
Extending RDBMSs To Support Sparse Datasets
Using An Interpreted Attribute Storage Format

Jennifer L. Beckmann Alan Halverson Rajasekar Krishnamurthy*
Jeffrey F. Naughton

University of Wisconsin IBM Research—Almaden*
Madison, WI San Jose, CA

{jbeckmann,alanh,naughton}@cs.wisc.edu rajase@us.ibm.com

Abstract

“Sparse” data, in which relations have many attributes
that are null for most tuples, presents a challenge for rela-
tional database management systems. If one uses the nor-
mal “horizontal” schema to store such data sets in any of
the three leading commercial RDBMS, the result is tables
that occupy vast amounts of storage, most of which is de-
voted to nulls. If one attempts to avoid this storage blowup
by using a “vertical” schema, the storage utilization is in-
deed better, but query performance is orders of magnitude
slower for certain classes of queries. In this paper, we ar-
gue that the proper way to handle sparse data is not to use a
vertical schema, but rather to extend the RDBMS tuple stor-
age format to allow the representation of sparse attributes
as interpreted fields. The addition of interpreted storage al-
lows for efficient and transparent querying of sparse data,
uniform access to all attributes, and schema scalability. We
show, through an implementation in PostgreSQL, that the
interpreted storage approach dominates in query efficiency
and ease-of-use over the current horizontal storage and ver-
tical schema approaches over a wide range of queries and
sparse data sets.

1 Introduction

“Sparse” data arises in a variety of applications. As one
example, in Condor [18], a distributed workload manage-
ment system, any user can define new attributes for any job
they submit. The result is a data set in which more than
half of the attributes are null in all but a handful of tuples.
While Condor may seem like a special case, sparse data also
arises in e-commerce datasets, where each participant may
declare their own idiosyncratic attributes for products and
work orders, which result in data that has thousands of at-
tributes (Agrawal et al. [1] deal with nearly 5,000 attributes),
most of which are null for particular entities; in medical in-
formation systems [4, 9], where only a small subset of the
universe of attributes apply to any given patient; in customer

Oid Attr Value

1

2

3

4

5

v1

v3

v2v4

v1

v5

v4

v1

Oid A1 A2 A3 A4

3 A1 v3

4 A1 v1

1 A3 v4

3 A3 v1

5 A3 v5

1 A4 v2

2 A2 v1

4 A2 v4

VerticalHorizontal

Figure 1. A sparse dataset represented in the horizontal
and vertical schema alternatives.

demographic datasets, where a wide variety of attributes are
stored on each customer (Pyle [15] mentions a brokerage
firm with over 700 attributes, half of which are null in 98%
of the entities); and in any other similar application where
entity sets can have many attributes only a few of which ap-
ply to a given entity.

The sheer number of possible attributes and number of
undefined values that sparse applications demand presents
a question of how such data should be dealt with in a rela-
tional database management system. The most natural and
straightforward approach, commonly referred to as the “hor-
izontal” schema approach, is to map the entity set to a table,
with the attributes of the table comprising all the attributes
that apply to any of the entities stored in the table. It is natu-
ral because it handles the data as a traditional relational table
and provides a familiar SQL interface along with all of the
advantages of storing relational data in an RDBMS (such as
query optimization, statistics collection, column and multi-
column indexes, and table constraints).

The problem with the horizontal schema for sparse data
is that in any given row, most of the attributes will be null,
and while commercial systems employ a number of tech-
niques to reduce the space occupied by nulls, they do not
reduce this space to nothing. The result is large tables that
are predominantly filled with nulls, and hence are slow to
scan and that “pollute” the buffer pool with empty data.

In response to deficiencies in current horizontal stor-
age, Agrawal et al. [1] investigated an alternative known



as the “vertical” schema. In the vertical schema, a
single row in a horizontal table is split into multi-
ple rows. For example, if the horizontal schema is
R(A1, . . . , An), the vertical format will have the schema
Rv(oid, attr, val); a tuple (v1, . . . , vn) would be stored in
n tuples (oid,A1, v1), (oid,A2, v2), . . . , (oid,An, vn). In
the vertical table, only non-null values need to be stored,
so sparse data storage in the vertical schema requires less
space than the horizontal table.

The vertical schema takes an approach similar to the
decomposed storage model (DSM) [7], which decomposes
horizontal tables into many 2-ary relations, one for each col-
umn in the relation. However, DSM also traditionally stores
nulls and helps to accelerate horizontal queries over dense
data that reference few attributes, which is orthogonal to the
topic of this paper. Unlike horizontal storage, DSM and ver-
tical decouple the logical and physical storage of entities.
Unfortunately, the space savings of vertical for sparse data
does not come for free, as any operation that requires the
reconstruction of some fragment of the original horizontal
tuple by requesting several attributes (either as part of the
query evaluation or in order to provide a result to a client)
is expensive. In our experiments, we saw that in some cases
this reconstruction of fragments of horizontal tuples gener-
ates such complex queries that at least two commercial sys-
tems refuse to execute them, where one responds with the
message “query too complicated.”

We show how the contributions of this paper fit in with
previous work with a quad chart in Figure 2. Note that the
quad chart mixes two different aspects of relational storage:
what is the schema (horizontal or vertical or DSM) and what
is the underlying representation (positional or interpreted).
We use this quad chart because, as the rest of this paper
will demonstrate, the choice of underlying storage repre-
sentation has such a profound effect on performance that
the choice of schema cannot be properly evaluated with-
out it. In fact, one of our main conclusions is that with
interpreted storage, previously proposed conclusions about
which schema is good for sparse data are no longer valid.

