
Improving Program Efficiency by Packing Instructions into Registers

Stephen Hines, Joshua Green, Gary Tyson and David Whalley
Florida State University
Computer Science Dept.

Tallahassee, Florida 32306-4530
{hines,green,tyson,whalley}@cs.fsu.edu

Abstract

New processors, both embedded and general purpose,
often have conflicting design requirements involving space,
power, and performance. Architectural features and com-
piler optimizations often target one or more design goals at
the expense of the others. This paper presents a novel archi-
tectural and compiler approach to simultaneously reduce
power requirements, decrease code size, and improve per-
formance by integrating an instruction register file (IRF)
into the architecture. Frequently occurring instructions are
placed in the IRF. Multiple entries in the IRF can be refer-
enced by a single packed instruction in ROM or L1 instruc-
tion cache. Unlike conventional code compression, our ap-
proach allows the frequent instructions to be referenced in
arbitrary combinations. The experimental results show sig-
nificant improvements in space and power, as well as some
improvement in execution time when using only 32 entries.
These advantages make packing instructions into registers
an effective approach for improving overall efficiency.

1. Introduction

Embedded systems are subject to a variety of design
constraints. Performance must be sufficient to meet the
timing constraints for the application. Power consumption
should be minimized, often to be less than a specified tar-
get. The size of read-only memory (ROM) may have rigid
limits to minimize cost. Unfortunately, it is often diffi-
cult to improve one parameter without negatively affect-
ing others; increasing clock frequency to enhance perfor-
mance also increases power consumption; code compres-
sion techniques improve code density, and voltage scaling
reduces power requirements, but these may increase execu-
tion time. While this has been the prevailing design envi-
ronment for embedded processors, these same design con-
straints now challenge general-purpose processor design as
well. To address each design issue (power, code size, and

execution time), we must identify inefficiencies in some
part of program execution that can be improved by devis-
ing new micro-architectural resources, instruction set de-
sign improvements, and/or compiler optimizations. In this
paper, we use all three techniques to improve instruction
fetch (I-Fetch) logic.

Optimizing I-Fetch logic is a natural target for embedded
processors: it consumes approximately 36% of total proces-
sor power on a StrongARM [18]. Current I-Fetch mecha-
nisms are inefficient in at least two aspects. First, informa-
tion content of instruction encoding techniques is far from
theoretical compression limits: instruction encoding seeks
to maximize functionality of the ISA while simplifying de-
coding by usually making all instructions the same length,
even though most applications use only a fraction of avail-
able instruction encodings. Second, inefficiency in I-Fetch
involves the instruction storage structure: instruction cache
(IC) or instruction ROM. These structures use less power
and have lower latency than a large memory store, but they
allocate a large, flat storage method on all instruction ac-
cesses. This approach requires almost all references to be
accessed from the same storage (IC hit or ROM access) with
the same power costs, even though only a small subset of in-
structions account for the majority of references.

The analogous problem with data references has been
managed through the use of data registers via compile-time
control of register allocation. We propose extending the use
of registers to store frequently referenced instructions. This
enables the compiler to place those instructions referenced
most frequently into a small register file that can be indexed
with a small register specifier. The small size of the register
file reduces power requirements for frequent instruction ref-
erences and use of an instruction register specifier reduces
code size.

Two new SRAM structures are required to support our
I-Fetch optimization. The first is an instruction register file
(IRF) to hold common instructions as specified by the com-
piler. The second is an immediate table (IMM) containing
the most common immediate values used by instructions in
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Figure 1. Instruction Register File

the IRF. We modify the ISA to support fetching multiple in-
structions from the IRF. By specifying multiple IRF instruc-
tions within a single 32-bit instruction fetched from the IC,
we can reduce the number of instructions in the program
(saving space), reduce references to the IC (saving power),
and effectively fetch more instructions per cycle (improv-
ing execution time).

The IRF can be integrated into the pipeline architec-
ture in one of two locations — at the end of instruction
fetch or the start of instruction decode. Our Verilog mod-
els for simple pipelines show that there is sufficient time
in either stage to perform the IRF access, since the criti-
cal path for our designs is in the execute stage. If this is
not the case for some other pipeline, then the IRF can be
modified to hold partially decoded instructions, and IRF ac-
cess can be overlapped from the end of instruction fetch
to the start of instruction decode, reducing cycle time im-
pact. Figure 1 shows the integration of the IRF at the begin-
ning of instruction decode. If the instruction fetched from
the IC is a packed instruction, instruction index fields se-
lect from one to five IRF entries to write to the instruction
buffer. The buffer is also modified to accommodate multi-
ple instruction insertion. Not shown in Figure 1 is the the
IMM, which sits next to the IRF and contains 32-bit im-
mediate values. These can be associated with one or more
IRF instructions through the use of parameterized packed
instructions (see Section 2). In the event that an IRF instruc-
tion uses an immediate from the IMM, the value is concate-
nated to the instruction bits from the IRF. By parameteriz-
ing use of immediates and placing them in a separate regis-
ter file, we can support full 32-bit immediate values and can
place two or more instructions that differ only by immedi-
ate value into the same IRF entry.

Figure 2 illustrates the potential for storing instructions
in an IRF. We select the largest application from each of
the six categories of the MiBench suite, profiling each with
its small input set, and gathering dynamic instruction counts
for each distinct instruction executed [12]. The data is sorted
(high to low) into a cumulative plot. The x-axis shows
sorted distinct instructions, and the y-axis shows the per-
centage of dynamic instruction fetches to the most common
instructions. The graph shows the percentage of instruction
fetches that can potentially be captured with an IRF of var-
ious sizes. On average, about 66.51% of all instructions ex-
ecuted can be stored in a 32-entry IRF, assuming it can be
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Figure 2. Dynamic Instruction Redundancy

loaded with the 32 most common instructions at the start of
execution.

