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Abstract

Electronic Health Records (EHRs) now hold over 50 years of recorded patient information and, with increased
adoption and high levels of population coverage, are becoming foci of public health analyses. The structure
of EHR patient data limits existing clinical study paradigms, which fail to effectively capture the relational,
temporal, and intermittent data characteristics. This dissertation develops statistical timeline analysis (STA),
a set of algorithms that extend existing modeling approaches to address EHR data challenges.

Statistical timeline analysis models EHR data as patient-specific, relational timelines, where measure-
ments and events occur in continuous-time instead of at fixed intervals. First, we adopt a relational forest
algorithm and show improved performance at heart attack prediction compared to analogous non-relational
algorithms. Then we turn to richer timeline models: continuous-time Bayesian networks (CTBNs), which
model dependencies in rate among discrete variables over continuous time. We introduce partition-based
CTBNs, a generalization that alleviates the exponential space constraints of CTBNs yet maintains the ability
to model complex dependencies. We then develop a multiplicative forest learning algorithm with space
linear in the number of forest splits that efficiently maximizes the partition-based CTBN likelihood.

To address CTBN inference challenges, we identify a general method for the improvement of sequential
importance samples. Our method reduces sample weight variance by an order of magnitude, yielding a
better approximation of the posterior distribution.

We also study point processes, which avoid CTBN inference challenges altogether. We show that the
multiplicative forest learning algorithm applies and improves upon existing learning algorithms both in
modeling dependences and as extracted features for forecasting heart attacks.

Finally we turn to attributable risk. The clinical study paradigm focuses on population-average changes in
risk. However, the average outcomes of such studies are then applied to individuals when the application of
the individual outcome is more appropriate. We show that individualized-risk modeling improves average
individual outcomes and provides evidence of the EHR as an effective source for modeling individualized
attributable risks.

Our contributions to statistical timeline analysis show algorithmic and performance improvements
that address EHR data challenges. We expect further research combining these ideas to improve clinical
understanding and patient care.
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1 Introduction

Alongside initiatives to increase the availability of Electronic Health Record (EHR) information through
the Affordable Care Act and initiatives to deploy increasing numbers of mobile health (mHealth) studies,
analysts of clinical data are discovering limitations of existing methodologies and are developing machine
learning methods to meet their data challenges (Jha, 2010; Kay et al., 2011). These trends signal a shift in the
collection and recording of patient health data, with the EHR becoming a primary data source for clinical
analysis.

As the adoption of the EHR as a data source increases, novel methods in machine learning and biostatistics
for analyzing EHR data are needed to derive utility in the form of clinical findings. This thesis seeks to
describe the challenges of using EHR data to produce clinical findings and develop a set of algorithms to
answer clinically important queries from such data. A few challenges in analyzing EHR data, which we
describe in detail in Section 2.1, include the effective and efficient use of large-width tables, the ability to
capture temporal effects, the use of heterogeneous data sources, and the ability to leverage relational database
structure.

We should not be deterred by these challenges because the continued use specifically of EHR data is
certain to drive new clinical findings. For one, other existing methods driving clinical findings–clinical studies
and in particular randomized trials–cannot scale to address each exposure-outcome pair of interest. With
thousands of diagnoses, e.g., ICD-10 codes, and orders of magnitude more measurements of potential risk
factors, clinical studies must limit their focus to common outcomes or treatments with large benefit. Analyses
from EHR data do not have such limitations. Furthermore, EHR data may provide a richer patient profile
than clinical study data where potential risks measured are pre-specified in the study protocol. Thus, the use
of EHR data can lead to improved predictions and better disease characterization per dollar spent. Clinical
trial findings can also become “stale”, i.e., the results may not apply well to patients in the future because
medical care protocol has changed. A re-analysis from EHR data can update the clinical recommendations
without additional intervention. Finally, EHR data hold records on large and diverse sets of people, increasing
statistical power to detect clinical findings and to characterize heterogeneity among subpopulations.

This thesis develops an analysis of EHR data to answer two types of tasks: first, the prediction or forecasting
of a patient outcome, and second, the estimation of the risk of an outcome attributable to an exposure or
treatment. To do so, we propose the framework of statistical timeline analysis (STA), which places emphasis
on the temporal nature of clinical events, on EHR data associated specifically with patient identifiers, and on
a probabilistic regime for answering queries.

1.1 Clinical Motivation

To motivate the usefulness of clinical outcome prediction and risk attribution from EHR data, let us consider
an example of a physician note.

A 63 year old white male comes to clinic complaining of one month’s duration of chest pain after
non-strenuous exercise such as climbing 2 flights of stairs to his apartment. The pain is diffuse in
the left front of the chest, rated an 8/10, and is relieved by rest and sitting or lying down. Past
medical history is significant for high blood pressure and high cholesterol. The patient is a current
smoker with a history of 20 pack-years.
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Predicted diagnosis Predicted incidence S.D.

1 Myocardial infarction 0.33/yr +2.5 σ Manage risk

2 Stroke 0.47/yr +2.5 σ Manage risk

3 Depression 0.60/yr +1.0 σ Manage risk

Manage risk

Manage risk

Manage risk

Elevated risk Suggested labs Drugs/dosing Don’t forget...

Figure 1.1: This figure shows a possible future EHR interface for the physician that includes machine learning
predictions for the current patient. The diagram shows model results suggesting that the patient is at elevated
risk for specific diagnoses. It depicts a tabbed environment, where the machine learning system also provides
optimal drug regimens, recommends the collection of additional health information such as laboratory
assays, and reminds physicians of steps involved in providing continuing care.

This clinic note briefly describes the chief complaint (CC), history of present illness (HPI), and past medical
history (PMH). In just a short note, the pertinent features for establishing the abnormal condition let the
physician construct a differential diagnosis. Following the history (CC, HPI, and PMH), a physical exam is
performed. In broad terms, the physician initially follows a data acquisition phase, followed by an exploratory
or confirmatory phase, finally leading to a diagnosis, prognosis and treatment.

At each phase of this process, clinical findings guide the physician. Classifiers can help the physician
weigh likely diagnoses and models can help characterize likely underlying disease processes. Risk scores can
help the physician understand the expected benefit of treatment choices and the range of likely outcomes.
Computerized alerts can remind the physician to renew or terminate drug prescriptions, as illustrated
in Figure 1.1. At each decision point, a physician armed with such information can make more informed
decisions that may improve the average outcome of patients.

Here is another use case. As medical students learn to hone their clinical acumen, two of the most common
questions posed to them are: (1) what is the most likely diagnosis, and (2) what is the next step? Again, the
answers come back to the use of clinical findings to guide medical decision-making.

In terms of applied machine learning, these two questions translate to (1) prediction and (2) risk attribution.
The “most likely diagnosis” question asks for a classification and is typically followed by a question to list
alternative but less probable diagnoses. The “next step” question typically requests the student to identify
missing features that would help improve the certainty about the prediction of one or a few diseases. Our
goal is to show that machine learning can provide patient-specific answers to these questions directly from
EHR data. In the next section we describe methodologies to provide answers to these two questions in more
detail.

1.2 Clinically-Applied Machine Learning

Both the “prediction” and the “risk attribution” tasks have devoted fields of study. We introduce these fields,
discuss their limitations in addressing EHR data challenges, and describe how statistical timeline analysis
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improves upon them.

Clinical forecasting

For prediction, machine learning and statistics have methods for classification and regression. However,
existing methods do not meet the challenges existing in EHR data, such as its temporal, relational, and
intermittent-arrival characteristics. Chapter 2 discusses these challenges at length, as they guide our choice
of algorithm.

Specifically, work in Chapter 3 addresses the relational representation of EHR data. For prediction of
primary myocardial infarctions (MIs), the work shows that a state-of-the-art relational forest learning method
outperforms analogous algorithms that do not leverage the relational representation.

However, the relational forest algorithm does not model the temporal relationships beyond logical
event time comparisons. Chapters 4, 5, and 6 discuss continuous-time Bayesian networks (CTBNs) and
point processes, both of which model the rates of events over continuous time. As described in Section 2.1,
continuous-time modeling is important for patient timelines, because observations of medical encounters do
not arrive at regular intervals, an assumption that pervades existing clinical analyses.

In particular, CTBNs model events for every time t, but because EHR data describe events at time points,
inferences about the events between time points becomes necessary. An improvement to existing CTBN
inference methods based on the incorporation of a rejection sampling step in sequential importance sampling
is the subject of Chapter 5.

Point processes, on the other hand, do not require interpolative inference and thus can scale to problems
involving many event types. This comes at the cost of making a closed-world assumption, namely, that the
observation of events define the occurrence of the event and the absence of observation means the event
does not occur.

These three chapters lay the foundation for statistical timeline analysis: they show that, by representing
EHR data as timelines, we can learn models that effectively describe medical event dependencies, which can
then be used to improve forecasts about patient outcomes.

Risk attribution

For risk attribution, clinical studies from biostatistics and epidemiology are well-suited to answer such
questions from data that are produced according to specific study designs. Randomized controlled trials
(RCTs), cohort studies, and case-control studies all seek to approximate the risk attribution of an exposure
for a disease of interest. Their main outcome, the average treatment effect (ATE), or its fractional relative, the
relative risk (RR), describes the expected reduction in risk in the studied population given exposure.

RCTs have the important characteristic that confounding effects are mitigated by the randomization
procedure, so an unbiased estimate of the ATE can be computed. They are, however, often impractical,
infeasible, or unethical, so cohort and case-control studies are used in an attempt to mimic their outcomes.
A variety of approaches are used, including controlling for confounders, propensity scoring, or inverse-
probability-of-treatment weighting (Prentice, 1976; Austin, 2011; Rosenbaum & Rubin, 1983; Robins et al.,
2000).

One critical drawback of all these methods is that they seek to calculate the average treatment effect, when
most applications of risk attribution really desire the individualized treatment effect (ITE). The ITE provides
the effect per individual instead of a population-level effect, and information about future individuals can be
leveraged in determining optimal treatment choices. The predominant method for providing individualized
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treatment effects from RCT-style analyses is through subgroup analyses, called heterogeneity of treatment
effect (HTE) analysis. Our work in Chapter 7 suggests that, given clinical interest in the ITE, the procedure
of finding the ATE and performing a secondary HTE analysis is indirect and possesses generalizability
limitations that are not applicable to our method of ITE estimation. Furthermore, the use of EHR data
introduces challenges for clinical study analyses; machine learning methods may be better suited to such
data.

The field of machine learning focuses less on risk attribution estimation directly, but the closely related
analysis of model interpretability is emphasized. Sometimes, interpretations of models directly answer
the outcome of interest, e.g. the exposure coefficient of the logistic regression as the log odds ratio. The
predominant model used in our work is the multiplicative forest, which is more challenging to interpret. We
describe the forest models in detail in Chapters 4 and 6; here, we say that the forests determine if there is a
dependency between two events, and the magnitude of the dependency can be calculated given the state of
other pertinent events (i.e., effect modifiers). We explore boosted forests in Chapter 7 for ITE estimation as an
alternative to model inspection for interpretable results.

The use of EHR data and the development of algorithms that address the prediction and risk attribution
questions bring us to the thesis statement.

1.3 Thesis Statement

In this thesis, we develop statistical timeline analysis, a set of algorithms that extend existing modeling
approaches, to learn from Electronic Health Records data. We demonstrate that statistical timeline analysis
has utility in capturing the temporal and relational characteristics of population data and can be used to discover
patient-specific clinical findings.
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2 Background

This chapter provides descriptions and definitions of foundational fields and tools for ensuing chapters. We
motivate the use of Electronic Health Record data, introduce Statistical Relational Learning, describe two
timeline models–the continuous-time Bayesian network and the point process–and finish with a brief review
of clinical study methodology.

2.1 The Electronic Health Record as a Data Source

Electronic Health Records (EHRs) are an emerging data source of great potential use in disease prevention,
diagnosis and treatment. An EHR tracks health trajectories of its patients through time for cohorts with stable
populations (Figure 2.1). As of yet they have been used primarily as a data warehouse for patient health
queries, rather than as a source for population-level risk assessment and prevention. This trend is changing,
however, as exemplified by the Heritage Health Prize contest, which uses medical claims data to predict
future hospitalization Heritage Provider Network (2011). In our work we will suggest that the emergence of
the EHR as the new data source for population health analyses may allow us answer individualized clinical
questions, as shown in Figure 2.2.