Our contribution falls in the upper right corner of the
chart that targets minimizing reconstruction of logical tu-
ples while at the same time not allocating any space to null
values by considering a (minor) change to the traditional
RDBMS tuple storage format. The “interpreted” storage
format differs from standard horizontal positional formats
in that the association between a data value and its attribute
is represented by tagging the data value, rather than by its
position in the tuple schema. That is, when storing a value
vi for some attribute Ai, we store the tag Ai along with the
value vi in the tuple. The interpreted format is a lot like ver-
tical storage because it stores only non-null data values (null
values take zero space), but like horizontal positional stor-
age, it ties together logical and physical storage of the tuple

Figure 2. The alternatives for storing sparse data.

and eliminates the need to do expensive reconstruction of
entities.

The main contribution of this paper is the evaluation of
the interpreted storage format as an extension to modern
RDBMSs for handling sparse data. We show through a
prototype implementation in PostgreSQL that at the stor-
age level, existing systems can easily be extended to use the
format. We demonstrate that the format is the best option
for

• Intermediate results from queries over vertical tables
• Table storage for queries that require vertical results
• Table storage for queries that require horizontal results

Our evaluation looks the approaches of horizontal and ver-
tical schema solutions and the current physical storage op-
tions in RDBMSs (Section 2). As an alternative to the tradi-
tional storage techniques, the interpreted storage represen-
tation provides better scalability for sparse data (Section 3).
Finally, our experiments show a detailed performance anal-
ysis of the storage options on synthetic datasets (Section 4)
that are based on statistics collected from the online catalog
CNET [6].

To the best of our knowledge, the interpreted format has
never been evaluated in the published literature and imple-
mented as an optimization for handling sparse data in a
RDBMS. Gray and Reuter [11] give the interpreted repre-
sentation a cursory mention, but do not evaluate it as a stor-
age solution. Finally, the interpreted format is similar to the
sparse matrix representations studied outside the context of
RDBMSs [5, 20].

2 Current RDBMSs and Sparsity: The State
of the Art

When discussing how to store sparse data in relational
database systems, two orthogonal issues arise. The first is
whether to use a horizontal or vertical schema when map-
ping entities to tables. The second, which to date has not
been considered in the context of sparse data handling, is
the underlying physical storage of attributes in tuples. In
this section we consider each issue in turn.

2.1 Horizontal vs. Vertical Schemas
A generic horizontal table schema for a sparse data set

with C attributes with varying types is



Select Project
Horizontal Horizontal

SELECT *
FROM H
WHERE A1=’v1’

AND A2=’v2’
AND ...
AND Aj=’vj’

SELECT A1, ..., Ak
FROM H

Vertical Vertical

SELECT *
FROM V
WHERE oid IN
(SELECT V1.oid
FROM V V1, ..., V Vj
WHERE (V1.attr = ’A1’

AND V1.value = ’v1’)
AND ...
AND (Vj.attr = ’Aj’

AND Vj.value = ’vj’)
AND (V1.oid = V2.oid

AND V1.oid = V3.oid
AND ...
AND V1.oid = Vj.oid))

SELECT *
FROM V
WHERE attr = ’A1’

OR attr = ’A2’
OR ...
OR attr = ’Ak’

Figure 3. Select and project queries for horizontal and
vertical.

H(oid INTEGER NOT NULL,
A1 TYPE-OF A1,
A2 TYPE-OF A2,
...
AC TYPE-OF AC)

In the corresponding vertical schema, each entity in gen-
eral gets mapped to a number of rows in a table. Each row
in a vertical table contains an object identifier (intuitively,
this identifier says to which entity this row belongs) and an
(attribute name, value) pair. The relational schema for the
vertical approach is the same for all data, and it looks like
this: V(oid INTEGER NOT NULL,

attr CHAR(szattr) NOT NULL,
value TYPE NOT NULL)

As evident from the schema, datatypes are a source of
problems for a vertical schema because only one column
is provided for the values of attributes with differing types.
Applications that deal with vertical tables employ ad-hoc
solutions for types by defining multiple type-specific verti-
cal tables or by interpreting the type of values at runtime.
For simplicity of exposition, we assume that all values have
the same SQL type and that there is only one vertical table.

One consequence of the vertical schema is that queries
that are simple over the horizontal schema become compli-
cated in the vertical approach. Figure 3 demonstrates the
differences between horizontal and vertical queries where
all attributes are of the same SQL type. Notice that simple
projection queries over a horizontal table are transformed
into selection queries over a vertical table. The projec-
tion query for vertical retrieves, for each entity selected in
the query, the rows corresponding to the non-null attributes

specified in the query. A select query over a vertical table
is complex because it has to retrieve all of the attributes of
an entity that match the selection predicate. From here on,
again for clarity of exposition, when we use “select-project”
over a vertical table, we mean the query that is the equiva-
lent over a horizontal schema table, even though when ap-
plied to a vertical schema the equivalent query selects tuples
with a complex predicate and projects all three columns.

2.1.1 Vertical-to-Horizontal (V2H) Translation

The queries in Figure 3 return the result of a query over a
vertical table as a set of “vertical” tuples. Leaving data in
this format may be acceptable to applications that expect
their data to arrive in this form. However, if an application
expects the more standard horizontal form for the answers
to its queries, the RDBMS must perform extra processing to
convert the set of vertical tuples to the equivalent horizontal
tuples. Similarly, if the query writer “thinks” of the data
as a horizontal table, they will have to expend substantial
effort translating their queries over this horizontal table to
their vertical equivalents.