The remainder of this paper is organized in the follow-
ing manner. First, we describe the architectural extensions
necessary for supporting an instruction register file. Second,
we outline the modifications made to support compiling for
an architecture that uses instruction registers. Third, we an-
alyze experimental results showing the effect of packing in-
structions into registers on code size, power, and execution
time. Fourth, we present some crosscutting issues regard-
ing the support costs of making an IRF available in an ISA.
Fifth, we review a variety of past compiler and architectural
solutions that attempt to save space by compressing pro-
grams and/or energy by reducing the fetch cost of instruc-
tions. Sixth, we mention several potential topics for future
work. Finally, we present our conclusions regarding instruc-
tion packing and the IRF.

2. ISA Modifications

This section describes the changes necessary for an ISA
to support references to a 32-instruction register file. We
choose the MIPS ISA, since it is commonly known and has
a simple encoding [20]. Instructions stored in memory will
be referred to as the Memory ISA or MISA. Instructions we
place in registers will be referred to as the Register ISA or
RISA. Note that the MISA and RISA need not use exactly
the same instruction formats, however this paper presents
only minor modifications to the RISA to reduce complex-
ity. MISA instructions that reference the RISA are desig-
nated as being packed.

2.1. Loosely Packed Instructions

The simplest type of packed instruction is the loosely
packed instruction. An instruction using this format allows
two instructions to be fetched for the price of one by im-
proving use of encoding space in the traditional MIPS in-
struction formats. In a loosely packed instruction, a stan-
dard MIPS instruction is modified to contain an additional
reference to an instruction from the IRF. The standard in-
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Figure 3. MIPS Instruction Format Modifications

struction is executed followed by the IRF instruction. One
IRF entry is reserved for a nop, to indicate that no addi-
tional instruction is executed when a standard instruction is
followed by an instruction not in the IRF.

Figure 3(a) shows traditional MIPS instruction formats,
and Figure 3(b) shows the proposed modifications to allow
loose packing. The IRF inst field replaces the infrequently
used shamt field of an R-type instruction. Similarly, for the
I-type instruction format, we reduce the size of the imm field
to include an IRF instruction reference. J-type instructions
are left unchanged.

Several restrictions must be placed on the MIPS ISA
to support these adaptations. Immediate values are reduced
from 16 bits to 11 bits. We must therefore change the lui
instruction, which loads a 16-bit value into the upper half
of a register and is used to construct large constants or ad-
dresses. The modified lui loads upper immediate values of
21 bits by using the standard 16 immediate bits of an I-type
instruction along with the previously unused 5-bit rs field.
The new lui instruction cannot be loosely packed with an
additional instruction since all 32 bits are used. Removing
the shamt field from R-type instructions forces shift instruc-
tions to change format as well. Shifts are now encoded with
the shamt value replacing the rs register value, which is un-
used in the original format when shifting by an immediate.
Additional opcodes or function codes to support the loosely
packed format are unnecessary.

Although the IRF focuses on packing common instruc-
tions together into large packs, the loosely packed instruc-
tion serves an important role. Often an individual IRF in-
struction can be detected, yet neither of its neighboring in-
structions are available via the IRF. Without loosely pack-
ing instructions, we could not capture this type of redun-
dancy, and thus we could not achieve the same levels of im-
provement.

2.2. Tightly Packed Instructions

Figure 4 shows the added T-type format for tightly
packed instructions. This format allows several RISA in-
structions to be simultaneously accessed from a sin-
gle MISA instruction. Since the IRF contains 32 entries, a

s inst5 param

5 bits15 bits5 bits5 bits5 bits6 bits

inst3inst2inst1opcode paraminst4

Figure 4. Tightly Packed Format

tightly packed instruction can consist of up to five instruc-
tions from the IRF. Tightly packed instructions can support
fewer than five RISA instructions by padding with nop ref-
erences. Hardware support halts execution of the packed
instruction when a nop is encountered (so there is no per-
formance degradation).

2.3. Using Parameterized Immediate Values

Preliminary studies show that I-type instructions account
for 51.91% of static instructions and 43.45% of dynamic in-
structions executed. Further examination of immediate val-
ues present in these instructions reveals that many common
values are used in a variety of instructions. By parameteriz-
ing the IRF entries that refer to immediate values, more in-
structions can be matched for potential packing. Parameter-
ization however requires additional bits to encode the nec-
essary value to fetch. The T-type instruction format, shown
in Figure 4, provides encoding space for up to two immedi-
ate parameter values for each tightly packed instruction.

We find that using a small range of values is much less
effective than referencing the most frequently used imme-
diates. For example, when five bits are used, the static per-
centage of immediates represented increases from 32.68%
to 74.09%, and the dynamic percentage increases from
74.04% to 94.23%. Thus, we keep the immediate values in
an immediate table (IMM), so that a packed instruction can
refer to any parameter value. Each IRF entry also contains
a default immediate value, so that these instructions can re-
main loosely packable or can be referenced with no param-
eters in a tightly packed instruction. The IMM contains 32
entries, so five bits are used to access each parameter.

There are two major options available for parameterized
instruction packs. One option consists of up to four IRF en-
tries along with a single parameter. The other option allows
for up to three IRF entries with two parameters. The opcode
used with the encoding of the S bit dictates which IRF in-
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# RTL RTL (positional)
1 r[2]=R[r[29]+4]; r[2]=R[r[29]+4];
2 r[2]=r[2]+r[5]; s[0]=s[0]+r[5];
3 R[r[29]+4]=r[2]; R[u[2]+4]=s[0];

. . . . . .

4 r[3]=R[r[29]+4]; r[3]=R[r[29]+4];
5 r[3]=r[3]+r[5]; s[0]=s[0]+r[5];
6 R[r[29]+4]=r[3]; R[u[2]+4]=s[0];

Figure 5. Positional Register Specifiers

struction uses each available parameter, while other I-type
instructions in the pack use their default immediate values.