Findings discovered from EHR data can improve patient care, for example, by providing prompts to
clinicians such as, “your patient is at high risk for an MI and is not currently on an aspirin regimen.” Second,
models build from EHRs can be inspected in order to identify surprising connections, such as a correlation
between the outcome and the use of certain drugs, which might in turn provide important clinical insights.
Third, findings derived from EHRs can be used in research to identify potential subjects for research studies.
For example, if we want to test a new therapy for its ability to prevent an event such as MI, it would be most
instructive to test it in a population of high-risk subjects.

EHR data present significant challenges to current machine learning methodology. If we hope to augment
traditional clinical study analyses, we must be able to effectively address these challenges. A few of them are
listed below.

• Incomplete data. Data typically consist of a variety of incomplete information: patient medical history,
procedures history, family history, demographic information, self-reported questionnaire answers,
lab tests, and genetic information. There is also provider information: location of services, pharmacy
records, and insurance records. Integrating the variety of information available in an EHR is challenging,
doubly so given that the extraction of insightful results comes from incomplete records.

• EHR size. EHRs include patients (thousands), providers (thousands), diagnoses and drugs (thou-
sands), and in the near future genetic biomarkers (millions) and sequence data. Identifying complex
relationships between these entities in a computationally efficient manner can be problematic.

• Timestamps. The trajectories of medical events are highly non-uniform; most medical encounters occur
early and late in life. Events arrive at irregular intervals unlike in canonical clinical studies; see, e.g.,
Figure 2.3.

• Relational data. To use most standard machine learning methods, data must be preprocessed into
a flattened feature format which causes a loss of information and introduces statistical skew using
autocorrelation and linkage (Jensen & Neville, 2002).
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Pt ID Date Diagnosis/Prescription/Procedure

207a3d56 2007.7 Lipitor

207a3d56 2010.8 Chest pain

207a3d56 2010.83 Angina pectoris

207a3d56 2011.2 Myocardial infarction

Pt ID Date Laboratory Test Laboratory Value

207a3d56 2007.7 Cholesterol High

207a3d56 2007.7 LDL High

207a3d56 2008.7 LDL Normal

207a3d56 2010.83 LDL Normal

Pt ID Gender Date of Birth

207a3d56 Male 1962.34

Pt ID Date Vital Type Vital Value

207a3d56 2007.7 BP High

207a3d56 2007.7 BMI Overweight

207a3d56 2008.7 BP Normal

207a3d56 2010.83 BP High

Figure 2.1: Example of patient-specific tables in the EHR. The EHR database consists of tables including
information such as diagnoses, drugs, labs, and genetic information.

• Definition shifts. Disease definitions are changing; subcategories and new types are introduced. New
modalities in imaging and sequencing affect disease identification procedures and alter treatment
guidelines. The medical trajectory of a patient one decade ago is different than it is today, making
generalizations across time prone to bias.

While these challenges have been presented in the medical diagnosis framework, the nature of the data is
not specific to this application. What the data capture are event timelines embedded in a relational domain.
Algorithms for prediction in relational and continuous-time domains exist individually, but to our knowledge
none exist that scalably and efficiently address this problem formulation. We develop methods that better
handle these relational and temporal challenges in Chapter 3 through Chapter 6.

2.2 Statistical Relational Learning

To preface material in Chapter 3, we introduce Statistical Relational Learning (SRL). Relational models
describe the relationships between objects, often using logic, which allows for more expressive descriptions
than the classical alternative: an object as a vector in feature space. Many relational algorithms are extensions
of their classical machine learning counterparts and are upgraded to the relational domain. SRL is the field
that bridges relational modeling and probabilistic model learning. For example, relational probability trees
are decision trees upgraded to first-order logic, and relational functional gradient boosting is the relational
extension of functional gradient boosting (Neville et al., 2003; Natarajan et al., 2011b). Upgraded probabilistic
models such as these comprise a major fraction of SRL methods. From the other perspective, established
relational methods in databases and theorem-proving have been extended to corresponding probabilistic
representations (Cavallo & Pittarelli, 1987; Raedt, 2008) and also fall within the field of SRL. All of these
methods attempt to capture probabilistic behavior in richer, relational domains; see (Getoor & Taskar, 2007)
for more examples.
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Electronic health record

Data Tables:

• Hx

• Rx

• Dx

• SNPs/genomes

Population-level clinical analyses:

• Case-control studies

• Cohort studies

• Randomized controlled trials

• Survival analyses

Patient medical timeline:

• Hx

• Rx

• Dx

• SNPs/genome

Machine learning system

Model
Model

Model
Model

Disease

susceptibility

profile

Figure 2.2: Machine learning systems (blue) can augment current clinical analyses (orange) by producing
personalized health profiles given medical timelines of incoming patients. The clinical analyses typically
identify and quantify risk factors that lead to disease; machine learning models integrate such risk factors
into comprehensive predictive models. Medical history (Hx), drugs prescribed (Rx), and diagnoses (Dx) are
abbreviated.

The primary advantage of SRL methods is their ability to work with the structure and relations in data;
that is, information about one object helps the learning algorithms to reach conclusions about other objects.
This helps in two primary ways.

• Examples are no longer assumed to be drawn i.i.d. from some underlying distribution, which is an
impractical assumption in many domains. When relations between examples are provided in the data,
e.g. if one subject is a sibling of another, SRL algorithms incorporate these relations and use them in
their predictions.

• Complex objects can be better represented in the relational domain. In the medical prediction task,
if patients have multiple blood pressure measurements, a relational framework can record each one,
whereas a propositional framework requires either making aggregation design decisions or moving to
a multiple instance problem setup.

Figure 2.4 shows a diagram illustrating the interconnectedness of pertinent health information for a medical
diagnosis prediction problem. It depicts the relationships between patients, diagnoses, medications, and
environment. It depicts the hierarchical nature of clinical records, for example having zip codes in states and
diagnosis types in ICD-9 categories. Finally, it depicts an event as a set of objects at a particular time and place.
In clinical studies we are often interested in the temporal health trajectory of a patient. The relationships
in Figure 2.4, and many others that were omitted for clarity, form a complicated web of information. By
using SRL algorithms we directly incorporate the structure of the domain, avoiding lossy feature extraction
methods and modeling with fixed-length features.

The challenges associated with probabilistic relational algorithms typically center around the difficulty
of scaling to large data sets. The three main machine learning tasks are defining model representation, doing
model learning, and performing inference. Each task can be challenging in relational domains. For model
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EHR data Time Framingham study measurements (FSM) Framingham score dependencies

labs, -cholesterol, +HDL,

(FSM) 0 physical exam (PE), -blood pressure (-BP),

medical history (Hx) smoker

+BP, hydrochlorothiazide

-BP

tachycardia

(FSM) 2 labs, PE, Hx -cholesterol, -HDL, -BP, smoker

+BP

atrial fibrillation

beta blocker, calcium channel blocker

-BP

(FSM) 4 labs, PE, Hx -cholesterol, -HDL, -BP, smoker

Figure 2.3: A diagram comparing EHR data extracted to timelines (left) and Framingham Heart Study (FHS)
data collection as a time series (right). The Framingham health cohort requires clinic visits every other year
to perform laboratory assays (e.g. cholesterol levels), conduct physical exams including blood pressure
measurements (BP), and document medical history (e.g. smoking status). The EHR contains FHS data and
additional medical information with accurate timestamps, shown on the left. The Framingham Risk Score
(FRS) is recalculated every two years, whereas one based on the EHR would be updated as new clinical
events occur.

representation, a probability distribution needs to be defined over some space; common spaces include
possible worlds (e.g. in Bayesian networks and probabilistic databases) or possible proofs (e.g. stochastic
context free grammars). Model learning, split into structure and parameter learning, often requires expanding
the relationship graph to the grounded network including all relationships among and within individual
examples. The size of the ground network may be exponential in the number of examples or worse, making
learning difficult. Model inference presents similar challenges in scalability, as the goal or query may require
finding the distribution over the joint probability space encompassing the exponential-size ground network.

2.3 Continuous-Time Bayesian Networks

We turn to temporal analyses, where analyses over time series data with fixed, discrete time intervals
predominate, as for example in Dean & Kanazawa (1989). However there are many domains in which
discretizing the time leads to intervals where no observations are made, producing “missing data” in those
periods, or there is no natural discretization available and so the time series assumptions are restrictive. Of
note, experiments in previous work provide evidence that coercing continuous-time data into time series
and conducting time series analysis is less effective than learning models built with continuous-time data in
mind (Nodelman et al., 2003).

The prevailing model in continuous-time discrete state analysis is the continuous-time Markov process
(CTMP), a model that provides an initial distribution over states and a rate matrix parameterizing the rate
of transitioning between states. However, this model does not scale for the case where a CTMP state is a
joint state over many variable states. Because the number of joint states is exponential in the number of
variables, the size of the CTMP rate matrix grows exponentially in the number of variables. Continuous-time
Bayesian networks (CTBNs), a family of CTMPs with a factored representation, encode rate matrices for each
variable and the dependencies among variables (Nodelman, 2007). Figure 2.5 shows a complete trajectory,
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Patient

related-to

Zip Code

County
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location

in

in
Disease

has

Disease
Category

in

event: {list[actors], time, zipcode}

Actor

is_a

is_a Time

Drug takes

treats

Figure 2.4: Schematic of the relationships one might be interested in modeling in the medical diagnosis
domain. Each node represents an entity type, and the edges represent relationships among the entities that
describe pertinent information about the domain. These complicated relationships challenge the notion of
i.i.d data and fixed-size representations. In Ahmadi et al. (2012), the relational example is referred to as single
mega-example, as each so-called example is intertwined with others due to the relationships among them.

i.e., a timeline where the state of each variable is known for all times t, for a CTMP with four joint states
(a, b), (a,B), (A, b), and (A,B) factorized into two binary CTBN variables α and β (with states a and A, and
b and B, respectively).

Formally, CTBNs are probabilistic graphical models that capture dependencies between variables over
continuous time. A CTBN is defined by 1) a distribution for the initial state over variables X given by a
Bayesian Network B, and 2) a directed (possibly cyclic) graph over variables X with a set of Conditional
Intensity Matrices (CIMs) for each variable X ∈ X that hold the rates (intensities) qx|u of variable transitions
given their parents UX in the directed graph. Here a CTBN variable X ∈ X has states x1, . . . , xk, and there
is an intensity qx|u for every state x ∈ X given an instantiation over its parents u ∈ UX . The intensity
corresponds to the rate of transitioning out of state x; the probability density function for staying in state
x given an instantiation of parents u is qx|ue−qx|ut. Given a transition, X moves to some other state x′ with
probability Θxx′|u.

The likelihood of a CTBN model given data is computed as follows. A trajectory is a sequence of intervals
of fixed state. For each interval [t0, t1), the duration t = t1 − t0 passes, and a variable X transitions at t1 from
state x to x′. During the interval all other variables Xi 6= X remain in their current states xi. The interval
likelihood is given by:

qx|ue
−qx|ut

︸ ︷︷ ︸
X transitions

Θxx′|u︸ ︷︷ ︸
to state x′

∏
xi:Xi 6=X

e−qxi|ut

︸ ︷︷ ︸
whileXi’s rest

. (2.1)

Taking the product over intervals bounded by single transitions, we obtain the CTBN trajectory likelihood:∏
X∈X

∏
x∈X

∏
u∈UX

q
Mx|u
x|u e−qx|uTx|u

∏
x′ 6=x

ΘMxx′|u
xx′|u (2.2)

where the Mx|u and Mxx′|u are the sufficient statistics indicating the number of transitions out of state x
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Figure 2.5: Example of a complete trajectory in a two-node CTBN. The arrows show the transitions and time
intervals that are aggregated to compute selected sufficient statistics (M’s and T’s). A and a denote two states
for one variable, and B and b two states for a second variable (left). The cardiovascular health (CV health)
structure used in experiments (right).

(total, and to x′, respectively), and the Tx|u are the sufficient statistics for the amount of time spent in x given
the parents are in state u.

The CTBN model provides a generative framework for forward sampling a trajectory z defined by a
sequence of (state,time) pairs zi = ({x1i, x2i, . . . , xni}, ti), where xji is the jth CTBN variable at the ith time.
Given an initial state {x10, x20, . . . , xn0}:

• Transition times are sampled for each variable xj according to qxj |u.

• The one variable xj that transitions is selected based on the sampled transition with the shortest time.
The state that xj transitions to is sampled from the multinomial θxjx′j |u.