We call this process of viewing vertical tables as if they
were horizontal the “V2H” approach. Agrawal et al. pro-
posed this approach and advocated hiding the complexity by
implementing special functions to do the translation. There
are two main approaches to V2H translation in the pub-
lished literature, the first we call the left-outer-join (LOJ)
approach [1] and the other is called PIVOT [8]. We present
the SQL to make the conversion explicit, since it has per-
formance implications; in a “real” implementation of these
special functions it would be desirable to hide the intricacies
of the vertical queries from users, although these functions
would do little to improve performance (because they do not
reduce the complexity of the vertical query itself).

LOJ Translation. The LOJ approach to V2H transla-
tion takes a vertical view of a data and constructs the equiv-
alent horizontal table by projecting each attribute separately
from a vertical table and then joining all of the columns
to construct a horizontal table. By using the oid in each
vertical row, joins “bring together” the attributes that have
been spread over multiple vertical tuples. We illustrate this
through a simple projection of a table that has two columns,
A1 and A2. The projection of this table using LOJ is

SELECT A1, A2
FROM

(SELECT DISTINCT oid FROM V) AS t0
LEFT OUTER JOIN
(SELECT oid, value AS A1
FROM V WHERE attr = ’A1’) AS t1
ON t0.oid = t1.oid
LEFT OUTER JOIN
(SELECT oid, value AS A2
FROM V WHERE attr = ’A2’) AS t2
ON t0.oid = t2.oid

Left outer joins are the key to constructing a horizontal
row. Like natural joins, they return tuples that match the



predicate; but they also return any row from the first table
that has no matching rows from the second table and return
the non-matching rows from the second table as null values.
The process starts by obtaining all of the possible oids in
the resulting horizontal table, which insures that all tuples
are represented in the result. A query that projects more
columns simply adds left outer joins in a similar way.

An approach similar to vertical with LOJ is the Decom-
posed Storage Model (DSM) [7] because both LOJ and
DSM reconstruct horizontal tables by merging vertical par-
titions of the data on a surrogate. DSM is also referred to as
the binary format in literature and it has also been used in
IBM’s Enterprise Directory LDAP product [19]. Compar-
isons of the DSM model with horizontal storage on dense
data [3, 10, 12, 13, 17] have shown DSM to be more effi-
cient for queries that use a small number of attributes. For
sparse data, Agrawal et al. compare vertical storage and
LOJ reconstruction to a binary storage solution where null
values are not represented in the 2-ary relations and found
that LOJ performs similarly to the binary storage approach.

PIVOT Translation. As an alternative to LOJ construc-
tion of horizontal tuples, Cunningham et al. [8] define a
PIVOT scheme. One way to implement PIVOT is to use
group-by and aggregation to produce a horizontal version
of a tuple. A PIVOT query that produces a two column hor-
izontal projection of data from a vertical table is
SELECT oid,

MAX(CASE WHERE attr=’A1’ THEN value ELSE null) as A1,
MAX(CASE WHERE attr=’A2’ THEN value ELSE null) as A2

FROM V
GROUP BY oid

In this query, the group by collects all rows correspond-
ing to one entity. Next, the query matches each row in the
entity against the MAX aggregates (which assume that null
is smallest of all values). Each aggregate produces the value
for each matching attribute and null otherwise. Cunningham
et al. show that group-by optimizations can be extended to
PIVOT when it is implemented inside an RDBMS.

LOJ and PIVOT Performance. The performance dif-
ference between PIVOT and LOJ reconstruction of at-
tributes is on two levels: the processing order of tuples
and the types of access methods used to perform the query.
PIVOT requires an oid grouping and localizes its recon-
struction to within groups of oid. Comparatively, the best
strategy for LOJ requires attr ordering to select portions
of the vertical table that correspond to the attributes being
projected and then in the merge phase, it uses the oid or-
dering. Thus, an (attr, oid) clustering is best for LOJ.

Although it seems that the PIVOT operator would per-
form best when clustered on oid, it is not the case for
classes of queries that project attributes from a vertical ta-
ble or select a few entities. For example, most horizontal
queries over a vertical schema queries project attributes by
using predicates such as attr = ’A1’. When the num-
ber of attributes projected in the query is small, the best clus-

tering for the vertical table is on attr for both LOJ and
PIVOT. We return to the clustering issues in section 4.3.

2.1.2 Horizontal-to-Vertical Translation

Even though a horizontal representation has many benefits
over a vertical schema for managing and querying sparse
data in an RDBMS, queries that return results in a verti-
cal format may be what some applications prefer to handle
rather than wide horizontal results with many null values.
H2V translation converts a horizontal table into a vertical
table and is conceptually defined as the union of the projec-
tion of each attribute in a horizontal table. For example, a
two column H2V translation is

SELECT oid, ’A1’, A1 FROM H where A1 is not null
UNION ALL
SELECT oid, ’A2’, A2 FROM H where A2 is not null

Agrawal et al. and Cunningham et al. (who defines a
more general operator called UNPIVOT) both define H2V
as the union of projections of a horizontal table. The seman-
tics for the value column is that the types must be union
compatible across the projected columns. The H2V opera-
tor is useful in situations where legacy applications expect
vertical results from queries. We also consider H2V as an
option and Section 4.3.2 shows that H2V has the best per-
formance in some situations.

2.2 Current Physical Storage Options
In this section we consider the physical storage in current

relational systems, specifically those found in the leading
commercial vendors and in the open-source database Post-
greSQL. In general, these formats have inherent inefficien-
cies when scaling to large numbers of sparse attributes.