The T-type instruction format requires additional op-
codes to support tightly packed instructions. There are four
different instructions that can use the single parameter when
referencing an instruction containing up to four IRF entries.
Similarly, there are three possibilities for using two param-
eters when referencing an instruction containing up to three
IRF entries. Including the tightly packed instruction with no
parameterization, there are eight new operations to support.
Fortunately the S bit allows these eight operations to be rep-
resented with four opcodes.

2.4. Using Positional Registers

Another method for increasing instruction redundancy
is to detect and exploit common patterns in register usage.
Register accesses may be referred to positionally, such that a
register previously set or used can be referenced by the cur-
rent instruction. In this way, a RISA instruction has greater
flexibility than a MISA instruction, since it can access both
physical hardware registers as well as the newly added po-
sitional register specifiers. Positional registers that are set
and used can be tracked via the pipeline registers already
available in hardware. Positional specifier register fields are
hereafter referred to as prs, prt, and prd, corresponding to
the standard MIPS fields rs, rt, and rd [20].

Figure 5 illustrates conversion to positional register form
using two distinct sequences of load/add/store operations.
In line 2, the reference to r[2] can be abstracted out as the
previous instruction’s set register. Since r[5] has not been
referenced in a nearby previous instruction, it cannot be
converted to a positional parameter. Line 3 shows that again
we can refer to the prior set as s[0] and the use of r[29] as
u[2]. At most one set and two uses can be present in any
standard MIPS instruction, so u[2] refers to the first use (rs)
of the instruction that is located two instructions back (three
uses back). Lines 5-6 match lines 2-3 when using the posi-
tional register specifiers, even though they reference differ-
ent architectural registers. This enables lines 2 and 5 as well
as lines 3 and 6 to share the same IRF entries. Only RISA
instructions can access registers positionally. This architec-
tural enhancement exposes greater instruction redundancy,
and thus can lead to higher density instruction packing.

2.5. Packing Branches and Jumps

Branch instructions are troublesome to pack directly
since the packing process will undoubtedly change many
branch offset distances. The addition of parameterized in-
struction packs greatly simplifies packing of branches. Pre-
liminary testing shows that approximately 63.15% of static
branches and 39.75% of dynamic branches can be repre-
sented with a 5-bit displacement. Thus, a parameter linked
to a RISA branch instruction would refer to the actual
branch displacement and not to the corresponding entry
in the IMM. Once packing is completed, branch displace-
ments can be recalculated and inserted into the correspond-
ing packed instructions.

MIPS jump instructions use the J-type format, and are
not easily packed due to the use of a target address. To rem-
edy this, we encode an unconditional jump as a conditional
branch that compares a register to itself for equality when
the jump offset distance can be represented in five bits. This
allows IRF support of parameterizable jump entries.

3. Compiler Modifications

This section provides an overview of the compilation
framework and modifications to carry out the experiments
we describe. The compiler is a port of VPO (Very Portable
Optimizer) for the MIPS architecture [3]. Additional modi-
fications allow it to be used with the PISA target of the Sim-
pleScalar toolset for gathering performance statistics [2].

The hardware modifications listed in Section 2 have a
definitive impact on the code generated by the compiler.
Immediate values are constrained to fit within 11 bits, or
are constructed in similar fashion as traditional immediates
with sizes greater than 16 bits. We find that this can slightly
lengthen code for an application, but initial size increases
are far overshadowed by the benefit of instruction packing.

The GNU assembler MIPS/PISA target provided for the
SimpleScalar toolset allows the use of a variety of pseu-
doinstructions to ease the job of the compiler writer. These
pseudoinstructions are later expanded by the assembler into
sequences of actual hardware instructions. Detection of
RISA instructions at compile time is unnecessarily com-
plicated by the presence of such pseudoinstructions. To re-
duce this complexity, we expand most of these pseudoin-
structions at compile time, prior to packing instructions.
The load address pseudoinstruction is not expanded until
assemble/link-time since we currently do not pack instruc-
tions that refer to global memory addresses. A preliminary
study for the MIPS/PISA target shows that even packing all
load address instructions yields very little improvement due
to their relative infrequency.

We modified VPO and SimpleScalar to incorporate ad-
ditional information to facilitate instruction profiling for
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placement within the IRF. One important aspect is specifi-
cation of instruction operands using positional registers for
prior register sets and uses. This allows the profile to contain
both standard and positional register specifiers for each par-
ticular instruction, whether selection is done for code com-
paction or maximizing instances of fetching out of the IRF.

Figure 6 shows the flow of information at compile-time.
VPO and the PISA toolchain are used to create the ex-
ecutable, which can then be executed and/or profiled us-
ing SimpleScalar. Profile information is then extracted and
passed to an analysis tool for IRF instruction selection. This
tool then supplies the compiler with the new IRF and Im-
mediate Table entries to use when recompiling the applica-
tion. Note that it is possible to remove the need for profiling
by allowing the compiler to approximate dynamic frequen-
cies by looking at loop nesting depths and the entire pro-
gram control flow graph.

3.1. Selecting IRF-Resident Instructions

The IRF is clearly a limited storage space, so instruc-
tions selected to populate it must provide the greatest ben-
efit to program performance. Calculating the optimal set of
instructions would be too time-consuming during compila-
tion, so a heuristic is used. The current method uses a greedy
algorithm based on profiling the application and selecting
the most frequently occurring instructions as well as default
immediate values.

Figure 7 shows the process of selecting the IRF-resident
(RISA) instructions. The algorithm begins by reading the
instruction profile generated by either static and/or dynamic
analysis. Next, the top 32 immediate values are calculated
and inserted as part of the IRF for parameterized immedi-
ate values. Each I-type instruction that uses one of the 32
immediate values is now a candidate for parameterization,
and it is combined with I-type instructions that are identi-
cal except for referring to different parameterizable imme-
diate values. The most frequent immediate value from each
I-type group is retained as the default value.