• The transition times are resampled according to intensities qxj |u, noting that these intensities may be
different because of potential changes in the parents setting u. Due to the memoryless property of
exponential distributions, no resampling of the transition time for xj is needed if the intensity qxj |u is
unchanged.

The trajectory terminates when all sampled transition times exceed a specified ending time.
Figure 2.6 shows the graphical model representation of the first published CTBN network (Nodelman,

2007). Note that the graph is directed and contains a cycle. Cycles are allowed because the parents setting
determines the child’s rate of transitioning instead of the child’s state. Thus factorization of the likelihood
does not require the acyclicity constraint imposed in Bayesian networks. Similar to discrete state Bayesian
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Figure 2.6: The Nodelman CTBN drug network. Note the graphical model representation for CTBNs allows
cycles.

networks, the parameter space grows exponentially in the number of parents per variable. This limits the
scalability of CTBNs; for example, in the model in Figure 2.6, the maximum number of incoming edges into
a node is two. In line with context specific independence, our previous work has addressed how to maintain
compact representations and facilitate efficient learning in such systems.

When CTBN trajectories have durations of time where the state of events are not completely observed,
inference becomes necessary. Previous work on CTBN inference includes Nodelman et al. (2005); Saria
et al. (2007); Cohn et al. (2009); Fan & Shelton (2008); Rao & Teh (2011), and we focus on extensions to the
approximate inference methods (Fan & Shelton, 2008; Rao & Teh, 2011). Specifically, we seek to extend the
sequential importance sampling methods presented in Fan & Shelton (2008). To build upon this work, we
give a brief review of importance sampling and its sequential extension.

2.4 Sequential Importance Sampling

In this section we provide the basic problem setups for importance sampling and sequential importance
sampling. These methods produce samples from generative models; in particular if we want to sample from
a target distribution f , we can generate samples from surrogate distribution g, where each sample comes
with a weight. The weighted distribution of samples from g takes into account our sampling of g so will
approximate f if we generate enough samples.

Formally, let f be a p.d.f. defined on an ordered set of random variables Z = {Z1, . . . , Zk} over an event
space Ω. We are interested in the conditional distribution f(z|e), where evidence e is a set of observations
about a subset κ of values {Zi = zi}i∈κ. For fixed e, we define our target p.d.f. f∗(z) = f(z|e). Let g(z) be a
surrogate distribution from which we can sample such that if f∗(z) > 0 then g(z) > 0. Then for any subset
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Figure 2.7: A timeline (top) deconstructed into point processes (bottom).

Z ⊆ Ω, we can approximate f∗ with n weighted samples from g:

∫
z∈Z

f∗(z)dz =
∫
Z

f∗(z)
g(z) g(z)dz ≈ 1

n

n∑
i=1

1[zi∈Z]f
∗(zi)
g(zi) = 1

n

n∑
i=1

1[zi∈Z]wi

where 1[zi∈Z] is the indicator function with value 1 if zi ∈ Z and 0 otherwise, and wi is the importance
sample weight.

Sequential importance sampling (SIS) is used when estimating the distribution f∗ over the factor-
ization of Z. In time-series models, Zi is a random variable over the joint state corresponding to a
time step; in continuous-time models, Zi is the random variable corresponding to an interval. Defining
zj←i = {zj , zj−1, . . . , zi} for i, j ∈ {1, . . . , k} and j ≥ i, we have the decomposition:

f∗(z) = p(z1, . . . , zk|e)

= p(z1|e)
k∏
i=2

p(zi|z(i−1)←1, e)

= g1(z1|e)w1(z1|e)
k∏
i=2

gi(zi|z(i−1)←1, e)wi(zi|z(i−1)←1, e) (2.3)

where p(·) is the probability distribution under f . Equation 2.3 substitutes p with p.d.f. gi by defining
functions gi and wi(·) = p(·)/gi(·) and requiring gi to have the same support as p. Then g is defined by the
composition of gi: g(z|e) = g1(z1|e)

∏k
i=2 gi(zi|z(i−1)←1, e), and likewise for w. To generate a sample zj from

proposal distribution g(z|e), SIS samples each zi in order from 1 to k.

2.5 Point Processes

A complementary timeline formulation to CTBNs are point processes, which avoid CTBN inference challenges
altogether. Instead of modeling variable states for every time t in some duration, point processes simply
model the variable events that occur in the duration.

We can think of a timeline as a sequence of {event,time} pairs capturing the relative frequency and
ordering of events and is a representation that arises in many domains, including neuron spike trains (Brown
et al., 2004), high-frequency trading (Engle, 2000), and medical forecasting (Diggle & Rowlingson, 1994). A
point process is a model that characterizes the distribution over emissions of an individual event over time.
Thus, the point process treats each timeline event type individually and specifies that it (re-)occurs according
to the intensity (or rate) function λ(t|h) over time t given an event history h.
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Figure 2.7 shows a sample timeline of events deconstructed into individual point processes. The con-
ditional intensity model (CIM) is a probabilistic model formed by the composition of individual point
processes.

Let us consider the finite set of event types l ∈ L. An event sequence or trajectory x is an ordered set of
{time, event} pairs (t, l)ni=1. A history h at time t is the subset of x whose times are less than t. Let l0 denote
the null event type, and use the null event pairs (l0, t0) and (l0, tend) to denote the start and end times of the
trajectory. Then the likelihood of the trajectory given the CIM θ is:

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)1(l=li)e

∫ t

−∞
λl(τ |x,θ)dτ

If we assume that λl(ti|hi, θ) is constant,

p(x|S, θ) =
∏
l∈L

λ
Ml(x)
l e−λlTl(x) (2.4)

where Ml(x) is the count of events of type l in trajectory x, and Tl(x) is the total duration l is modeled. In
Chapter 6, we will leverage the similarity between Equations 2.2 and 2.4 to show that the learning frameworks
we develop apply to each type of model.

2.6 Clinical Study Designs

Previous sections have described modeling frameworks to address temporal and relational aspects of EHR
data. Here we provide background regarding the predominant use of clinical data–risk attribution–to give
insight into the integration of EHR-based machine learning into existing biostatistics analyses.

The randomized controlled trial (RCT) is the primary risk attribution method. It randomizes patients
to different treatment arms and measures the rate or probability of an outcome. The treatment arm with
the highest success rate determines the preferred treatment, and the conclusion is that future patients
who fit the entry criterion of the study should get the preferred treatment. Randomization is crucial to
balance confounders, which are covariates that lead to the outcome and are associated with the treatment.
Randomization also balances unmeasured confounders, so the study conclusion is free of confounding bias
in expectation. The quantitative outcome of the RCT study is the average treatment effect (ATE), the average
difference in probability of the outcome between two treatment arms.

In general, one cannot know what will happen to a specific patient under each treatment arm. The
treatment that is given elicits the “true” outcome, and the treatment(s) not given elicits the “counterfactual”
outcome. The counterfactual outcome is impossible to measure, but with randomization and the assumption
that patients are drawn from an underlying population distribution, the expected outcome of patients
assigned to a treatment arm is the same as the expected outcome of patients with the same treatment, true or
counterfactual. Thus, RCTs provide a recommendation about the treatment effect for every treatment arm in
the study for every patient.

The RCT is not feasible in many cases. Randomization to harmful treatments is unethical; for example, one
does not randomize patients to “smoking” and “non-smoking” treatment arms. In such cases, observational
studies are used to derive risk attribution statements, and these include cohort and case-control studies.
Observational studies make the no unobserved confounders assumption (NUCA); the techniques rely upon
modeling to pseudo-randomize the population distribution, but cannot do so effectively if they are missing
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important contributors to their model–the unobserved confounders. Observational studies are designed to
produce estimates for either the odds ratio, which can in turn be used to estimate the relative risk and the
average treatment effect, or use pseudo-randomization techniques to mimic RCT data distributions.

When estimating the odds ratio, a conditional probability distribution (CPD) is used to model the
probability of the outcome given the treatment and covariates as in, e.g., Prentice (1976). The key is to include
all confounders as covariates in the model, but not to include any intermediate variables. Intermediate
variables are variables whose value are determined in part by the treatment and in turn affect the outcome,
i.e., they are on the “causal” pathway. Logistic regression models are often used and have the convenient
characteristic that the coefficient associated with the treatment variable corresponds to the log odds ratio.

When using pseudo-randomization techniques, the idea is to re-weight the population distribution to
make the treatment independent of covariates given the outcome. Propensity score matching constructs a
model–typically a logistic regression–to stratify patients based on their propensity of treatment, matches
patients within strata, and uses the matched population as its data set (Austin, 2011; Rosenbaum & Rubin,
1983). An alternative is to weight examples by the inverse probability-of-treatment (IPT); this involves
modeling the IPT, weighting examples by 1 divided by the weights, and estimating the ATE from the pseudo-
randomized population (Robins et al., 2000). A stabilized IPT weighting scheme is often used to reduce the
potentially-large weight variance.

Combinations of these approaches exist: e.g., the doubly-robust method using IPT and then modeling
the CPD from the weighted distribution (Bang & Robins, 2005). The doubly-robust method is consistent if
either the IPT estimator or the CPD model is properly specified. Unfortunately proper specification is often
difficult to achieve and hard to assess in practice.

All of the above methods estimate the ATE, and there is a growing interest in modeling the individual
treatment effect (ITE). The ITE is preferable because ITE-recommendations are patient- not population-
specific. As a preview of Chapter 7, we suggest that machine learning could be useful in ITE estimation, and
with developments in statistical timeline analysis, EHR data could become a leading source for future risk
attribution findings.
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3 Learning Relational Forests to Predict Primary
Myocardial Infarction from Electronic Health Records

Overview

The previous chapter provided background important for Statistical Timeline Analysis. This chapter focuses
on the relational challenges of the data. In particular, EHR data come from multiple tables potentially with
different fields. This data representation cannot be practically coerced into fixed-length feature vectors, the
primary data representation for machine learning and statistics, without losing information. To address
these issues, relational learning uses the multiple table structure directly, and we adopt one such approach to
leverage the relations available in EHR data. We apply two statistical relational learning (SRL) algorithms to
the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional
gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall
region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and
suggest how our methods can augment current epidemiological practices. Similar versions of the work
in this chapter were published in the Artificial Intelligence Magazine and Proceedings of the Innovative
Applications of Artificial Intelligence (Weiss et al., 2012b;a).

3.1 Introduction

One of the most studied pathways in medicine is the health trajectory leading to heart attacks, known
clinically as myocardial infarctions (MIs). MIs are common and deadly, causing one in three deaths overall
in the United States totaling 600,000 per year (Manson et al., 1992). Because of its medical significance, MI
has been studied in depth, mostly in the fields of epidemiology and biostatistics, yet rarely in machine
learning. So far, it has been established that prediction of future MI is a challenging task. Risk stratification
has been the predictive tool of choice (Diverse Populations Collaborative Group, 2002; Wilson et al., 1998),
but these methods cannot reliably isolate the negative class; that is, everyone is still at risk. A much richer
area of study is the identification of risk factors for MI. Common risk factors have been identified such as
age, gender, blood pressure, low-density lipoprotein (LDL) cholesterol, diabetes, obesity, inactivity, alcohol
and smoking. Studies have also identified less common risk factors as well as subgroups with particular risk
profiles (Greenland et al., 2010; Antonopoulos, 2002).

The canonical method of study in this field is the identification or quantification of the risk attributable to a
variable in isolation using: case-control studies, cohort studies, and randomized controlled trials. Case-control
or cross-sectional studies identify odds ratios for the variable (or exposure) while controlling for confounders
to estimate the relative risk. Cohort studies measure variables of interest at some early time point and follow
the subjects to observe who succumbs to the disease. Randomized controlled trials are the gold standard
for determining relative risks of single interventions on single outcomes. Each of these methods is highly
focused, centered on the goal of providing the best risk assessment for one particular variable. One natural
question to ask is: by using machine learning, can we conduct fewer studies by analyzing the effects of many
variables instead?

A different and crucial limitation of the longitudinal methods is that they make measurements at fixed
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points in time. In these studies, data is collected at the study onset t0 to serve as the baseline variables, whose
values are the ones used to determined risk. To illustrate this, consider the Skaraborg cohort study (Bog-
Hansen et al., 2007) for the identification of acute MI mortality risk factors. The study measured established
risk factors for MI at t0, and then the subjects participated in annual checkups to assess patient health and
determine if an MI event had occurred. It is important to note that, in line with current practice, the subjects
who did not possess risk factors at time t0 but developed them at some later time were considered as not
possessing them in the analysis. If we knew that these developments had occurred, say from an EHR, would
it be possible to estimate the attributable risk more precisely? In the extreme, can we estimate the risk factors
and make reliable predictions without the annual checkups and the baseline t0 measurements?