2.2.1 Commercial Systems Positional Format

Most commercial RDBMS [11, 16] use a positional layout
for their relational records. While the exact details vary
from system to system, the layout of a positional record be-
gins with a tuple header that might include fields such as
the relation-id, tuple-id, and tuple length. Next is the null-
bitmap, which indicates the fields that are null. The fixed-
width data follows the null-bitmap where the tuple has a
fixed amount of storage pre-allocated for each fixed-width
attribute, regardless of whether the values in the tuple are
null are not. Finally, an array of variable width offsets point
to and precede the variable width data.

The positional format is tuned to dense data and allows
for quick access to the values of attributes, since they are
either located by a fixed offset from the start of the record
(for fixed-width data), or by adding to the start of the record
an offset that is located at a fixed position in the record
(for variable-width data). The system catalog maintains the
mapping from attribute name to value within a record by
recording the order of attributes in the record.



Sparse data sets present a challenge for this kind of stor-
age, because the null values take up space. A null value for a
fixed-width attribute takes up a bit in the null-bitmap and the
full size of the attribute (e.g., a null four-byte integer field
takes four-bytes); a null value for a variable-width attribute
takes a bit in the null-bitmap and a pointer in the record
header. Commercial RDBMSs employ some techniques to
reduce this overhead somewhat. Indeed, commercial im-
provements in null handling have shifted the tradeoffs be-
tween the vertical and horizontal schema approaches; and
the conclusion in Agrawal et al. [1] that vertical “uniformly
outperforms horizontal” is no longer valid (we will return to
this issue in Section 4). Still, the cost of storing a null is not
zero, and for that reason we claim that the interpreted format
is a valuable addition to relational storage techniques.
2.2.2 PostgreSQL Bitmap-Only Format

PostgreSQL has a format not currently used by any of the
three leading commercial systems [14]. We call the Post-
greSQL storage strategy the bitmap-only scheme. In a
bitmap-only scheme, the tuple also has a header with typi-
cal tuple information and a null-bitmap, which indicates the
fields that are null. But instead of pre-allocating the space
for all of the attributes, the data portion of the record only
contains the non-null values.

The retrieval of a value for a bitmap-only representation
is more complex than the pre-allocated positional record
format because the location of the value of an attribute is
different in each tuple and, thus, the location of attribute
values are not known prior to query execution. A request of
an non-null attribute An from a tuple requires knowledge of
data-lengths of non-null fields in the prior n − 1 attributes
of the record. The algorithm uses the datatype information
in the catalog to determine the length of the prior non-null
attributes and uses the aggregate of their sizes to find the
position of the requested attribute.

Although the bitmap-only representation of tuples helps
with the sparse data because it does not pre-allocate space
for null attributes, we will show that the solution does not
scale to the number of attributes many sparse applications
demand. Allocating any amount of space to null values has
an effect on scalability—even a bit per attribute is costly in
tables with hundreds, or especially thousands, of possible
attributes.

3 Toward RDBMS Support for Sparsity: The
Interpreted Format

The positional and bitmap-only approaches to physical
tuple storage are intimately tied to the number of attributes
defined in a table schema, which fundamentally limits both
of these formats from being able to scale to large numbers of
sparse attributes. In order to efficiently scale to applications
that require hundreds or even thousands of sparse attributes,
RDBMSs need to provide an alternate storage format that

A1

A2

name type

INT

VARCHAR(16)

VARCHAR(16)A4

A3 VARCHAR(16)

size

4

16

16

16

id

21

3

33

45

Interpreted Record

3034

record lengthrelation−id

tuple−id

3 98

value length value

33 ‘value 3’21 7 ‘value 1’ 7

fixed widthattr id attr id

Interpreted Catalog

Figure 4. Interpreted record layout and corresponding
catalog information.

Figure 5. The relationship between the vertical and in-
terpreted storage options.

is independent of schema width. In this section we present
the interpreted storage format, which stores only non-null
values and performs well on sparse data, as experiments in
Section 4 show.

3.1 Interpreted Format

In contrast to a positional representations, the interpreted
record format stores a list of attribute-value pairs. Figure 4
shows a representative interpreted format that starts with a
header, which, as in the positional notation, contains fields
such as relation-id, tuple-id, and a tuple length. When a
tuple has a value for an attribute, the attribute identifier, a
length field (if the type is of variable length), and the value
appear in the tuple. The attribute identifier is the id of the
attribute in the system catalog (in general the id is much
smaller than the full attribute name). Attributes that appear
in the system catalog, but not in the tuple, are null for that
tuple.

Since the interpreted format stores nothing for null at-
tributes, sparse data sets in a horizontal schema can in gen-
eral be stored much more compactly in the format. In prac-
tice, if some attributes are dense and others sparse, a sys-
tem would use a record format in which the dense attributes
are stored positionally toward the beginning of the record
and are followed by an interpreted section that contains any
sparse attributes that are defined for the tuple.

The interpreted format can either be viewed as a storage
option for the horizontal approach, or as an optimization of
the vertical approach. Figure 5 shows an entity stored ver-
tically and as an interpreted tuple. Note that both store the
same repeating “attr, value” pairs. The primary distinction is
that (a) in interpreted, all the pairs are viewed as a single ob-
ject so there is no need to tie them together with a common
tuple id or reconstruct the tuple during query evaluation; (b)
in interpreted, the attributes are collected together as one
object, and in contrast, the vertical entity is a set of inde-
pendent tuples that can be organized (or clustered) in any
order; and (c) in interpreted, the system catalog records the



attribute names, whereas in the vertical format these names
must be managed externally by the application.

