-IRTR do not have this timing
limitation.

7  Related Work

Watchdog processors proposes some of the key concepts
behind many fault-tolerance schemes [6]. AR-SMT is the first
to use SMT to execute two copies of the same program [14].
AR-SMT and its follow-up for chip multiprocessors (CMPs),
called Slipstream [21], propose using speculation techniques
to allow communication of data values and branch outcomes

between the main and redundant threads to accelerate execu-
tion. SRT improves on AR-SMT via the two optimizations of
slack fetch and checking only stores. DIVA is a fault-tolerant
superscalar processor that uses a simple, in-order checker pro-
cessor to check the execution of the complex out-of-order pro-
cessor [1]. SRTR extends SRT to provide recovery for SMT
[24]. RMT explores design options for fault detection via mul-
tithreading, and briefly discusses fault detection using CMPs
[7]. CRTR extends RMT to provide fault recovery using CMPs
[4]. DIE proposes hardware recovery using superscalar hard-
ware without any SMT support [11]. DIE-IRB exploits instruc-
tion reuse to reduce redundant execution [9]. Other work
focuses on fault tolerance in functional units [13, 10, 5, 20].

The Compaq NonStop Himalaya [3] and IBM z900 (for-
merly S/390) [18] provide fault tolerance. The z900 uses the
G5 microprocessor which includes replicated, lock-stepped
pipelines. The NonStop Himalaya lock-steps off-the-shelf
microprocessors and compares the external pins on every
cycle. In both systems, when the components disagree, execu-
tion is stopped to prevent propagation of faults.

All of the above proposals and products are full-redundancy
schemes which incur performance degradation to achieve full
coverage. We propose partial redundancy to trade-off coverage
for performance in systems where perfect coverage is not
needed. [25] also targets such systems but takes a no-redun-
dancy approach to reduce soft-error rate. It squashes the pipe-
line on L2 misses to avoid particle strikes on the instructions in
the issue queue during the long wait for the misses. Our
approach achieves better coverage for similar minimal perfor-
mance degradation. [8] defines AVF to quantify soft-error rate
in architectural terms. We use AVF in our evaluations. In addi-
tion, we extend DIE-IRB to exploit reuse as implicit redun-
dancy with no additional explicit redundancy.

8  Conclusions

Most current proposals for transient-fault detection use full
redundancy to achieve perfect coverage while incurring signif-
icant performance degradation. However, most commodity
systems do not need or provide perfect coverage. A recent
paper explores this leniency to reduce the soft-error rate of the
issue queue during L2 misses while incurring minimal perfor-
mance degradation. Whereas the paper reduces soft-error rate
without using any redundancy, we targeted better coverage
while incurring similarly-minimal performance degradation by
opportunistically using redundancy. We proposed two semi-

Table 3:  SER and performance

SER reduction % Performance loss %

SRT 100 17

SRT-IRB 100 15

SL2 4 3.5

IRTR 22 0

PER 44 2

PER-IRTR 56 2

FIGURE 7: Effect of RB size on processor soft-error rate
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complementary techniques, called partial explicit redundancy
(PER) and implicit redundancy through reuse (IRTR), to
explore the trade-off between soft-error rate and performance.
PER opportunistically exploits low-ILP phases and L2 misses
to introduce explicit redundancy with minimal performance
degradation. Because PER covers the entire pipeline and
exploits not only L2 misses but all low-ILP phases, PER
achieves better coverage. To achieve coverage in high-ILP
phases as well, we proposed implicit redundancy through
reuse (IRTR). Previous work exploits the phenomenon of
instruction reuse to avoid redundant execution while falling
back on redundant execution when there is no reuse. IRTR
takes reuse to the extreme of performance-coverage trade-off
and completely avoids explicit redundancy by exploiting
reuse’s implicit redundancy within the main thread for fault
detection with virtually no performance degradation.

Using simulations with SPEC2000, we showed that average
processor soft-error-rate reduction and performance loss for
the previous reuse scheme, the previous scheme for reducing
the issue queue’s soft error rate, and combined PER and IRTR
are 100% and 15%, 4% and 3.5%, 56% and 2%, respectively.
Put differently, our techniques can reduce the number of
crashes caused by soft errors, and the accompanied financial
loss, by a factor of two at little performance degradation. Our
techniques achieve better trade-off between soft-error rate and
performance than the previous schemes.

As transient faults worsen with scaled technologies, tech-
niques like PER and IRTR will become important to achieve
good soft-error rates while incurring minimal performance
degradation.
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