More generally, can we bring a machine learning perspective to this task that provides new insights to the
study of MI prediction and risk factor identification? The answer is yes, and we present here a glimpse of the
potential machine learning has to bring to this field. We suggest that the emergence of the EHR as the new
data source for population health analyses may be able to answer these clinical questions more efficiently,
effectively adding another method of study to the standard three. For the prediction task, we emphasize
the evaluation of methods on statistics that are clinically relevant, specifically on class separability (for risk
stratification) and precision at high recalls (for use as a screening tool). Class separability, which can be directly
assessed using ROC curves, is a well-established tool for risk stratification (Diverse Populations Collaborative
Group, 2002). Evaluating precision at high recalls assesses an algorithm’s ability to predict while disallowing
many false negatives, which is the critical component to a good screening tool. For predicting MI, a false
negative means categorizing a patient as “low-risk” who goes on to have a heart attack, a costly outcome we
wish to avoid. We also focus our methodology on algorithms with good interpretability, as this is critical for
using the models for risk factor identification. In this work we survey a host of established machine learning
algorithms for their performance on this task and select the most promising algorithm for further analysis.
We attempt to answer some of these questions by providing an EHR-based framework for prediction and
risk factor identification.

As mentioned in Chapter 2, EHR data presents significant challenges to current machine learning method-
ology. If we hope to augment traditional clinical study analyses, we must be able to effectively address these
challenges. A few of them are: size, time-stamped data, relational data, and definition shifts over time.

We use Relational Functional Gradient Boosting (RFGB) because it addresses all but the last challenge,
which is difficult for any algorithm to capture. Notably, it is one of the few relational methods capable of
learning from large data sets. Moreover, RFGB can incorporate time by introducing temporal predicates
like before(A,B):-A < B. Also, unlike most other state-of-the-art SRL algorithms, RFGB allows us to learn
structure and parameters simultaneously and grows the number of models as needed. Hence, we apply
RFGB (Natarajan et al., 2010) and relational probability trees (RPTs) (Neville et al., 2003) to the task of
predicting primary myocardial infarction (MI). Our goal is to establish that, even for large scale domains such
as EHRs, that relational methods, and in particular RFBG and RPTs, can scale and outperform propositional
variants.

This chapter makes a few key contributions: First, we address the challenging problem of predicting MI
in real patients and identify ways in which machine learning can augment current methodologies in clinical
studies. Second, we address this problem using recently-developed SRL techniques, adapt these algorithms
to predicting MI and present the algorithms from the perspective of this task. Third, the task of MI prediction
is introduced to the SRL community. To our knowledge, this is the first work to use SRL methods to predict
MI in real patients. Fourth, we focus our analysis on interpretable RPT models, making it easy to discern the
relationship between different risk factors and MI. Finally, our paper serves as a first step to bridge the gap
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between SRL techniques and important, real-world medical problems.

3.2 Tree-Based Statistical Relational Learning

Statistical Relational Learning (SRL) (Getoor & Taskar, 2007), also known as relational probabilistic models,
model structure and relations in data; that is, information about one object helps the learning algorithms to
reach conclusions about other objects. Unfortunately, most SRL algorithms have difficulty scaling to large
data sets. One efficient approach that yields good results from large data sets is the relational probability
tree (Neville et al., 2003). The performance increase observed moving from propositional decision trees
to forests is also seen in the relational domain (Anderson & Pfahringer, 2009; Natarajan et al., 2010). One
method called functional gradient boosting (FGB) has achieved good performance in the propositional do-
main (Friedman, 2001). We apply it to the relational domain for our task: the prediction and risk stratification
of MI from EHRs.

Relational Probability Trees

RPTs (Neville et al., 2003) were introduced for capturing conditional distributions in relational domains.
These trees upgrade decision trees to the relational setting and have been demonstrated to build significantly
smaller trees than other conditional models and obtain comparable performance. We use a version of RPTs
that employs the TILDE relational regression (RRT) learner (Blockeel & Raedt, 1998) where we learn a
regression tree to predict positive examples (in this case, patients with MI) and turn the regression values in
the leaves into probabilities by exponentiating the regression value and normalizing them. Hence, the leaves
of the RPTs are still the probability that a person has an MI given the other attributes. The key advantage of
TILDE is that it can use conjunctions of predicates in the inner nodes as against a single test by the traditional
RPT learner. This modification has been shown to have better performance than RPTs by others (Natarajan
et al., 2010; Anderson & Pfahringer, 2009). In RRTs, the inner nodes (i.e., test nodes) are conjunctions of
literals and each RRT can be viewed as defining several new feature combinations, one corresponding to
each path from the root to a leaf. The resulting potential functions from all these different RRTs still have
the form of a linear combination of features but the features can be quite complex (Gutmann & Kersting,
2006). We use weighted variance as the criterion to split on in the inner nodes. We augment the RRT learner
with aggregation functions such as count, max, average that are used in the standard SRL literature (Getoor
& Taskar, 2007) thus making it possible to learn complex features for a given target. These aggregators are
pre-specified and the thresholds of the aggregators are automatically learned from the data. Continuous
features such as cholesterol level, ldl, bmi, etc. are discretized into bins based on domain knowledge.

Relational Functional Gradient Boosting

Assume that the training examples are of the form (xi, yi) for i = 1, ..., N and yi ∈ {0, 1} where y = MI and
x represents the set of all observations about the current patient i. The goal is to fit a model P (y|x) ∝ eψ(y,x).
The standard method of supervised learning is based on gradient-descent where the learning algorithm starts
with initial parameters θ0 and computes the gradient of the likelihood function. A more general approach is
to train the potential functions based on Friedman’s gradient-tree boosting algorithm where the potential
functions are represented by sums of regression trees that are grown stage-wise (Friedman, 2001). More
formally, functional gradient ascent starts with an initial potential ψ0 and iteratively adds gradients ∆i. Thus,
after m iterations, the potential is given by ψm = ψ0 + ∆1 + ...+ ∆m. Here, ∆m is the functional gradient at



18

episode m and is
∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (3.1)

where ηm is the learning rate. Dietterich et al.(Dietterich et al., 2004) suggested evaluating the gradient at
every position in every training example and fitting a regression tree to these derived examples i.e., fit a
regression tree hm on the training examples [(xi, yi),∆m(yi;xi)]. They point out that although the fitted
function hm is not exactly the same as the desired ∆m, it will point in the same direction, assuming that
there are enough training examples. So ascent in the direction of hm will approximate the true functional
gradient. The same idea has later been used to learn several relational models and policies (Natarajan et al.,
2010; Sutton et al., 2000; Kersting & Driessens, 2008; Natarajan et al., 2011a; Gutmann & Kersting, 2006).

Let us denote the MI as y and it is binary valued (i.e., occurrence of MI). Let us denote all the other
variables measured over the different years as x. Hence, we are interested in learning P (y|x) where P (y|x) =
eψ(y;x)/

∑
y e

ψ(y;x). Note that in the functional gradient presented in Equation 3.1, the expectation Ex,y[..]
cannot be computed as the joint distribution P (x,y) is unknown. Hence, RFGB treats the data as a surrogate
for the joint distribution.

Instead of computing the functional gradients over the potential function, they are instead computed for
each training example i given as (xi, yi). Now this set of local gradients form a set of training examples for
the gradient at stage m. Recall that the main idea in the gradient-tree boosting is to fit a regression-tree on
the training examples at each gradient step. In this work, we replace the propositional regression trees with
relational regression trees (Gutmann & Kersting, 2006; Natarajan et al., 2010; Kersting & Driessens, 2008).

The functional gradient with respect to ψ(yi = 1; xi) of the likelihood for each example (xi, yi) can be
shown to be:

∂ logP (yi; xi)
∂ψ(yi = 1; xi)

= I(yi = 1; xi)− P (yi = 1; xi),

where I is the indicator function that is 1 if yi = 1 and 0 otherwise. The expression is very similar to the one
derived in Dietterich et al.(Dietterich et al., 2004). The key idea in this work is to represent the distribution
over MI of a patient as a set of RRTs on the features. These trees are learned such that at each iteration the new
set of RRTs aim to maximize the likelihood of the distributions with respect to ψ. Hence, when computing
P (MI(X)|f(X)) for a particular patient X , given the feature set f , each branch in each tree is considered to
determine the branches that are satisfied for that particular grounding (x) and their corresponding regression
values are added to the potential ψ.

3.3 Experimental Methods

We analyzed de-identified EHR data on 18, 386 subjects enrolled in the Personalized Medicine Research
Project (PMRP) at Marshfield Clinic (McCarty et al., 2005; 2008). The PMRP cohort is one of the largest
population-based bio-banks in the United States and consists of individuals who are 18 years of age or older,
who have consented to the study and provided DNA, plasma and serum samples along with access to their
health information in the EHR. Most of the subjects in this cohort received most, if not all, of their medical
care through the Marshfield Clinic integrated health care system.

Case definition

Within the PMRP cohort, 1153 cases were selected using the first International Classification of Diseases
9th revision (ICD9) code of 410.0 through 410.1. Cases were excluded if the incident diagnosis indicated
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Figure 3.1: Flow chart depicting experimental setup

treatment for sequelae of MI or “MI with subsequent care”. The age of the first case diagnosis was recorded
and used to right-censor EHR data from both the case and the matching control one month prior to the case
event. In other words, all facts linked to the case and the matched controls after the case age–one month
prior to case diagnosis–were removed so that recent and future events could not be used in MI prediction.

Controls

To achieve a 1-1 ratio of cases to controls (i.e., positive and negative examples), cases were matched with
controls based on the last age recorded in the EHR. For many matches, this corresponds to a case who is
alive being matched to a control of the same age. For others it means matching someone who died from a
heart attack to someone who died from other causes or was lost to follow-up. Matching on last reported age
was chosen so that each subject would have both a similar age and similar presence in the EHR.
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Feature selection

As CHD is the leading cause of mortality in the US, of which MI is a primary component, risk factors are
well-studied (Antonopoulos, 2002; Greenland et al., 2010; Manson et al., 1992; Wilson et al., 1998), and those
represented in the EHR were included in our experiments. We included major risk factors such as cholesterol
levels (LDL in particular), gender, smoking status, and systolic blood pressure, as well as less common risk
factors such as history of alcoholism and procedures for echocardiograms and valve replacements. Drugs
known to have cardiac effects were included, notably the coxibs and tricyclic antidepressants. As EHR literals
are coded in hierarchies, we chose to use the most specific level of information, which often split established
risk factors into multiple subcategories. The risk factors were chosen a priori as opposed to employing
algorithmic feature selection (e.g. the feature selection inherent in decision trees) to shrink the feature size
from hundreds of thousands (excluding genetic data) to thousands for computational reasons and so that
algorithms without inherent feature selection would perform comparably. The features chosen came from
relational tables for diagnoses, medications, labs, procedures, vitals, and demographics.

Propositionalization

Patient relations were extracted to temporally-defined features in the form of “patient ever had x ∈ X” or
“patient had x ∈ X within the last year”. For laboratory values and vitals, both of which require an additional
literal for the result of the test, the result was binned into established value categories (e.g. for blood pressure,
we created five binary features by mapping the real value to {critically high, high, normal, low, and critically
low}). This resulted in a total of 1,528 binary features.

Evaluation measures

The cases and controls were split into ten folds for cross-validation in a nine-fold train set to one-fold test set.
Although we did choose a one-to-one ratio of cases to controls, in general this would not be the case, so we
chose to assess the performance of the algorithms with the area under the ROC curve (AUC-ROC), accuracy,
and by visualizing the results with a precision-recall plot. Also, precision at high recalls {0.95, 0.99, 0.995}
were calculated to assess a model’s usefulness as a screening tool. p-values were calculated comparing the
RFGB model with the comparison methods using a two-sided paired t-test on the ten-fold test sets, testing
for significant differences in accuracy and precision at a recall of 0.99.