While the interpreted format clearly has storage benefits
for sparse data, retrieving the values from attributes in tuples
is more complex. In fact, the format is called interpreted
because the storage system must discover the attributes and
values of a tuple at tuple-access time, rather than using pre-
compiled position information from a catalog, as the posi-
tional format allows. For this purpose we introduce a new
operator, called EXTRACT. In a query plan the EXTRACT
operator precedes any reference to attributes stored in the
interpreted format. It returns the offsets to the referenced
interpreted attribute values, and these resulting offsets are
then used to retrieve the values.

Value extraction from an interpreted record is a poten-
tially expensive operation that is dependent on the number
attributes stored in a row, or the length of the tuple. Also, if
a query evaluation plan fetches each attribute individually,
with one EXTRACT call per attribute, the record will be
scanned for each attribute, which will be very slow unless
only a few attributes are required. It is far more efficient,
therefore, to batch extract attributes and find offsets for mul-
tiple attributes in one record scan. We explore this issue
in Section 4.2.1. In practice, systems already employ tech-
niques for retrieving batches of attributes from tuples [11]
and the EXTRACT operator is an extension of such an op-
timization.

4 Experimental Evaluation

In the next sections we define the experimental setup,
synthetic data sets, and our PostgreSQL implementation.
Section 4.3 shows that vertical tables can benefit from in-
terpreted storage by storing reconstructed fragments of the
original horizontal tuple in the interpreted format. In Sec-
tion 4.3.2, we show that even if applications want query re-
sults in a vertical form, they can get the best performance
when they store data in a interpreted horizontal format and
convert it to vertical “on the way out.” Finally, of the hori-
zontal storage options, we show that interpreted is the best
format for storing and querying horizontal tables in Sec-
tion 4.4.

4.1 Experimental Setup

We report on experiments with different tuple formats
and schemas for storing sparse data. We use three Post-
greSQL v.8.0.1 systems, the first is the unmodified Post-
greSQL, which supports the bitmap-only scheme natively;
the second is PostgreSQL with our modifications for it to
use a positional storage format; and the final one is Post-
greSQL modified with the interpreted storage format.

Our H2V implementation transforms horizontal tuple by
scanning a record and producing a vertical tuple for each
present attribute with a value. The transformation happens

after execution of the horizontal query. Similarly, for the
V2H translation, PIVOT, we use an implementation that
uses the optimizations presented by Cunningham et al. and
perform the PIVOT after the execution of the vertical query.

Our experimental platform was a Tao Linux 1.0 system
running on a 2.4 GHz Intel Pentium machine with 512 MB
of physical memory. We clustered horizontal tables by the
oid field. For comparison, we also stored two separate ver-
tical tables, one clustered on (attr, oid) and the other
clustered on oid. We indexed every horizontal column in-
volved in a predicate and created single-column indexes on
each of column of the vertical tables. The buffer pool size
was set at 64 MB.

We performed experiments with a cold buffer pool where
the filesystem was unmounted and remounted before each
run. We ran queries 5 times and when we report exact times,
they include a 95% confidence interval. We measured run-
ning times for the execution of the queries within the engine
and do not include the time to output the results.

Although we experimented with a warm buffer pool, the
results did not provide any additional insight. We saw a
substantial difference in the positional format compared to
the other formats because in the positional format, the data
sets were all bigger than memory itself. The relative per-
formance between the bitmap and interpreted formats were
similar to the cold performance. Although we expected that
buffer pool size would affect performance of the bitmap for-
mat, PostgreSQL runs only on the native filesystem and can-
not store and manage files on raw disk. Consequently, our
tests also ran with a warm filesystem cache and, thus, the
performances for missing in the buffer pool were low.

The fundamental difference between the horizontal stor-
age formats is retrieval of attributes from the storage and
nothing changes in the query processor. Our experiments
focus on selection and projection, which in turn use table
scan and index selection of tuples. We report the perfor-
mance of a selection and projection in order to isolate the
trade-offs of table access that happens at the leaf-levels of
more complex queries. For complex queries that we ran, we
found that we could predict the results by understanding the
trade-offs for table scans and index selection.

4.2 Datasets
First, we explain a representative sparse e-commerce

data set on which we based our synthetic data. Next, we
define the synthetic parameters and data sets that we used.
Finally, we look at the respective table sizes of each format
over our data.

CNET Networks, Inc. is a company that provides a com-
mercial e-commerce website with detailed product informa-
tion for software, computer systems, and other technologies.
With permission from CNET, we collected all of the prod-
uct specs from the catalog as of March 2005 [6]. The cat-
alog contains 233,304 products and 142,567 have product



Width Sparsity Pos. Bitmap Interp. Vertical

5 0% 73.7 67.4 75.1 153.8
320 98.4 419.8 87.1 74.8 153.8
640 99.2 781.3 106.7 74.8 153.8

1280 99.6 2000.0 146.2 74.9 153.9

Table 1. Size of tables in MB with 500k rows and 5
present values per row as stored in our PostgreSQL pro-
totype.

System Horizontal Vertical

System A 345.59 83.97
System B 660.22 84.55
System C 976.72 88.02

Table 2. Size of tables in the three leading commercial
systems for the dataset with 640 possible attributes, 5
present values per row, and 500k rows in MB.

specifications that define a subset of 2854 attributes. A ma-
jority of the attributes are very sparse and are undefined in
more than 99% of the products with specifications. The av-
erage number of attributes in a product is 11 and the mode
is 5. More details on the data collection and statistics of the
dataset can be found in [2].