At this point, the instructions are placed in two lists. One
list contains positional form instructions that refer to prior
sets and uses of registers within a few instructions back. The
other list contains physical hardware register references.
When constructing these lists, careful attention must be paid
to operand specifiers, since elements should be grouped to-
gether if they have the same operand fields. In the physical

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;
Coalesce all I-type instructions that match based on

parameterized immediates;
Construct positional and regular form lists from the

instruction profile, along with conflict information;
IRF[0]← nop;
foreach i ∈ [1..31] do

Sort both lists by instruction frequency;
IRF[i]← highest freq instruction remaining in the two lists;
foreach conflict of IRF[i] do

Decrease the conflict instruction frequencies by the
specified amounts;

Figure 7. Selecting IRF Instructions

Opcode rs rt immed prs prt Freq

addiu r[3] r[5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Coalescing Immediate Values ⇓
addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Grouping by Positional Form ⇓
addiu NA r[5] 1 s[0] NA 900
...

⇓ Actual RTL ⇓
r[5]=s[0]+1 900

Figure 8. Coalescing Similar Instructions

register instruction list, positional specifiers can be safely
ignored. As for the positional form instruction list, any spec-
ified positional register in one operand replaces the corre-
sponding physical register reference, so prs replaces rs, prt
replaces rt, and prd replaces rd. Comparisons are then made
on these fields to group instructions appropriately.

After constructing the lists, a nop is added as the first
IRF element. This guarantees that one instruction followed
by another not in the IRF can be handled without wasting
processor cycles. At this point the algorithm enters its main
loop to select the other 31 IRF entries. Each list is sorted by
instruction frequency. The initial sort needs to be complete;
later sorts need only move elements with modified frequen-
cies due to conflicts. The highest frequency instruction is se-
lected for the IRF and removed from its corresponding list.
Conflicts for this instruction from the other list are exam-
ined, and their frequency counts are adjusted.

Figure 8 shows coalescing of immediates as well as
grouping of positional parameters. In this example, the im-
mediate values 1 and 4 are considered to be available as pa-
rameters to the IRF. This allows the first two addiu instruc-
tions to be grouped. The higher frequency immediate (1) is
retained as the default value in the second part of the fig-
ure. Next, the figure shows grouping by positional form for
these elements. In this case, the prs field supersedes the rs
field, allowing both instructions to match. The final output
RTL for the IRF entry is depicted at the bottom, along with
its updated final frequency count of 900.
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Commutative operators may yield different operand or-
derings for the same semantic operations. This inability to
recognize that two different instructions are semantically
equivalent can inhibit selection of IRF candidates and thus
lower overall effectiveness of instruction packing. For this
reason, we add a transformation to VPO that converts all
commutative operations into a single form. We reorder reg-
ister operands such that if one source operand matches the
result register, this operand is placed first. If neither operand
matches the result register, we choose the register with low-
est number to be placed first. Figure 9(a) shows swapping
operands r[3] and r[4], since the result is stored in regis-
ter r[4]. In Figure 9(b), registers r[3] and r[4] are reordered
by register number.

Before After
(a) r[4]=r[3]&r[4]; r[4]=r[4]&r[3];
(b) r[2]=r[4]|r[3]; r[2]=r[3]|r[4];
(c) r[5]=r[3]; r[5]=r[3]+0;
(d) r[7]=95; r[7]=r[0]+95;

Figure 9. Equivalent Instructions

Besides commutativity, the effects of a particular instruc-
tion may be representable by a different instruction. One
common case is the mov pseudoinstruction, which is by de-
fault converted into an or or an add instruction with r[0]
(hardwired on the MIPS to have a zero value). To increase
our ability to pack instructions, we instead choose to map
these instructions as addi instructions with default parame-
ter zero, providing maximum flexibility for matching with
parameterization later. This effectively allows us to capture
all mov instructions while potentially recognizing some less
common increment instructions for free. Figure 9(c) shows
a register mov operation being converted to an addi with
zero instead of an add with r[0]. Figure 9(d) shows an li
similarly converted to an addi with r[0].

3.2. Packing Instructions

Since packing is done by the compiler, the source pro-
gram must be recompiled after IRF selection. After profil-
ing the original optimized application, VPO is supplied with
both an IRF as well as the top immediate values available
for parameterization via the IMM. Each optimized instruc-
tion is examined first for direct matches, and then tested for
matching the IRF with a parameterized immediate value.
The instruction is marked as either present in the IRF and/or
present in the IRF with parameterization, or not present.
Once each instruction is categorized, the compiler proceeds
with packing the appropriately marked instructions.

Instruction packing is performed per basic block, and we
currently do not allow instructions to be packed across ba-
sic block boundaries. Targets of control transfers must be
the address of an instruction in memory (not in the mid-

Table 1. Packed Instruction Types
Name Description
tight5 5 IRF instructions (no parameters)
tight4 4 IRF instructions (no parameters)
param4 4 IRF instructions (1 parameter)
tight3 3 IRF instructions (no parameters)
param3 3 IRF instructions (1 or 2 parameters)
tight2 2 IRF instructions (no parameters)
param2 2 IRF instructions (1 or 2 parameters)
loose Loosely packed format
none Not packed (or loose with nop)

dle of a tightly packed instruction). Table 1 summarizes the
different packed instruction types that are currently avail-
able in decreasing order of preference. The packing algo-
rithm operates by examining a sliding window of instruc-
tions in each basic block in reverse order. The algorithm at-
tempts each of the pack types in turn, until it finds a match.
Packs made up of instructions only are preferred over pa-
rameterized packs referencing the same number of instruc-
tions. The tightly packed format supports up to five IRF en-
tries, with the unused slots occupied by the nop located at
IRF[0]. When a pack is formed, the instructions are merged
into the appropriate instruction format. The sliding window
is then moved so that the next set of instructions in the block
can be packed.