Comparison methods

The key question is whether the relational algorithms consistently produced better predictions than their cor-
responding propositional variant. Thus we compared RFGB models to boosted decision trees (AdaBoostM1
(Ada); default parameters) and RPTs with decision tree learners (J48; C=0.25, M=2). We also included other
common models: Naive Bayes (NB; default parameters), Tree-Augmented Naive Bayes (TAN; SimpleEstima-
tor), support vector machines (SVMs; linear kernel, C 1.0; radial basis function kernel, C 250007, G 0.01), and
random forests (RF; 10 trees, default parameters). All propositional learners were run using Weka software
(Hall et al., 2009).

Secondary analysis

In our secondary analysis, we varied both the experimental setup and the RFGB parameters to investigate
the effect on their predictive ability. First, we altered the case-control ratio {1:1, 1:2, 1:3}, holding the number
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Table 3.1: Area under the ROC curve, accuracy and corresponding p-value(RFGB vs. all), precision at recall
(P@R), and p-value(RFGB vs. all, P@R=0.99). Bold indicates best performance.

AUC-ROC Accuracy p P@R=0.99 p(P@R=0.99)
Tree J48 0.744 0.716 4e-5 0.500 6e-7

Boosted Trees 0.807 0.753 1e-4 0.572 4e-4
Random Forests 0.826 0.785 4e-1 0.593 2e-3

NB 0.840 0.788 8e-1 0.513 1e-4
TAN 0.830 0.768 6e-3 0.518 2e-4

SVM (linear) 0.704 0.704 5e-6 – –
SVM (rbf) 0.761 0.761 1e-2 – –

RFGB 0.845 0.791 – 0.655 –
RPT 0.792 0.738 4e-6 0.595 4e-5

Figure 3.2: Precision-recall curves, with vertical lines denoting the recall thresholds {0.95, 0.99, 0.995}. RFGB
(dashed) and RPT (dotted) are bolded. RFGB outperforms all other algorithms in the medically-relevant
region (high recall). At recall=0.9, the ordering of algorithms (best to worst) is: RFGB, Random Forests, TAN,
NB, RPT, Boosted Trees, J48.

of cases fixed. Second, we altered the maximum number of clauses (for internal node splits) allowed per tree
{3, 10 (default), 20, 30}. Third, we altered the maximum depth of the tree {1 (stump), 5}. Finally, we altered the
number of trees {3, 10 (default), 20, 30}. We also compared the results among these analyses if they contained
the same maximum number of parameters (e.g. 30 parameters: 3 trees × 10 clauses, 10 trees × 3 clauses).

3.4 Results

The best cross-validated predictor of primary MI according to AUC-ROC was the RFGB model as shown in
Table 3.1. RFGB outperformed the other tree learners, forest learners and SVMs. The RPT model did not
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Figure 3.3: The first learned tree in the RFGB forest

score as well, ranking in the middle of the propositional learners. It is of note that the RFGB and RPT models
significantly outperformed their direct propositional analogs (Boosted Tree and Tree models, respectively).
The Bayesian model (NB; TAN) scores may be somewhat inflated because only features known to be CHD
risk factors were specifically chosen for this analysis. They may be more prone to irrelevant feature noise as
those models include all features into their final models.

The precision-recall curves for the algorithms are shown in Figure 3.2 (SVMs are omitted as their outputs
do not admit a ranking over examples). Medically, the most important area is the region of high recall
(i.e. sensitivity) because typically the cost of leaving a condition undiagnosed is high. In other words, the
expected cost of a false positive is much smaller than a false negative because a false positive incurs the costs
of additional interventions, while a false negative incurs costs of untreated human morbidity, and usually
expensive, delayed treatments. Given that we cannot accept models with many false negatives (i.e. low recall),
we look to the high recall region for the best performing algorithm, and RFGB gives the highest precision as
shown in Table 3.1.

In our secondary analysis, when changing the case-control ratio we observed an increase in the AUC-ROC
as well as the expected increase in accuracy and decrease in precision shown in Table 3.2. We suspect the
improvement in AUC-ROC may be attributed to the larger population size, as for example CC 1:3 has twice
as many examples as CC 1:1. RFGB performance improved with increases with forest size, with the greatest
gains coming between using three and ten trees, and no overfitting was observed using our largest fifty-tree
forest (see our website: http://cs.wisc.edu/~jcweiss/iaai2012). Varying the number of clauses or tree
depth made no visible difference in RFGB performance, at least when holding the number of trees fixed at
ten. Per parameter, we found that increasing forest size improved prediction more than increasing individual
tree sizes, as we see by comparing equal-parameter rows in Table 3.2.

Figure 3.3 shows an example tree produced in the RFGB forest. We can read this as follows. Given a
patient A and their censor age B (i.e. for cases, one month before their first MI; for controls, the censor age

Table 3.2: Secondary analyses: RFGB performance as case-control ratio (CC), number of clauses, trees and
tree depth are modified. Default number of clauses = 10 and trees = 10

AUC-ROC Accuracy P@R=0.99
CC 1:1;1:2;1:3 .84;.87;.88 .79;.80;.82 .66;.51;.43
Trees 3;20;30 .80;.85;.85 .74;.80;.80 .61;.67;.66

Clauses 3;20;30 .85;.85;.85 .79;.79;.79 .66;.66;.66
Tree depth 1;5 .85;.85 .79;.79 .66;.66

http://cs.wisc.edu/~jcweiss/iaai2012


23

Figure 3.4: Density of cases (dashed) and controls (solid) by {RFGB (left), RPT (right)} prediction, one line per
fold. Taking the integral from 0 to cutoff c for example at c = 0.05 and c = 0.25 shows that RFGB identifies
many controls at low-risk of developing MI.

of the corresponding case), if A had a normal non-HDL cholesterol measurement at time C, take the left
branch, otherwise take the right branch. Assuming we took the left branch, if the measurement C was within
one year of the censor age, take the left branch again. The leaf regression value is the best estimate of the
residual of the probability of the covered examples given the model at that iteration. The whole RFGB forest
is available at our website: http://cs.wisc.edu/~jcweiss/iaai2012.

Direct interpretation of the tree can lead to useful insights. In the example above, the tree indicates that a
patient is more likely to have a future MI event if they have had a normal non-HDL cholesterol level reading
in the last year compared to patients who have had normal cholesterol readings not in the last year. Now, since
it is implausible that the measurement itself is causing MI, it could be considered a proxy for another “risk
factor”, which in this case could be physician concern, as frequent lipoprotein measurements may display a
concern for atherosclerosis-related illness. The set of trees can also be converted into a list of weighted rules
to make them more interpretable (Craven & Shavlik, 1996).

The density plot in Figure 3.4 shows the ability of RFGB and RPT models to separate the MI class from
the controls. It is clear from the far left region of the RFGB graph that we can accurately identify a substantial
fraction of controls with few cases by thresholding around 0.25, or more stringently at 0.05. This region
captures an algorithm’s utility as a screening tool, where we see that RFGB significantly outperforms the
others.

http://cs.wisc.edu/~jcweiss/iaai2012
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3.5 Discussion

One layer of complexity not addressed in this experiment is the use of other relational information such as
hierarchies. EHRs have hierarchies for diagnoses, drugs, and laboratory values, and it is important to be able
to capture detail at each level. For example, characteristic disease progression pathways stem from infarctions
of different heart walls, but at a high level, the presence of any MI leads to standard sequelae. Relational
domains can easily incorporate this knowledge into hierarchical “is a” relations, whereas propositional
learners must create new features for every level. The challenge for relational tree-based learners is that the
search algorithm is greedy; identifying high-level relations requires traversing several “is a” relationships
first, and thus they might not be found in a greedy search. Expanding internal nodes to longer clauses has
been implemented with some success (Natarajan et al., 2010; Anderson & Pfahringer, 2009), although this
does have the effect of rapidly increasing the number of features to consider during branching. The use
of SRL algorithms could also allow the use of relations like patient physicians and providers, which form
complex relations less “patient-disease”-oriented but ones that still may be central to patient care. Questions
regarding disease heritability could also be addressed through relational family-based analyses.

Given the success of the RFGB method, one extension would include the addition of more potential
risk factors for learning (i.e., include all the measurements on all the patients). This could be challenging as
the number and frequencies of the measurements differ greatly across patients. In the experimental RFGB
model, we used time as the last argument of our predicates. While a vast body of work discusses learning
and reasoning with temporal models in propositional domains, the situation is not the same for relational
models. The investigation of a principled approach to learn and reason with relational dynamic models that
allows physicians to monitor the cardiovascular risk levels of patients over time and develop personalized
treatment plans could be extremely valuable. Finally, deployment of a complete machine learning system for
identifying risk factors across many diseases given EHR data could immediately augment the clinical work
flow.

3.6 Summary

In this chapter, we presented the challenging and high-impact problem of primary MI from an EHR database
using a subset of known risk factors. We adapted two SRL algorithms in this prediction problem and
compared them with standard machine learning techniques. We demonstrated that RFGB is as good as
or better than propositional learners at the task of predicting primary MI from EHR data. Each relational
learner does better than its corresponding propositional variant, and in the medically-relevant, high recall
region of the precision-recall curve, RFGB outperforms all the other methods that were considered. One
limitation of this method is that time could only be used logically in the forest learning algorithm. In the
next three chapters, we explore explicit timeline models, which capture time in continuous fashion and can
model over multiple time scales.
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4 Learning Multiplicative Forests for Continuous-Time
Bayesian Networks

Overview

We turn now to modeling EHR patient data as timelines in a continuous-time framework. This framework
allows us to effectively learn temporal dependencies between variables at varying time scales, which is
important medically because events tend to arrive in clusters. We adopt the continuous-time Bayesian
network (CTBN) model, which effectively model events over continuous time. However, it is limited by the
number of conditional intensity matrices, which grows exponentially in the number of parents per variable.
We develop a partition-based representation using regression trees and forests whose parameter spaces grow
linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest
likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be
learned from few temporal trajectories with large gains in performance and scalability. A similar version of
this chapter was published in the Proceedings of the Neural Information Processing Systems Conference
(Weiss et al., 2012c).

4.1 Introduction

The modeling of temporal dependencies is an important and challenging task with applications in fields that
use forecasting or retrospective analysis, such as finance, biomedicine, and anomaly detection. Many studies
have analyzed temporal data using fixed, discrete time intervals, e.g., Dean & Kanazawa (1989), but for many
timelines, there is no natural discretization available making the time series assumption overly restrictive.
Previous work provides evidence that using time series analysis on continuous-time data is less effective
than using continuous-time models directly (Nodelman et al., 2003).

We specifically investigate probabilistic models over finite event spaces across continuous time, i.e.,
continuous-time Markov process (CTMP). This model provides an initial distribution over states and a rate
matrix parameterizing the rate of transitioning between states. However, it does not scale to joint states
over many variable states because the number of joint states is exponential in the number of variables, and
thus the size of the CTMP rate matrix grows exponentially in the number of variables. Continuous-time
Bayesian networks (CTBNs) are a family of CTMPs with a factored representation that encode rate matrices
for each variable and the dependencies among variables (Nodelman, 2007). Figure 2.5 shows an example of a
trajectory, i.e., a timeline where the state of each variable is known for all times t, for a CTMP with four joint
states (a, b), (a,B), (A, b), and (A,B) factorized into two binary CTBN variables α and β (with states a and
A, and b and B, respectively).

Previous work on CTBNs includes several approaches to performing CTBN inference (Nodelman et al.,
2005; Saria et al., 2007; Cohn et al., 2009; Fan & Shelton, 2008; Rao & Teh, 2011) and learning (Nodelman
et al., 2003; Nodelman, 2007). Briefly, CTBNs do not admit exact inference without transformation to the
exponential-size CTMP. Approximate inference methods including expectation propagation (Nodelman
et al., 2005), mean field (Cohn et al., 2009), importance sampling-based methods (Fan & Shelton, 2008), and
MCMC (Rao & Teh, 2011) have been applied, and while these methods have helped mitigate the inference
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problem, inference in large networks remains a challenge. CTBN learning involves parameter learning using
sufficient statistics (e.g. numbers of transitions M and durations T in Figure 2.5) and structure learning over
a directed (possibly cyclic) graph over the variables to maximize a penalized likelihood score. Our work
addresses learning in a generalized framework to which the inference methods mentioned above can be
extended.