We use synthetic datasets that show the performance of
the approaches on a spectrum of sparsity and wide schemas.
Each dataset has the same number of average present values
per entity at 5, each has a constant number of entities at
500k, and there are four tables with 5, 320, 640 and 1280
attributes. The data generator randomly distributed present
values across the attributes in each row. The sparsity of the
synthetic data used in our experiments never exceeds that of
the real world CNET data, therefore the synthetic data is not
artificially sparse.

Table 1 lists the size of the respective storage schemes
for the tables as stored in PostgreSQL. The table illustrates
how the storage schemes scale with the number of possi-
ble attributes. The interpreted and vertical schemes scale
well with more attributes and remain constant in size. How-
ever, the positional horizontal and bitmap-only horizontal
schemes scale poorly because they both allocate some space
to missing values.

Table 2 presents the table sizes for the three leading com-
mercial RDBMS vendors for the dataset with 640 possible
attributes. System A has a smaller footprint for the data be-
cause the data pointers only take 1 byte per attribute. Also,
System A and System B use null compression that only pre-
allocate space for a tuple through to the last non-null at-
tribute and, thus, save space on tuples that have many nulls
at the end of a tuple. System C compresses nulls by reduc-
ing size of data pointers from the 4 bytes typically used in
its tables to 2 bytes when there is a null. Even though each
of these systems try to cope with nulls in some way, all of
the tables are more than 4.6 times larger than interpreted
storage of the same table.

4.2.1 Batch vs. Once-per-attribute Extract

During query execution, the main differences between the
positional, bitmap-only, and interpreted storage formats is
how the attribute-values are retrieved from the tuples. Post-
greSQL has two methods to extract values from tuples: one
that retrieves all values of a tuple (effectively, select *),
and one-at-a-time retrieval of attributes. When we report
time to batch EXTRACT-ion of values, we use the time it
takes to extract all attributes of a tuple.

Extract Interpreted Bitmap Positional

Batch 2.49± 0.13 3.89± 0.3 15.51± 0.10
Once-per 46.73± 2.65 34.02± 4.46 39.05± 1.58

Table 3. Cold running time in seconds for batch and
once-per-attribute extraction.

Table 3 shows the performance for projecting all columns
from a table with 640 columns using batch extraction
method and a once-per-attribute extraction (640 extract calls
per tuple). The data show that batch extraction of attributes
is far more efficient than fetching each attribute separately.
Even the positional format benefits from making one func-
tion call (instead of 640) with a 60% decrease in execu-
tion time over once-per-attribute extraction. However, in-
terpreted and bitmap-only gain the most from batch extrac-
tion leading to a 95% and 89% decrease in execution time,
respectively. Bitmap is faster than interpreted in the once-
per-attribute case because the bitmap representation uses the
bitmap to check if an attribute is null and most of the at-
tributes are null in a tuple. For interpreted, extracting each
column individually scans the list of present values each
time, thus using batch EXTRACT allows one scan of the
present values and saves time. Because of the benefits of
batch extraction, the rest of the experiments only consider
batch-extraction of attributes.

4.3 Horizontal vs. Vertical Schema

Our experimental evaluation of sparse storage be-
gins with the differences between horizontal and vertical
schemas. Recall that some applications query vertical tables
as if they are horizontal tables using V2H. We present re-
sults from projection and selection queries when using V2H
and compare them to the horizontal storage alternatives.

4.3.1 Returning Horizontal Results

Projection Queries and V2H. Figures 6(a) compares po-
sitioinal, bitmap, interpreted, and vertical storage for pro-
jecting columns from the table with 1280 columns. Fig-
ure 6(b) shows results from the same experiments, but takes
a closer look at the performance of bitmap and interpreted.



(a) Projecting many columns. (b) A close look at bitmap and interpreted from Fig-
ure 6(a).

Figure 6. Projecting a set of attributes from a dataset with 1280 possible attributes.

In both graphs, the number of columns projected is var-
ied from 1 column to 256 columns. All of the horizontal
queries have near constant performance across the number
of columns projected because the dominant cost is the I/O
to read the tables off of disk which is independent of the
number of columns projected. The interpreted approach
performs the best amongst all strategies and is on average
1.63 times faster than its closest rival, the bitmap-only for-
mat, and 22.36 times faster than the positional storage.

The figure shows LOJ and PIVOT both clustered on
(attr, oid) and with two intermediate storage represen-
tations. The intermediate results of V2H translation must
be stored in some tuple storage format, whether positional,
bitmap or interpreted. The figure shows the interpreted and
bitmap approaches to intermediate storage for results from
LOJ and PIVOT and indicate them by LOJi (PIVOTi) and
LOJb (PIVOTb), respectively. For LOJi, the results are
nearly 2 times faster than the LOJb approach that stores the
intermediate results in the bitmap storage format—in fact,
the LOJi approach is faster than the bitmap horizontal ap-
proach up to 6 columns. In the PIVOT approach, the in-
terpreted storage averages a 1.55 times improvement over
PIVOTb. The performance of LOJi and PIVOTi indicates
that even in situations when applications have stored sparse
data vertically (perhaps for legacy reasons), the interpreted
approach is an optimization that helps processing vertical
queries over sparse data. Neither LOJ or PIVOT are ever
better than the interpreted format and perform worse than
positional horizontal at around 256 columns (to project all
columns using LOJ takes hours and using PIVOT 160 sec-
onds).

The figure shows the best clustering (attr, oid) for
PIVOT. In a separate experiment, we verified that the
(attr, oid) clustering for PIVOT is the best up to 256
columns, the running times for oid clustering grow from
7.5 seconds to project one column to 50 seconds for pro-
jecting 256 columns.