After instruction packing is performed on all ba-
sic blocks, packing is re-attempted for each block con-
taining a branch or jump that does not reside in a tightly
packed instruction. One insight that makes iterative pack-
ing attractive is the realization that branch distances can de-
crease due to instruction packing. This decrease can
cause branches or jumps that were previously not pa-
rameterizable via the IRF to slip into the 5-bit target dis-
tance (-16 to +15). After detecting this, packing is then
re-applied to the basic block. If the end result is fewer in-
structions, then the new packing is kept; otherwise the
branch is ignored, and the block is restored to its prior in-
struction layout. Any changes that cause instructions to be
packed more densely triggers re-analysis of IRF instruc-
tions, and the process continues until no further changes
are made.

Figure 10 shows instruction packing for a simple se-
quence of operations. The IRF shows five entries including
nop, and the IMM includes 32 and 63 as possible values.
The original code is mapped to corresponding IRF entries,
both with and without parameterization. The branch can be
parameterized since -8 can be encoded as a branch offset
within the 5-bit parameter field. Examination of the basic
block reveals four instructions present in the IRF. How-
ever this sequence requires two immediate parameteriza-
tions, which is only possible when packing groups of three
instructions or fewer. Thus, the code sequence is packed by
grouping the last three instructions together as a param3 AC
instruction. The AC denotes the instructions receiving the
parameters, in this case the first and third. Moving the slid-
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...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

opcode

lw

rs

29

rt

3 8

irf

4

immediate

lw r[3], 8(r[29])
IRF[4], default (4)
IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

NA
1
None
NA
63andi s[0], s[0], Imm

addu r[5], r[5], r[4]
beq s[0], r[0], Imm
addiu r[5], s[0], Imm
nop0

#

1
2
3
4
... ... ...

DefaultInstruction

lw r[3], 8(r[29]) {4}
param3_AC {1,3,2} {3,−5}

Packed Code Sequence
opcode inst1

1

inst2

3

inst3

2

param

3

s

1

param

−5param3_AC

Instruction Register File

Immediate Table

Encoded Packed Sequence

Figure 10. Packing Instructions with an IRF

Table 2. MiBench Benchmarks
Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan
Consumer Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ghostscript, Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

ing window past the last three instructions, we see a default
parameter IRF instruction along with a non-IRF instruction.
These two are combined into a single loosely packed in-
struction. The branch offset is adjusted to -5, since three
preceding instructions have been compressed via the IRF.
The breakdown of the various fields in each of the packed
instructions is also shown in the figure.

4. Results

To measure the efficacy of packing instructions into reg-
isters, we select several benchmarks from the MiBench
suite. MiBench consists of six categories of embedded soft-
ware applications, each containing multiple entries. Table 2
shows the benchmarks used to determine the potential ben-
efits of using an IRF with respect to code size, energy con-
sumption, and execution time.

An instrumented version of SimpleScalar version 3.0 is
used to collect relevant data for each benchmark [2]. For
the purpose of this study, only the source code provided for
each benchmark was subjected to profiling and instruction
packing. Library code, although linked statically for Sim-
pleScalar, is left unmodified.

Figure 11 shows the average static instruction redun-
dancy. This serves as a limit for packing instructions into an
IRF. Three curves are shown, corresponding to distinct in-
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Figure 11. Static Instruction Redundancy
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Figure 12. Dynamic Instruction Redundancy

structions, instructions with parameterized immediates, and
instructions with parameterized immediates and positional
register specifiers. Although positional register specifiers do
not appear to provide much additional benefit over instruc-
tions with parameterized immediates, it is important to re-
alize that actual instruction packing can be limited by other
factors such as basic block boundaries and instructions that
cannot be loosely packed such as lui.

The average dynamic instruction redundancy over all
benchmarks is shown in Figure 12. This curve is visibly
steeper than the static instruction redundancy curve, since
applications execute instructions from critical loops with a
much greater frequency. Additionally, not every instruction
will be executed for a given set of test data, so the 100%
mark is reachable with fewer of these frequently occurring
instructions.

Table 3 compares the instruction mix by IRF type when
profiling for static code compression versus dynamic exe-
cution. The percentages are calculated using fetches from
the IC. Thus fetching an unpacked instruction and a packed
instruction are equivalent, but the packed instruction repre-
sents more executed instructions. With dynamic profiling,
we see larger pack sizes, since we can pack many instruc-
tions from the same frequently-executed loop bodies. Static
packing can pack more instructions overall, but relies heav-
ily on the loosely packed format.

4.1. Static Code Size

Figure 13 shows the reduction in code size for instruction
packing with an IRF, as well as the enhancements made.
100% corresponds to the initial size of the compiled code
without packing. Packing instructions alone reduces code to
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Table 3. Instruction Mix with 32-entry IRF

Pack Type Static % Dynamic %
Not packed 84.94 65.24
Loosely packed 3.91 3.40
Tight2 3.22 3.19
Tight3 0.90 2.60
Tight4 0.98 3.14
Tight5 1.49 13.35
Param2 2.07 2.85
Param3 1.38 1.61
Param4 1.09 4.60

Figure 13. Reducing Static Code Size

83.23% of its original size. Parameterizing immediate val-
ues with the help of the IMM further reduces code size to
81.70%. Incorporating positional register specifiers reduces
code to 81.09% of its original size, on average.