In this work we introduce a generalization of CTBNs: partition-based CTBNs. Partition-based CTBNs
remove the restriction used in CTBNs of storing one rate matrix per parents setting for every variable. Instead
partition-based CTBNs define partitions over the joint state space and define the transition rate of each
variable to be dependent on the membership of the current joint state to an element (part) of a partition. As
an example, suppose we have partition P composed of parts p1 = {(a, b), (A, b)} and p2 = {(a,B), (A,B)}.
Then the transition into si from joint state (A,B) in Figure 2.5 would be parameterized by transition rate qa|p2 .
Partition-based CTBNs store one transition rate per part, as opposed to one transition rate matrix per parents
setting. Later we will show that, for a particular choice of partitions, a partition-based CTBN is equivalent to
a CTBN. However, the more general framework offers other choices of partitions which may be more suitable
for learning from data.

Partition-based CTBNs avoid one limitation of CTBNs: that the model size is necessarily exponential in
the maximum number of parents per variable. For networks with sparse incoming connections, this issue
is not apparent. However, in many real domains, a variable’s transition rate may be a function of many
variables.

Given the framework of partition-based CTBNs, we need to provide a way to determine useful partitions.
Thus, we introduce partition-based CTBN learning using regression tree modifications in place of CTBN
learning using graph operators of adding, reversing, and deleting edges. In the spirit of context-specific
independence (Heckerman, 1993), we can view tree learning as a method for learning compact partition-based
dependencies. However, tree learning induces recursive subpartitions, which limits their ability to partition
the joint state space. We therefore introduce multiplicative forests for CTBNs, which allow the model to
represent up to an exponential number of transition rates with parameters still linear in the number of splits.

Following canonical tree learning methods, we perform greedy tree and forest learning using iterative
structure modifications. We show that the partition-based change in log likelihood can be calculated efficiently
in closed form using a multiplicative assumption. We also show that using multiplicative forests, we can
efficiently calculate the ML parameters. Thus, we can calculate the maximum change in log likelihood for a
forest modification proposal, which gives us the best iterative update to the forest model.

Finally, we conduct experiments to compare CTBNs, regression tree CTBNs (treeCTBNs) and multiplica-
tive forest CTBNs (mfCTBNs) on three data sets. Our hypothesis is twofold: first, that learning treeCTBNs
and mfCTBNs will scale better towards large domains because of their compact model structures, and second,
that mfCTBNs will outperform both CTBNs and treeCTBNs with fewer data points because of their ability
to capture multiplicative dependencies.

The rest of the chapter is organized as follows: in Section 4.2 we provide background on CTBNs. In Section
4.3 we present partition-based CTBNs, show that they subsume CTBNs and define the partitions that tree
and forest structures induce. We also describe theoretical advantages of using forests for learning and how
to learn these models efficiently. We present results in Section 4.4 showing that forest CTBNs are scalable to
large state spaces and learn better than CTBNs, from fewer examples and in less time. Finally, in Sections 4.5
and 4.6 we identify connections to functional gradient boosting and related continuous-time processes and
discuss how our work addresses one limitation that prevents CTBNs from finding widespread use.
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4.2 Background

CTBNs are probabilistic graphical models that capture dependencies between variables over continuous time.
As a reminder, and for notational consistency, we reintroduce CTBNs here. Recall that a CTBN is defined
by 1) a distribution for the initial state over variables X given by a Bayesian Network B, and 2) a directed
(possibly cyclic) graph over variables X with a set of Conditional Intensity Matrices (CIMs) for each variable
X ∈ X that hold the rates (intensities) qx|u of variable transitions given their parents UX in the directed
graph. A CTBN variable X ∈ X has states x1, . . . , xk, and there is an intensity qx|u for every state x ∈ X
given an instantiation over its parents u ∈ UX . The intensity is the rate of transitioning out of state x; the
probability density function for staying in state x given an instantiation of parents u is qx|ue−qx|ut. Given a
transition,X moves to some other state x′ with probability Θxx′|u. Taking the product over intervals bounded
by single transitions, we obtain the CTBN trajectory likelihood:∏

X∈X

∏
x∈X

∏
u∈UX

q
Mx|u
x|u e−qx|uTx|u

∏
x′ 6=x

ΘMxx′|u
xx′|u

where the Mx|u and Mxx′|u are the sufficient statistics indicating the number of transitions out of state x
(total, and to x′, respectively), and the Tx|u are the sufficient statistics for the amount of time spent in x given
the parents are in state u.

4.3 Partition-based CTBNs

Here we define partition-based CTBNs, an alternative framework for determining variable transition rates.
We give the syntax and semantics of our model, providing the generative model and likelihood formulation.
We then show that CTBNs are one instance in our framework. Next, we introduce regression trees and
multiplicative forests and describe the partitions they induce, which are then used in the partition-based
CTBN framework. Finally, we discuss the advantages of using trees and forests in terms of learning compact
models efficiently.

Let X be a finite set of discrete variables X of size n, with each variable X having a discrete set of states
{x1, x2, . . . , xk}, where k may differ for each variable. We define a joint state s = {x1, x2, . . . , xn} over X
where the subscript indicates the variable index. We also define the partition space P = X 1. We will shortly
define set partitions P over P , composed of disjoint parts p, each of which holds a set of elements s.

Next we define the dynamics of the model, which form a continuous-time process over X . Each variable
X transitions among its states with rate parameter qx′|s for entering state x′ given the joint state s2. This rate
parameter (called an intensity) parameterizes the exponential distribution for transitioning into x′, given by
the pdf: p(x′, s, t) = qx′|se

−qx′|st for time t ∈ [0,∞).
A partition-based CTBN has a collection of set partitions P over P , one Px′ for every variable state x′. For

shorthand, we will often denote p = Px′(s) to indicate the part p of partition Px′ to which state s belongs.
We define the intensity parameter as qx′|s = qx′|p for all s ∈ p. Note that this fixes this intensity to be the
same for every s ∈ p, and also note that the set of parts p covers P . The pdf for transitioning is given by
p(x′, s, t) = p(x′, Px′(s), t) = qx′|pe

−qx′|pt for all s in p.
1Note we can generalize this to larger spaces P = R×X , whereR is an external state space as in (Gunawardana et al., 2011). but

for our analysis we restrictR to be a single element r, i.e. P ∼= X .
2Of note, partition-based CTBNs are modeling the intensity of transitioning to the recipient state x′, rather than from the donor

state x because we are more often interested in the causes of entering a state.
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Now we are ready to define the partition-based CTBN model. A partition-based CTBN modelM is
composed of a distribution over the initial state of our variables, defined by a Bayesian network B, and a set
of partitions Px′ for every variable state x′ with corresponding sets of intensities qx′|p.

The partition-based CTBN provides a generative framework for producing a trajectory z defined by a
sequence of (state, time) pairs (si, ti). Given an initial state s0, transition times are sampled for each variable
state x′ according to p(x′, Px′(s0), t). The next state is selected based on the transition to the x′with the shortest
time, after which the transition times are resampled according to p(x′, si, t). Due to the memoryless property
of exponential distributions, no resampling of the transition time for x′ is needed if p(x′, si, t) = p(x′, si−1, t).
The trajectory terminates when all sampled transition times exceed a specified ending time.

Given a trajectory z, we can also define the model likelihood. For each interval ti, the joint state
remains unchanged, and then one variable transitions into x′. The likelihood given the interval is:
qx′|si−1

∏
X

∏
x∈X e

−qx|si−1 ti , i.e., the product of the probability density for x′ and the probability that no
other variable transitions before ti. Taking the product over all intervals in z, we get the model likelihood:∏

X∈X

∏
x′∈X

∏
s

q
Mx′|s
x′|s e−qx′|sTs (4.1)

whereMx′|s is the number of transitions into x′ from state s, and Ts is the total duration spent in s. Combining
terms based on the membership of s to p and defining Mx′|p =

∑
s∈pMx′|s and Tp =

∑
s∈p Ts, we get:

Eq.(4.1) =
∏
X∈X

∏
x′∈X

∏
p∈Px′

q
Mx′|p
x′|p e−qx′|pTp

CTBN as a partition-based CTBN

Here we show that CTBNs can be viewed as an instance of partition-based CTBNs. Each variable X is given
a parent set UX , and the transition intensities qx|u are recorded for leaving donor states x given the current
setting of the parents u ∈ UX . The CTBN likelihood can be shown to be:∏

X∈X

∏
x∈X

∏
u∈UX

e−qx|uTx|u
∏
x′ 6=x

q
Mxx′|u
xx′|u (4.2)

as in (Saria et al., 2007), where qxx′|u and Mxx′|u denote the intensity and number of transitions from state x
to state x′ given parents setting u, and

∑
x′ 6=x qxx′|u = qx|u. Rearranging the product from equation 4.2, we

achieve a likelihood in terms of recipient states x′:

Eq. (4.2) =
∏
X∈X

∏
x∈X

∏
u∈UX

∏
x′ 6=x

q
Mxx′|u
xx′|u e−qxx′|uTx|u

=
∏
X∈X

∏
x′∈X

∏
p∈Px′

q
Mx′|p
x′|p e−qx′|pTp (4.3)

where we define p as {x} × {u} × (X \ (X × UX)) in each partition Px′ , and likewise: qx′|p = qxx′|u, Mx′|p =
Mxx′|u, andTp = Tx|u. Thus, CTBNs are one instance of partition-based CTBNs, with partitions corresponding
to a specified donor state x and parents setting u.
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Tree and forest partitions

Trees and forests induce partitions over a space defined by the set of possible split criteria (Strobl et al., 2009).
Here we will define the Conditional Intensity Trees (CITs): regression trees that determine the intensities
qx′|p by inducing a partition over P . Similarly, we will define Conditional Intensity Forests (CIFs), where tree
intensities are named intensity factors whose product determines qx′|p. An example of a CIF, composed of a
collection of CITs, is shown later in the experiment results in Figure 4.3.

Formally, a Conditional Intensity Tree (CIT) fx′ is a directed tree structure on a graph G(V,E) with nodes
V and edges E(Vi, Vj). Internal nodes Vi of the tree hold splits σVi

= (πVi
, {E(Vi, ·)}) composed of surjective

maps πVi
: s 7→ E(Vi, Vj) and lists of the outgoing edges. The maps π induce partitions over P and endow

each outgoing edge E(Vi, Vj) with part pVj
. External nodes l, or leaves, hold non-negative real values qCIT

x′|p
called intensities. A path ρ from the root to a leaf induces a part p, which is the intersection of the parts on
the edges of the path: p =

⋂
E(Vi,Vj)∈ρ pVj

. The parts corresponding to paths of a CIT form a partition over P ,
which can be shown easily using induction and the fact that the maps πVi

induce disjoint parts pVj
that cover

P .
A Conditional Intensity Forest (CIF) Fx′ is a set of CITs {fx′}. Because the parts of each CIT form a partition,

a CIF induces a joint partition over P where a part p is the set of states s that have the same paths through
all CITs. Finally, a CIF produces intensities from joint states by taking the product over the intensity factors
from each CIT: qCIF

x′|pCIF =
∏
fx′

qCIT
x′|pCIT .

Using regression trees and forests can greatly reduce the number of model parameters. In CTBNs, the
number of parameters grows exponentially in the number of parents per node. In tree and forest CTBNs, the
number of parameters may be linear in the number of parents per node, exploiting the efficiency of using
partitions. Notably, however, tree CTBNs are limited to having one intensity per parameter. In forest CTBNs,
the number of intensities can be exponential in the number of parameters. Thus, the forest model has much
greater potential expressivity per parameter than the other models.

Forest CTBN learning

Here we discuss the reasoning for using the multiplicative assumption and derive the changes in likelihood
given modifications to the forest structure. Previous forests learners have used an additive assumption, e.g.
averaging and aggregating, thereby taking advantage of properties of ensembles (Freund & Schapire, 1995;
Breiman, 2001). However, if we take the sum over the intensity factors from each tree, there are no direct
methods for calculating the change in likelihood aside from calculating the likelihood before and after a
forest modification, which would require scanning the full data once per modification proposal. Furthermore,
summing intensity factors could lead to intensities outside the valid domain [0,∞).