Figure 7 shows the projection performance for the table
with 640 attributes. The smaller table width is reflected in
the performance of the horizontal tables where the running
time has decreased by more than half for the positional ta-
ble. The bitmap performance has slightly decreased, but the

Figure 7. Projecting a set of attributes from a dataset
with 640 possible attributes.

interpreted table is the least affected by the thinner table.
The V2H approaches, LOJ and PIVOT, are both clustered
on (attr, oid). Besides the width of the tables, the dif-
ference between the table with 640 columns and the one
with 1280 columns is that the columns of the table are more
dense in the 640 column table (i.e. one column in the 640 ta-
ble has twice as many values as that of the 1280 table). The
increase in column density is apparent in the running times
of the V2H functions. With denser columns, the PIVOT ap-
proach has to group more tuples to reconstruct the horizon-
tal results. Similarly, the LOJ approach has to process more
values per attribute during the merge phase of its reconstruc-
tion. Again, we show the cost of reconstructing a horizon-
tal table using the intermediate formats of interpreted and
bitmap and interpreted is on average 1.35 times faster than
bitmap for PIVOT.

Selection Queries and V2H. Figure 8 shows the run-
ning times on the dataset with 640 possible attributes for
a selection query with one simple-selection predicate that
projects all attributes from the data. Since the experiment
projects all columns, we focus on PIVOT with interpreted
intermediate results; the V2H operation that the previous
section shows as best when projecting many columns. The
graph shows two lines for the PIVOT operation that corre-
spond to the clustering of the vertical table. Notice, that in
the previous section, projection, the (attr, oid) cluster-
ing was best for PIVOT and now in selection the oid is
the best clustering when returning many entities. However,
the query optimizer is not able to choose the better of the
two since each requires a specific physical ordering of the
vertical table. Unlike the horizontal tables, for PIVOT clus-



Figure 8. Selecting a set of tuples from a dataset with
640 possible attributes.

tered on oid, the cost to select few entities is nearly the
same as selecting many entities. The near constant cost is
because the query plan scans the table to find the attribute
occurrences and match the value predicate. The scan is the
dominant cost of the query.

We now turn our focus to the performance of the horizon-
tal tables. Again, we see that the memory footprint of the
tables are also influencing the performance. In each stor-
age format, the query plan uses an index on the requested
column to fetch tuples from the table. Since the positional
table is the largest table, it benefits the least from caching
and each access is a random I/O. The bitmap and interpreted
tables are smaller and thus, as more tuples match the pred-
icate, matching pages are more likely to be in the buffer
pool. Again, the interpreted format is 1.5 times faster than
the bitmap format and up to 3.3 times faster than positional.

Query Vertical Interpreted Bitmap

project all 5.63± 0.01 4.12± 0.02 6.54± 0.02
select 15k 6.56± 0.03 2.20± 0.02 3.14± 0.03

Table 4. Cold running time in seconds queries returning
vertical results from the 1280 column table.

4.3.2 Returning Vertical Results

In the previous section, we saw that horizontal storage can
be efficient at storing and querying sparse data. H2V trans-
lation converts a horizontal query to a vertical format “on
the way out” to the application. Table 4 shows the perfor-
mance for returning vertical results from the 1280 attribute
data set. We show a project query that projects all tuples
from the vertical table and a select query that has one sim-
ple selection predicate that selects 15k tuples and projects
all attributes of an entity.

The project query simply returns the data as vertical re-
sult, which for the vertical storage is a scan over the verti-
cal table. The table shows that the interpreted approach, al-
though stored horizontally, is the fastest at returning vertical
tuples. The performance difference is due to the relative size
of the tables (the vertical table is bigger than the interpreted
table). Also, the interpreted format does very little process-
ing to convert an interpreted tuple into a vertical equivalent.

Figure 9. Projection performance where the black is
time to project one column and the additional gray is
the time to batch-project all columns.

On the other hand, the bitmap approach, although smaller
than vertical on disk, is not faster than the vertical table scan
because it has to traverse all 1280 columns to find the values
that are not-null and transform them to vertical tuples.

In the select query, the interpreted format is faster than
all others for returning results in the vertical format even
though the vertical table is already in the three column for-
mat. The reason for the the poor performance of vertical is
that selection over a vertical table requires a join to collect
all of the attributes of the entities selected in a query (recall
Figure 3). The join over the vertical table is the reason for
the nearly 3 times performance improvement of V2H over
vertical alone.

4.4 Horizontal Tuple Storage

The final issue that we consider is the performance of
horizontal storage of tuples in positional, bitmap-only, and
interpreted storage. In this section, we focus on the perfor-
mance of physical storage alternatives for horizontal table
storage.

Extract Interpreted Bitmap Positional

First (1) 1.72± 0.01 2.91± 0.03 15.76± 0.11
Center (320) 1.72± 0.01 2.92± 0.003 15.42± 0.03
Last (640) 1.73± 0.02 2.95± 0.02 15.42± 0.02

Table 5. Cold running time in seconds for extracting
attributes at different positions in the schema.
An issue related to value extraction is the difference be-

tween accessing just one attribute from a tuple and access-
ing all attributes from a tuple. In the all attribute case, each
attribute of the table schema is extracted into memory and
there may be extra overheads relating to that extraction. The
one attribute case represents the least amount of overhead
because it only extracts one value instead of all values. In
the bitmap only scheme, extraction of one attribute scans the
bitmap from the beginning up to the attribute requested to
calculate the location of the attribute. Table 5 shows the cold
execution time to extract the first attribute, the center at-
tribute, and the last attribute in the table with 640 attributes.
It shows that there is little difference among the costs to ex-
tract attributes at different positions in the bitmap.