Clearly, parameterizing immediates increases our abil-
ity to pack instructions. For instance, we find that function
prologue and epilogue code on the MIPS is easily parame-
terized. This leads to an increased ability to pack local vari-
able loads and stores, since the corresponding instructions
are already available in the IRF and the IMM can supply
necessary parameters. Additionally, the IMM allows us ex-
ploit our transformations for increasing the redundancy of
semantically equivalent operations.

Positional register specifiers do not have a profound im-
pact on average code size, but they still provide a measur-
able benefit. Individual benchmarks such as blowfish ben-
efit by up to a 2% additional reduction. Other benchmarks
like adpcm experience up to a 1% code size increase by us-
ing positional register specifiers. These slight increases are
due to the greedy heuristics we apply in selecting instruc-
tions to reside in the IRF.

4.2. Energy and Execution Time Analysis

A modified version of the sim-panalyzer simulator is
used to gather the energy consumption data for the bench-
marks [23]. Sim-panalyzer calculates approximations of
area size and number of gates for each component and ties

Figure 14. Reducing Fetch Energy/Exec. Time

these numbers to the cycle-accurate simulation provided via
SimpleScalar. We modified the original Alpha port of sim-
panalyzer to match the MIPS. The resulting energy esti-
mates are not exact, but are accurate enough to support our
claims.

The energy savings come from two sources. First, appli-
cations complete in fewer cycles due to the increased fetch
rate that the IRF provides. Second, there are fewer accesses
to the IC and memory as approximately 55% of instructions
are fetched from the IRF. An access to the IC has a two or-
ders of magnitude higher energy cost than an access to a
register file. A memory access is another two orders of mag-
nitude more costly than an IC hit.

Figure 14 shows the energy consumed during instruction
fetch compared to the unpacked versions of the programs.
On average, we obtain a 37% reduction in energy consumed
by I-Fetch. Much of this savings comes from a reduction in
number of IC references, with additional savings from a re-
duction in IC misses for some of the network and automo-
tive applications and a reduction in execution time for the
security applications. For these applications, I-Fetch energy
comprises 30% to 45% of the total power requirements.

In most benchmarks, the improvements in execution
time are minimal, executing in 98% to 100% of the origi-
nal number of cycles. In no case did we incur a performance
penalty. Average execution time savings was 5.04%, due
primarily to three of the security benchmarks: blowfish, pgp
and rijndael executed in 59%, 61% and 67%, respectively,
of their original cycles. After instruction packing, the work-
ing set of these applications fits better into cache, and they
have far fewer IC misses. The performance gains, though
small for many of the benchmarks, also allow the programs
to finish in fewer cycles, and this contributes to the over-
all energy reduction. Although the collected measurements
are for fetch energy, the fetch power consumption results are
similar for 5 of the 6 categories, since the execution times
are approximately the same. Due to the improved execution
time of many security benchmarks, their fetch power sav-
ings would be proportionally lower than their overall fetch
energy savings.
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Figure 15. IRF Static Code Size Sensitivity

4.3. Varying IRF Size

To measure the scalability of the IRF scheme, we look at
various sizes for the actual IRF. Of course, increased sizes
for the IRF means that the available packing patterns could
also vary. For example, with 16 IRF entries, we could poten-
tially create a tight6 pack, since it would only require 4-bit
reference fields. With larger IRF entries like 128, we could
only access the first 32 entries in a loosely packed instruc-
tion, and we could only support up to the tight3 pack, since
we require 7-bit IRF references. The lack of these larger
packed formats could potentially decrease code density,
even though a wider variety of instructions are available
via the IRF. Additionally, power consumption and context-
switching overheads could increase with a larger IRF.

Figure 15 shows the results of varying IRF size. Each
scheme uses 32 entries in the IMM (except 16-entry IRF
which uses 16), as other sizes do not provide much improve-
ment. The fixed 5-bit bitwidth scheme models an ideal case
where each IRF size can support all original packing for-
mats arbitrarily. This better-than-ideal case assumes that we
have some mechanism for allowing all IRF references to be
encoded with only 5 bits for each slot. The variable bitwidth
scheme is the actual case, where each size is modeled appro-
priately considering bitfield requirements. The final scheme
is the variable bitwidth model with no loosely packed in-
structions. This case presents a view of the benefit obtained
via loosely packing instructions. Considering that loosely
packing instructions requires more ISA modifications than
just adding opcodes for tightly packed instructions, the ben-
efit may not outweigh the cost for some existing ISAs. How-
ever when designing a new ISA, it is important to consider
the effects of adding loosely packed instruction formats as
a flexible mechanism for improving code density.

Each time the size of the IRF is doubled, the compression
improves by approximately 5%. Compression gets worse
when moving to the 512 entry IRF, due to the elimination
of the tight3 packed instruction format that can no longer
be referenced with the appropriate number of bits in a 32-

bit MISA instruction. When moving from 32 to 64 and 64
to 128 entries, the effect is reduced, but we observe a sim-
ilar trend since we lose some IRF reference fields.However
these cases still retain other dense tightly packed instruc-
tion formats, and thus can provide improved compression
ratios. Similar to other code compression techniques, there
are diminishing returns when increasing IRF size.

5. Crosscutting Issues

Using an IRF and IMM that is unique to each pro-
cess means that more state must be preserved at context
switches. A conventional context switch simply saves state
to memory at the point the switch occurs, and restores this
state when the process resumes. One approach to reducing
this overhead is to save a pointer to a routine associated with
each process, where the routine will reload the IRF when a
process resumes. Thus, the IRF would not need to be saved,
only restored. However, positional register specifiers would
need to be saved and restored on a context switch.

A related issue is how to address exceptions that occur
during execution of a packed instruction when structural or
data hazards prevent all of the instructions from being si-
multaneously issued. One or more RISA instructions ref-
erenced by the packed instruction have already completed
at the point the exception occurs. One solution is to store
in the context state how many RISA instructions within
the packed instruction have completed, since these instruc-
tions are executed in order. A bitmask of retired instructions
would allow for a precise restart after handling the excep-
tion in an out-of-order machine. The addition of a bitmask
would not add much overhead to the system.