Instead we use a multiplicative assumption since it gives us the correct range over intensities. As we show
below, using the multiplicative assumption also has the advantage that it is easy to compute the change in
log likelihood with changes in forest structure. Consider a partition-based CTBNM = (B, {Fx′}) where the
partitions Px′ and intensities qx′|p are given by the CIFs {Fx′}. We focus on change in forest structure for
one state x′ ∈ X and remove x′ from the subscript notation for simplicity. Given a current forest structure F
and its partition P , we formulate the change in likelihood by adding a new CIT f ′ and its partition P ′. One
example of f ′ is a new a one-split stub. Another example of f ′ is a tree copied to have the same structure
as a CIT f in F with all intensity factors set to one, except at one leaf node where a split is added. This is
equivalent to adding a split to f . We denote P̂ as the joint partition of P and P ′ and parts p̂ ∈ P̂ , p ∈ P , and
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p′ ∈ P ′. We consider the change in log likelihood ∆LL given the new and old models:

∆LL = (
∑
p̂

Mp̂ log qp̂ − qp̂Tp̂)− (
∑
p

Mp log qp − qpTp)

= (
∑
p̂

Mp̂(log qp′ + log qp)− qp̂Tp̂)− (
∑
p

Mp log qp − qpTp)

= (
∑
p̂

Mp̂ log qp′ − qp̂Tp̂) +
∑
p

qpTp

=
∑
p′

Mp′ log qp′ −
∑
p̂

qp̂Tp̂ +
∑
p

qpTp (4.4)

We make use of the multiplicative assumption that qp̂ = qp′qp and
∑
pMp =

∑
p′Mp′ =

∑
p̂Mp̂ to arrive at

equation 4.4. The first and third terms are easy to compute given the old intensities and new intensity factors.
The second term is slightly more complicated:∑

p̂

qp̂Tp̂ =
∑
p̂

qp′qpTp̂ =
∑
p′

qp′
∑
p̂∼p′

qpTp̂

We introduce the notation p̂ ∼ p′ to denote the parts p̂ that correspond to the part p′. The second term is a
summation over parts p̂; we have simply grouped together terms by membership in p′.

The number of parts in the joint partition set P̂ can be exponentially large, but the only remaining
dependency on the joint partition space in the change in log likelihood is the term

∑
p̂∼p′ qpTp̂. We can keep

track of this value as we progress through the trajectories, so the actual time cost is linear in the number of
trajectory intervals. Thinking of intensities q as rates, and given durations T , we observe that the second
and third terms in equation 4.4 are expected numbers of transitions: Ep̂ =

∑
p̂ qp̂Tp̂ and Ep =

∑
p qpTp. We

additionally define Ep′ =
∑
p̂∼p′ qpTp̂. Specifically, the expectations Ep′ and Ep are the expected number of

transitions in part p′ and p using the old model intensities, respectively, whereas Ep̂ is the expected number
of transitions using the new intensities.

Maximum-likelihood parameters

The change in log likelihood is dependent on the intensity factor values {qp′}we choose for the new partition.
We calculate the maximum likelihood parameters by setting the derivative with respect to these factors to
zero to get qp′ = Mp′∑

p̂∼p′
qpTp̂

= Mp′

Ep′
. Following the derivation in (Nodelman et al., 2003), we assign priors to

the sufficient statistics calculations. Note, however, that the priors affect the multiplicative intensity factors,
so a tree may split on the same partition set twice to get a stronger effect on the intensity, with the possible
risk of undesirable overfitting.

Forest implementation

We use greedy likelihood maximization steps to learn multiplicative forests (mfCTBNs). Each iteration
requires repeating three steps: (re)initialization, sufficient statistics updates, and model updates. Initially we
are given a blank forest Fx′ per state x′ containing a blank tree fx′ , that is, a single root node acting as a leaf
with an intensity factor of one. We also are given sets of possible splits {σ} and a penalty function κ(|Z|, |M|)
to penalize increased model complexity. First, for every leaf l inM, we (re)initialize the sufficient statistics
Ml and El inM, as well as sufficient statistics for potential forest modifications: Ml,σ, El,σ, ∀l, σ. Then, we
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traverse each of our trajectories z ∈ Z to update each leaf. For every (state, duration) pair (si, ti), where ti
is the time spent in state si−1 before the transition to si, we update the sufficient statistics that compose
equation 4.4. Finally, we compute the change in likelihood for possible forest modifications, and choose the
modification with the greatest score. If this score is greater than the cost of the additional model complexity,
κ, we accept the modification. We replace the selected leaf with a branch node split upon the selected σ.
The new leaf intensity factors are the product of the old intensity (factor) ql and the intensity factor qp′ . We
present pseudocode in Algorithm 1.

Algorithm 1 Multiplicative forest learning
Input: trajectories zi ∈ Z, blank forests Fx′ ∈M, partition sets {Π}, penalty κ = κ(|Z|, |M|)

1: function learnModel(Z,M)
2: repeat
3: resetSufficientStatistics(M)
4: updateSufficientStatistics(Z,M,Π)
5: zeroSplits = makeSplits(M)
6: until zeroSplits = true
7: end function
8: function updateSufficientStatistics(Z,M,Π)
9: for (si, ti) ∈ zi ∈ Z do

10: for Leaf l = lj,x′ , {l ∈ {fx′} ∈ M | d(l, si) = ∅} do
11: if(d(si, si−1) = {x′}): Ml = Ml + 1
12: El = El + qx′|si−1ti
13: for π ∈ {Π} do
14: if(d(π, si) = ∅, d(si, si−1) = {x′}): Ml,π = Ml,π + 1
15: if(d(π, si) = ∅): El,π = El,π + qx′|si−1ti
16: end for
17: end for
18: end for
19: end function
20: function makeSplits(M)
21: madeSplit = false
22: for {fx′} ∈ M do
23: Splits {σl,Π} = {(Ml, El, {Ml,π, El,π}∀π ∈ Π)}, ∀Π, l ∈ {fx′}
24: (bestScore, bestSplit) = (argmaxσl,Π{deltaLogLikelihood(σl,Π)− κ}, σl,Π)
25: if (bestScore > 0) then
26: split(σl,Π)
27: if(¬Fx′ .lastTreeBlank()): Fx′ .addBlankTree()
28: madeSplit = true
29: end if
30: end for
31: return ¬madeSplit
32: end function
33: function deltaLogLikelihood(σl,Π)
34: qπ = Mπ/Eπ, ∀π ∈ Π
35: return (

∑
Π Mπ log qπ − qπEπ) + El

36: end function

Unlike most forest learning algorithms, mfCTBNs learn trees neither in series nor in parallel. Notably, the
best split is determined solely by the change in log likelihood, regardless of the tree to which it belongs. If it
belongs to the blank tree at the end of the forest, that tree produces non-trivial factors and a new blank tree
is appended to the forest. In this way, as mfCTBN learns, it automatically determines the forest size and tree
depth according to the evidence in the data.
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Figure 4.1: The cardiovascular health (CV health) structure used in experiments.

4.4 Experiments

We evaluate our tree learning and forest learning algorithms on samples from three models. The first model,
which we call “Nodelman”, is the benchmark model developed in (Nodelman, 2007; Nodelman et al., 2003).
The second is a cardiovascular health model we call “CV health” shown in Figure 4.1. The cause of pathologies
in this field are known to be multifactorial (Kannel, 1996). For example, it has been well-established that
independent positive risk factors for atherosclerosis include being male, a smoker, in old age, having high
glucose, high BMI, and high blood pressure. The primary tool for prediction in this field is risk factor analysis,
where transformations over the product of risk factor values determines overall risk. The third model we call
“S100” is a large-scale model with one hundred binary variables. Parents are determined by the binomial
distribution B(0.05, 200) over variable states, with intensity factor ratios of 1 : 0.5. Our goal is to show that
treeCTBNs and mfCTBNs can scale to much larger model types and still learn effectively. In our experiments
we set the potential splits {σ} to be the set of binary splits determined by indicators for each variable state x′.
We set κ to be zero and terminate model learning when the tune set likelihood begins to decrease.

We compare our algorithms against the learning algorithm presented in (Nodelman et al., 2003) using
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code from (Shelton et al., 2010), which we will call N-CTBN. N-CTBNs perform a greedy Bayesian structure
search, adding, removing, or reversing arcs to maximize the Bayesian information criterion score, a trade-
off between the likelihood and a combination of parameter and data size. Our algorithms use a tune set
by sieving off one quarter of the original training set trajectories. We use the same Laplace prior as used
in (Shelton et al., 2010). We use the same training and testing set for each algorithm. The trajectories are
sampled from the ground truth models for durations 10, 10 and 2 units of time, respectively. We evaluate the
three models using the testing set average log likelihood. To provide an experimental comparison of model
performance, we choose to analyze the p-values for a two-sided paired t-test for the average log likelihoods
between mfCTBNs and N-CTBNs for each training set size. The results come from testing sets with one
thousand sampled trajectories.

Results

Figure 4.2 (top) shows that the mfCTBN substantially outperforms both the treeCTBN and the N-CTBN on
the Nodelman model in terms of average log likelihood. This effect is most pronounced with relatively few
trajectories, suggesting that mfCTBNs are able to learn more quickly than either of the other models.

We observe an even larger difference between the mfCTBN and the other models in the CV health model
in Figure 4.2 (middle). With relatively few trajectories, the mfCTBN is able to identify the multifactorial
causes as observed in the high log likelihood and structural recall. For runs with fewer than 500 training
set trajectories, many N-CTBN models have nodes including every other node as a parent, requiring the
estimation of about 300,000 parameters on average.

Figure 4.2 (bottom) shows that mfCTBNs can effectively learn dense models an order of magnitude larger
than those previously studied. The expected number of parents per node in the S100 model is approximately
20. In order to exactly reconstruct the S100 model, a traditional CTBN would then need to estimate 221

intensity values. For many applications, variables need more parents than this. We observe that N-CTBNs
have difficulty scaling to models of this size. The N-CTBN learning time on this data set ranges from 4 hours
to more than 3 days; runs were stopped if they had not terminated in that time. About one third of the runs
failed to complete, and the runs that did complete suggested that N-CTBN performed poorly, similar to
the differences observed in the CV health experiment. We suspect the algorithm may be similarly building
nodes with many parents; the model might need to estimate 2100 parameters, a bottleneck at minimum. By
comparison, all runs using treeCTBNs and mfCTBNs completed in less than 1 hour. The averaged results of
N-CTBNs on the S100 model are omitted accordingly.

We tested for significant differences in the average log likelihoods between the N-CTBN and mfCTBN
learning algorithms. In the Nodelman model, the differences were significant at level of p =1e-10 for sizes 10
through 500, p = 0.05 for sizes 1000 and 5000, and not significant for size 10000. In the CV health model, the
differences were significant at p =1e-9 for all training set sizes. We were unable to generate a t-test comparison
of the S100 model.

Figure 4.3 shows the ground truth forest and the mfCTBN forest learned for the “severe atherosclerosis”
state in the CV health model. To calculate the intensity of transitioning into this state, we identify the leaf in
each forest that matches the current state and take the product of their intensity factors. Figure 4.3 (bottom)
shows the recovery of the correct dependencies in approximately the right ratios.
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Figure 4.2: Average testing set log likelihood varying the training set size for each model: Nodelman (top),
CV health (middle), and S100 (bottom). N-CTBN averages are omitted on the S100 model as one third of the
runs did not terminate.
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Figure 4.3: Ground truth (top) and mfCTBN forest learnt from 1000 trajectories (bottom) for intensity/rate of
developing severe atherosclerosis.

Learning curves

To characterize basic properties of multiplicative forest learning, we investigated the importance of the tune
set as the stopping criterion. Figure 4.4 shows the learning curves for training and testing sets as a function
of split attempts. Vertical lines show where the BIC and AIC scores would have terminated the process:
κ(BIC) = 1

2 |H| log |Z| and κ(AIC) = |H|. Unlike forests used in ensembles, multiplicative forests do not
exhibit stabilizing behavior. We suspect that the decreased model stability as the number of split attempts
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increases might be due to the multiplicative assumption.
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Figure 4.4: Training and testing set average log likelihood (black and red, respectively), for training set size of
10, 100, 1000 on the CV health model. {Solid, dashed, dotted} vertical lines indicate the {tune set, BIC, and
AIC} stopping criterion if met.

4.5 Related Work

We discuss the relationships between mfCTBNs and related work in two areas: forest learning and continuous-
time processes. Forest learning with a multiplicative assumption is equivalent to forest learning in the log
space with an additive assumption and exponentiating the result. This suggests that our method shares
similarities with functional gradient boosting (FGB), a leading method for constructing regression forests,
run in the log space (Friedman, 2001).

Specifically, in Section 4.3, we showed that, given a new partition proposal p′, the maximum likelihood
intensity factors are given by the ratio of the observed to expected number of transitions: Mp′/Ep′ .