Figure 9 presents the running times for projecting one or
projecting all attributes of a table. The black part of each bar
in the figure shows the execution time for projecting one col-
umn from the table and the gray portion of each bar shows
the additional time for projecting all columns from the table.
For the tables with less than 320 attributes, the cost to batch
extract all attributes is similar to the cost to extract one at-
tribute. However, for the table with 1280 attributes, the time
to project all attributes is much higher with at least twice as
much additional time over just projecting one column. The
differences between projecting 320 and projecting 1280 at-
tributes is related to the amount of memory that the extract
routine has to manage, in the former it is managing 8KB and
the later it is managing 22KB. Interestingly, the overheads
of projecting wide tables can be reduced by projecting ver-
tical tuples using H2V.

5 Conclusions

Relational database systems are increasingly facing the
demands of applications with sparse datasets. Current rela-
tional systems are inefficient at handling sparse data sets be-
cause the underlying storage formats are inefficient at stor-
ing the data. For horizontal schema, the storage of null val-
ues burdens query processing. If one tries to avoid storing
nulls by using vertical schema and storage, the performance
is better for queries that access few attributes, but is poor
when accessing many attributes.

In this paper we argue that the complexities of sparse data
management should be handled inside an RDBMS with the
addition of an interpreted storage format. When considering
queries that return a horizontal result, the best option is to
store the data horizontally in the interpreted format. In fact,
the performance is better than if the data is stored in a ver-
tical schema and transformed to a horizontal result. With
interpreted storage, the conclusion of Agrawal et al., who
concluded that a vertical schema transformed to a horizontal
schema “uniformly outperforms horizontal [positional stor-
age],” is no longer valid. Even if an application uses a verti-
cal schema and returns horizontal results, perhaps for legacy
reasons, the interpreted format is an optimization that helps
to store intermediate results. Finally, when applications pre-
fer a vertical schema view of the data, but do not constrain
the underlying actual storage to be vertical, the best option
is to store data using interpreted horizontal and convert to a
vertical representation “on the way out” to the application.

With the addition of an interpreted data format, a
database administrator would face two alternatives for the
storage of the attributes: interpreted and positional. An
interesting area for future work is to explore the use of a
“storage wizard” to automatically decide between these for-
mats for attributes of a data set based on density, frequency
of access, and possibly other factors.

Acknowledgments. This work was supported by the Na-
tional Science Foundation under grant ITR 0086002. Jen-
nifer Beckmann was also supported by AT&T Labs Fellow-
ship Program.

References
[1] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of

e-commerce data. In VLDB, pages 149–158, 2001.
[2] J. Beckmann. The CNET E-

Commerce Specifications Data Set.
http://www.cs.wisc.edu/˜jbeckham/TR/cnet.pdf,
June 2005.

[3] P. Boncz, A. N. Wischut, and M. L. Kersten. Flattening an
object algebra to provide performace. In ICDE, 1998.

[4] C. Brandt, A. Deshpande, and et al. TrialDB: A web-based
Clinical Study Data Management System. In AMIA Annu
Symp Proceedings, page 794, 2003.

[5] N. Chapin. A comparison of file organization techniques.
In Proceedings of the 1969 24th national conference, pages
273–283. ACM Press, 1969.

[6] CNET Networks, Inc. CNET Product Directory.
http://shopper.cnet.com/4296-3000_9-0-0-0.html,
March 2005.

[7] G. P. Copeland and S. Koshafian. A decomposition storage
model. In SIGMOD, pages 268–279, 1985.

[8] C. Cunningham, G. Graefe, and C. A. Galindo-Legaria. Pivot
and unpivot: Optimization and execution strategies in an
rdbms. In VLDB, pages 998–1009, 2004.

[9] A. Deshpande, C. Brandt, and P. M. Nadkarni. Metadata-
driven Ad Hoc Query of Patient Data: Meeting the Needs of
Clinical Studies. In AMIA Annu Symp Proceedings, page 794,
2003.

[10] D. Florescu and D. Kossman. Storing and Querying XML
Data using an RDBMS. Data Engineering Bulletin, 22(3),
1999.

[11] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[12] S. Koshafian, G. P. Copeland, T. Jagodis, H. Boral, and
P. Valduriez. A query processing strategy for the decomposed
storage model. In ICDE, pages 636–643, 1987.

[13] L. V. S. Lakshmanan, F. Sardi, and S. N. Subramanian. On
efficiently implementing SchemaSQL on a SQL database sys-
tem. In VLDB, 1999.

[14] PostgreSQL. http://www.postgresql.org.
[15] D. Pyle. Data preparation for data mining. Morgan Kauf-

mann Publishers Inc., 1999.
[16] R. Ramakrishnan and J. Gehrke. Database Managment Sys-

tems, 3rd Ed. McGraw-Hill Higher Education, 2002.
[17] R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured

mirrors. In VLDB, 2002.
[18] R. Raman, M. Livny, and M. H. Solomon. Matchmaking:

Distributed resource management for high throughput com-
puting. In HPDC, pages 140–, 1998.

[19] S. Shi, E. Stokes, D. Byrne, C. Corn, D. Bachmann, and
T. Jones. An enterprise directory solution with DB2. IBM
Systems Journal, 39(2), 2000.

[20] R. E. Tarjan and A. C.-C. Yao. Storing a sparse table. Com-
mun. ACM, 22(11):606–611, 1979.