6. Related Work

Table 4 shows a comparison between prior research and
the IRFs proposed in this paper. Entries are compared based
on existing published research data regarding code size,
power consumption and execution speed, as well as esti-
mated hardware complexity, which includes hardware cost
and design modifications. We also note cases where certain
data was unavailable, and thus these values represent our
best predictions based on the available information.

One of the early approaches to reduce code size and
the cost of fetching instructions was microcode [25]. Each
CISC or macro instruction fetched from memory caused a
sequence of microinstructions to be fetched and executed,
which provided a faster access time than main memory. Our
proposed approach differs from microcode in several ways,
including that specific instructions within the IRF can be
individually referenced and that the instructions in the IRF
can be changed for each executable.
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Table 4. Comparison of Existing Techniques
Code Size Power Hardware

Technique Ref
Reduction Savings

Speed
Complexity

Comments

Proc. Abs. [10, 8, 5] + – – 0 Additional function call and return penalties
L0 [13] 0 ++ – – 0 Large execution time penalty for power savings
Echo [16] ++ – +/– 1 Better IC behavior but increase in exec insts
ZOLB/Loop Cache [9, 11] 0 + + 1 Improves speed slightly
IRF ++ ++ + 1 Similar complexity as Register File + ZOLB
Codewords [17] ++ – ?/– – 2 Decompression slows execution
Arm/Thumb [22] ++ – – – 2 Dual-width ISA trades speed for code size
Arm/Thumb/AX [15, 21] ++ ?/– – – 2 AX reduces execution time penalty of Thumb mode
Heads and Tails [19] ++ ?/– ?/– 2 Better IC behavior but branch penalties
DISE [6] ++ ?/+ + 3 Complex decode can affect clock and pipeline depth
Mini-graphs [4] ++ ?/– + 3 No power analysis, but additional ALUs
Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0 means that there is very little to no effect. ?
means that results are speculative since they are not presented or explained in detail. – means that penalty is < 10%. – – means that
penalty is ≥ 10%. Hardware complexity is scaled from 0 (no changes) to 3 (complete redesign).

Due to the increasing pervasive use of embedded sys-
tems, there has been a significant amount of recent work
on compressing code. Some early work on code compres-
sion used a compiler optimization called procedural ab-
straction to reduce code size [10, 8]. Procedural abstraction
can be viewed as the opposite of function inlining. Common
code sequences are abstracted into routines, and the orig-
inal sites of each sequence are converted into calls. Sub-
sequent work involved register renaming to abstract more
code segments [5]. The main disadvantage of procedural ab-
straction is that the program typically becomes slower due
to the overhead of executing call and return instructions for
each abstracted code segment.

Many code compression approaches use special hard-
ware support to assist in the compression. One simple hard-
ware extension is the echo instruction, which is in essence a
lightweight procedure call [16]. The echo instruction indi-
cates where the abstracted instructions can be found and the
number of instructions to be executed. Unlike using a con-
ventional procedure call to abstract a sequence of instruc-
tions, a return instruction is not needed at the end of the
abstracted sequence. Another advantage of this approach is
that abstracted sequences of instructions can overlap. How-
ever, there is still overhead due to transfers of control to the
common code sequences, and reduced spatial locality for
machines with a memory hierarchy.

Other approaches use a hardware dictionary, where du-
plicate code sequences are stored in a special control store
in the processor, and codewords are associated with each of
these sequences. One approach uses variable length code-
words that align to a 4-bit boundary [17]. This approach has
the disadvantage of complicating the I-Fetch and transfer of
control logic, since instructions now vary in size. Compres-
sion can be further enhanced by considering opcodes and
operands separately [1]. Yet another approach supports a
parameterized hardware dictionary, where small differences
can be abstracted by parameters that are encoded in the in-
struction containing the codeword representing the common

sequence in the dictionary [6]. These approaches compli-
cate the instruction fetch and decode, leading to potentially
increased energy consumption and execution time. All of
these approaches also required hundreds to thousands of in-
structions to be stored in the dictionary for compression to
be as effective as our approach with only 32 instructions.

Another hardware code compression approach is to sup-
port dual instruction sets. Both the ARM/Thumb and
MIPS16 architectures define 16-bit and 32-bit instruc-
tion sets, and the program can switch between the two
using a special instruction [22, 14]. The 16-bit set has a re-
duced number of bits available to specify immediate val-
ues and registers. Using the 16-bit set typically saves space
at the cost of additional instructions and increased exe-
cution times. Augmenting instructions (AX) extend the
Thumb architecture, allowing the execution of two 16-bit
instructions as a single 32-bit instruction [15]. This re-
duces some of the performance penalty in replacing 32-bit
code with 16-bit code in a dual-width ISA. ARM’s re-
cently developed Thumb-2 incorporates some of the
ideas behind AX to create a modified Thumb instruc-
tion set that supports both 16-bit and 32-bit instructions
with increased expressiveness [21].

Heads and Tails advocates modifying the ISA for vari-
able length instruction formats based on splitting the op-
codes and operands of instructions [19]. Several instructions
are bundled together with fixed length heads (describing op-
codes and possibly a single register), and variable length
tails which supply additional information (such as registers
and immediate values). This scheme requires a significant
modification of the standard MIPS ISA, yielding branch
penalties that may increase power consumption and execu-
tion time, despite improvements to cache locality.

These compression approaches vary in effectiveness. Re-
ported code size reductions on a variety of benchmark suites
indicate that procedural abstraction achieves 5%-7%, echo
instructions achieve 16%, hardware dictionaries achieve
33%-52%, and dual instruction sets achieve about 31%.
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Heads and Tails reduces code size by up to 24.5%. How-
ever, all of these code compression approaches decrease
code size at the expense of increasing execution time and/or
require significant additional storage for the compressed se-
quences. Many of these approaches are complementary to
instruction packing and could potentially be used in con-
junction with an IRF to achieve even greater compression.

Zero overhead loop buffers (ZOLBs) are becoming fairly
common in low-power embedded processors [9]. A ZOLB
is essentially a compiler managed IC, where an innermost
loop is explicitly loaded and executed. The advantages of
using a ZOLB include elimination of loop overhead (incre-
ment, compare, and branch instructions) and reduced en-
ergy consumption due to instructions being fetched from
the ZOLB instead of ROM. These loops are typically re-
stricted in that: only a limited number of instructions fit in
the buffer; there can be no transfers of control besides the
loop branch; and the number of iterations the loop executes
must be known. Thus, many parts of an application cannot
execute from the ZOLB. L0 caches are another enhance-
ment designed to improve power usage at the cost of execu-
tion time [13]. These caches are typically smaller than an L1
cache and direct mapped, yielding a low hit ratio, but a re-
duced energy-delay product. L0 caches can reduce power
by 58% at the cost of a 21% performance penalty. Low-
power embedded systems can also provide loop caches,
similar to a ZOLB, that can be dynamically loaded if small-
offset backward branches are detected [11].

Accessing registers positionally is similar to data move-
ment in transport-triggered architectures (TTAs) [7]. These
architectures provide a mechanism for explicit data for-
warding, where explicit operations are specified to trans-
port data between function units. TTAs are designed to re-
duce the number of ports required for the register file, while
the IRF uses positional registers to allow more instructions
to be packed. Dataflow mini-graphs also employ positional
register specifiers in the construction of aggregate instruc-
tions [4]. Compiler analysis maps common operation se-
quences as complex new instructions via handles. This is
similar to dictionary techniques for compression, however
the sequences can be fetched and executed more efficiently
by a superscalar architecture. Code size reductions are ap-
proximately 13% with a 512 × 3 entry mini-graph table,
while execution time decreases by 7%. However, power
consumption should increase due to additional ALUs as
well as the mini-graph table structures.

7. Future Work

There are many alternatives to explore to increase the
effectiveness of the IRF. These alternatives include chang-
ing the architecture, adding additional compiler optimiza-
tions, or both. We can dynamically load instructions into

the IRF at various points in the execution to more effec-
tively pack instructions in applications with widely vary-
ing phases. Similar to the SPARC register windows, we can
explore the effects of greater IRF sizes using an approach
where an IRF window pointer can be switched on func-
tion calls and returns [24]. Storing opcodes and operands
separately has improved standard code compression, so it
is likely that this approach would increase IRF packing
flexibility [1]. Compiler optimizations can be developed to
schedule instructions within a basic block to improve pack-
ing. We could determine a DAG of dependences between
instructions in a basic block and use more aggressive pack-
ing algorithms to exploit alternative orderings. The IRF can
also facilitate the design of new dual ISAs, where MISA in-
structions reduce code size and RISA instructions improve
execution time.

8. Conclusions

We have explored using instruction registers to achieve
significant code reduction without large dictionaries or
complex instruction decoders. We find that a 32 en-
try IRF provides an average 19% reduction in code size for
the embedded applications studied, and much greater com-
pression for some of the larger applications. This sur-
passes the results of many earlier compression studies
while avoiding much of the hardware complexity in the im-
plementation and all of the performance loss found in
the other schemes. Furthermore, code compression avail-
able via IRF encoding is orthogonal to some earlier com-
pression techniques.

We expanded our study to include the impact of IRFs
on processor power and execution time, and found addi-
tional benefits. A 32 entry IRF reduces energy consump-
tion of I-Fetch by an average of 37%, which translates to
an overall processor energy savings of 15% — and as much
as a 45% for blowfish, which ran much faster due to a dra-
matic reduction in IC misses. Energy is saved because over
50% of all instructions were fetched from a very small, low-
power register file instead of a larger IC. The utilization of
the IC is also improved, lowering miss rate. We expect IRFs
to be performance neutral, but consistently find a small sav-
ings (and in some applications, a large savings) due to a in-
creased IC locality.

It is rare that a combination hardware/compiler optimiza-
tion yields improvements in all three performance metrics.
We believe we can further improve code compression and
power savings through additional refinement of the algo-
rithms and improvements in MISA and RISA formats. It
may be possible to target performance directly in aggres-
sive out-of-order, multiple issue pipelines by increasing the
rate of I-Fetch after a branch misprediction recovery.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



9. Acknowledgments

We are indebted to Krste Asanović and Sally McKee for
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[19] H. Pan and K. Asanović. Heads and Tails: A variable-length
instruction format supporting parallel fetch and decode. In
Proceedings of the 2001 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems,
pages 168–175. ACM Press, 2001.

[20] D. Patterson and J. Hennessy. Computer Organization and
Design, The Hardware/Software Interface. Morgan Kauf-
mann Inc., 1998.

[21] R. Phelan. Improving ARM code density and performance.
Technical report, ARM Limited, 2003.

[22] S. Segars, K. Clarke, and L. Goudge. Embedded con-
trol problems, Thumb, and the ARM7TDMI. IEEE Micro,
15(5):22–30, October 1995.

[23] SimpleScalar-ARM Power Modeling Project.
http://www.eecs.umich.edu/∼panalyzer.

[24] D. Weaver and T. Germond. The SPARC Architecture Man-
ual. SPARC International, Inc., 1994.

[25] M. Wilkes and J. Stringer. Microprogramming and the de-
sign of the control circuits in an electronic digital computer.
In Proceedings of the Cambridge Philosophical Society, vol-
ume 49, pages 230–238, April 1953.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE


	Select a link below
	Return to Main Menu
	Return to Previous View