Observed transitions in Z
Expected transitions under H

= Mp′

Ep′

This result suggests a connection to functional gradient boosting (FGB), one of the leading methods for
constructing regression forests (Friedman, 2001). FGB methods perform gradient-descent in the function
space by fitting regression trees to residuals at every gradient step. Suppose we have observations y on the
domain [0,∞); we might use FGB to learn log y because FGB uses additive trees, and directly learning y from
x could give negative values, i.e. ŷ = f(x) outside the domain. Using FGB over log y|x builds multiplicative
forests: the residual predicted in the tree fi+1(x) is (log y −

∑
fi
fi(x)), and taking the exponent of this

quantity is simply the ratio y/ŷ.
Nevertheless, there are several critical differences between mfCTBNs and FGB learning. First, mfCTBNs

are not given explicit outcomes y, so updates maximize the change in log likelihood based on sufficient
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statistics calculations instead of minimizing a loss function in FGB. Second, our algorithm does not restrict
learning of additional trees prior to the completion of previous trees, allowing the model to determine when
to expand the forest size or tree depth. Node splits in any tree can occur in any iteration of forest learning. By
comparison, in FGB, trees are constructed to completion and are static as new trees are learned. To provide
the ability to modify any tree at any learning iteration, FGB would have to do leave-one-(tree)-out modeling,
that is, predict log y −

∑
fi,i6=j fi(x) for all j, a potentially expensive operation. To recap, our method is

different primarily in its direct use of a likelihood-based objective function and in its ability to modify any
tree in the forest at any iteration.

Several other works that model variable dependencies over continuous time also exist. Poisson process
networks and cascades model variable dependencies and event rates (Rajaram et al., 2005; Simma, 2010).
Perhaps the most closely related work, piecewise-constant conditional intensity models (PCIMs), reframes
the concept of a factored CTMP to allow learning over arbitrary basis state functions with trees, possibly
piecewise over time (Gunawardana et al., 2011). These point process models focus on the “positive class”,
i.e. the observation or count of observations of an event. Thus they run into the limitations of making the
closed-world assumption. That is, given a timeline, we receive all observations of events but not necessarily
all occurrences of the events, and we would like to include this uncertainty in our model. In point processes,
the representation of the “negative” class is missing, when in some cases it is the absent state of a variable
that triggers a process, as for example in the case of gene expression networks and negative regulation.
Nonetheless, in Chapter 6 we extend the multiplicative forest idea to sidestep the inference problems that
are discussed in the next chapter.

4.6 Summary

We presented an alternative representation of the dynamics of CTBNs using partition-based CTBNs instanti-
ated by trees and forests. Our models grow linearly in the number of forest node splits, while CTBNs grow
exponentially in the number of parent nodes per variable. Motivated by the domain over intensities, we
introduced multiplicative forests and showed that CTBN likelihood updates can be efficiently computed
using changes in log likelihood. Finally, we showed that mfCTBNs outperform both treeCTBNs and N-
CTBNs in three experiments and that mfCTBNs are scalable to problems with many variables. With our
contributions in developing scalable CTBNs and efficient learning, along with continued improvements in
inference, CTBNs can be a powerful statistical tool to model complex processes over continuous time. We
expose the challenges of CTBN inference in the next chapter and develop a sampling method that improves
upon the existing sequential importance sampler, in turn improving the scalability of CTBN inference to
problems where more evidence is observed.
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5 Rejection-Based Inference for Continuous-Time Bayesian
Networks

Overview

Having presented an efficient representation and learning algorithm for CTBNs in the previous chapter, in
this chapter we discuss how to approach timelines with incomplete observations. Approximate inference
procedures based on sequential importance sampling are often used, but when proposal and target distri-
butions are dissimilar, the procedures lead to biased estimates or require a prohibitive number of samples.
This chapter introduces a method that better approximates the target distribution by sampling variable by
variable from existing importance samplers and accepting or rejecting each proposed assignment in the
sequence: a choice made based on anticipating upcoming evidence. We relate the per-variable proposal and
target distributions by expected weight ratios of sequence completions and show that we can learn accurate
models of optimal acceptance probabilities from local samples. In a continuous-time domain, our method
improves upon previous importance samplers by transforming a sequential importance sampling problem
into a machine learning one. A similar version of this chapter is in preparation for submission.

5.1 Introduction

Sequential importance sampling (SIS) is a method for approximating a target distribution that samples
from a proposal distribution and weights by the ratio of target and proposal distributions at each step
of the sequence. It provides the basis for many distribution approximations with applications including
robotic environment mapping and speech recognition (Montemerlo et al., 2003; Wolfel & Faubel, 2007).
The characteristic shortcoming of importance sampling stems from the potentially high weight variance
that results from large differences in the target and proposal densities. SIS compounds this problem by
iteratively sampling over the steps of the sequence, resulting in sequence weights that are the product of step
weights. The sequence weight distribution is exponential, so only the high-weight tail of samples contributes
substantially to the distribution approximation. Two approaches to mitigate this problem are filtering, e.g.,
(Doucet et al., 2000; Fan et al., 2010), where particles are resampled according to their weights to maintain a
low-variance weight distribution, and adaptive importance sampling, e.g., (Cornebise et al., 2008; Yuan &
Druzdzel, 2003; 2007a), where the proposal distribution adapts to be closer to the target.

One drawback of filtering is that it does not efficiently account for future evidence, and in cases of severe
proposal-evidence mismatch, many resampling steps are required, leading to sample impoverishment. In
line with adaptive importance sampling, our method addresses proposal-evidence mismatch by developing
“foresight”, i.e. adaptation to approaching evidence, to guide its proposals. It develops “foresight” by learning
a binary classifier dependent on approaching evidence to accept or reject the step from the original proposal
distribution. Our procedure can be viewed as the construction of a second proposal distribution, learned to
account for evidence and to better approximate the target distribution. Our method is a new form of adaptive
importance sampling; we contrast our method with earlier forms in Section 5.1.

In greater detail, our task is to recover a target distribution f∗, which can be factored variable by variable
into component conditional distributions f∗i for i ∈ 1 . . . k. The SIS framework provides a suboptimal
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surrogate distribution g, which likewise can be factored into a set of conditional distributions gi. We propose
a second surrogate distribution h closer to f∗ based on learning conditional acceptance probabilities ai of
rejection samplers relating f∗i and gi. That is, to sample from h, we iteratively (re-)sample from proposals gi
and accept with probability ai.

Our key idea is to relate the proposal gi and target f∗i distributions by the ratio of expected weights of
sequence completions, i.e., a setting for each variable from i to k, given acceptance and rejection of the sample
from gi. Given the expected weight ratio, we can recover the optimal acceptance probability a∗i and thus f∗i .

Unfortunately, the calculation of the expected weights, and thus the ratio, is typically intractable because
of the exponential number of sequence completions. Instead, we can approximate it using machine learning.
First, we show that the expected weight ratio equals the odds of accepting a proposal from gi under the f∗i
distribution. Then, transforming the odds to a probability, we can learn a binary classifier for the probability
of acceptance under f∗i given the sample proposal from gi. Finally, we show how to generate examples to
train a classifier to make the optimal accept/reject decision.

We specifically examine the application of our rejection-based SIS algorithm to continuous-time Bayesian
networks (CTBNs) (Nodelman, 2007), which have applications for example in anomaly detection (Xu &
Shelton, 2010) and medicine (Weiss et al., 2012c). We find our methods to be more generally applicable,
e.g., to dynamic Bayesian networks and sequential forecasting models, but we focus our analysis on CTBNs.
The existing CTBN importance sampler g uses a combination of exponential and truncated exponential
distributions to select interval transitions that agree with evidence (Fan et al., 2010). Using g, each evidence
point causes a stochastic downweighting in a fraction of the samples, which results in an increase in variance
of the importance weights and exhibits a mismatch between f∗ and g. Because a sequence weight corresponds
to the product of its interval weights, the stochastic downweighting of intervals approaching non-matching
evidence produces a high-variance distribution of sequence weights. Experimentally, we show that rejection-
based SIS improves our ability to approximate f∗ with many fewer samples.

We proceed as follows. We conclude the introduction with an illustrative example and related work. In
Section 5.2, we define rejection sampling within sequential importance sampling and show how to approxi-
mate the target distribution via binary classification. In Section 5.3, we extend our analysis to continuous-time
Bayesian networks. We describe experiments in Section 5.4 that show the empirical advantages of our method
over previous CTBN importance samplers. Possible extensions related to our work are provided in Section
5.5 and we conclude in Section 5.6.

An Illustrative Example

Figure 5.1 describes our method in the simplest relevant example: a binary-state Markov chain. For our
example, let k = 3: then we have evidence that z3 = 1. One possible sample procedure could be:

S, accept z2
1 , reject z2

2 , accept z1
2 , reject z2

3 , accept z1
3 , T,

giving us the path: S, z2
1 , z

1
2 , z

1
3 , T . Note that if the proposal g3 to z1

3 given state z1
2 were very improbable

under g but not f (i.e., proposal-evidence mismatch), all samples running through z1
2 would have very large

weight. By introducing the possibility of rejection at each step, our procedure can learn to reject samples to
z2

3 , reducing the importance sampling weight, and learn to enter states z1
2 and z2

2 proportionally to f(·|e), i.e.,
develop “foresight”.
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f1 f2 f3f:
g1 g2 g3g:

(f(•|e), target)
(g, proposal)

S T

z1
1

z1
2

z2
1

z2
2

zk
1

zk
2

...

...

...

...

Figure 5.1: A source-to-sink representation of a binary-state Markov chain with evidence at zk (red). Distribu-
tions f and g are defined over paths from source S to sink T and are composed of element-wise distributions
fi and gi. If a sample is at state z2

1 (dark blue), an assignment to z2
2 is proposed (light blue) according to g2.

To mimic sampling from f∗2 = f2(·|e), the proposed assignment is accepted with probability proportional to
the ratio of expected weights of path completions from z2

2 and z2
1 to T , giving us our proposal h2.

Related Work

As mentioned above, batch resampling techniques based on rejection control (Liu et al., 1998; Yuan &
Druzdzel, 2007b) or sequential Monte Carlo (SMC) (Doucet et al., 2000; Fan et al., 2010), i.e. particle filtering,
can mitigate the SIS weight variance problem, but they can lead to reduced particle diversity, especially when
many resampling iterations are required. Particle smoothing (Fan et al., 2010) combats particle impoverish-
ment, but the exponentially-large state spaces used in CTBNs limit its ability to find alternative, probable
sample histories. Previous adaptive importance sampling methods rely on structural knowledge and other
inference methods, e.g., (Cheng & Druzdzel, 2000; Yuan & Druzdzel, 2003), to develop improved proposals,
whereas our method learns a classifier to help guide samples through regions of proposal-evidence mismatch.
One interesting idea combining work in filtering and adaptive importance sampling is the SMC2 algorithm
(Chopin et al., 2011), which maintains a sample distribution over both particles and parameters determining
the proposal distribution, resampling along either dimension as necessary. The method does not anticipate
future evidence, so it may complement our work, which can similarly be used in the SMC framework. Other
MCMC (Rao & Teh, 2011) or particle MCMC (Andrieu et al., 2010) methods may have trouble in large
state spaces (e.g., CTBNs) with multiple modes and low density regions in between, especially if there is
proposal-evidence mismatch.

5.2 Learning to Reject

Recall from the importance sampling setup that we have two distributions f and g, and the existing sampling
approach approximates f with samples from g. Each sample from g comes with an associated weight wfg.
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Now, we design a second surrogate h(z) with the density corresponding to accepting a sample from g:

h(z) = g(z)a(z)
(∫

Ω
g(ζ)a(ζ)dζ

)−1
(5.1)

where a(z) is the acceptance probability of the sample from g. The last term in Equation 5.1 is a normalizing
functional (of g and a) to ensure that h(z) is a density. Procedurally, we sample from h by (re-)sampling from
g and accepting with probability a. The approximation of f∗ with h is given by:∫

Z
f∗(z)dz =

∫
Z

f∗(z)
g(z)

g(z)
h(z)h(z)dz

≈ 1
n

n∑
i=1

1[zi∈Z]wif∗gwigh

with weights wif∗h = wif∗gw
i
gh. To ensure that h has the support of f∗, we require that both a and g are

non-zero everywhere f∗ is non-zero.
Now we can define our optimal resampling density h∗(z) using the optimal choice of acceptance prob-

ability a∗(z) = min(1, f∗(z)/αg(z)), where α ≥ 1 is a constant determining the familiar rejection sampler
“envelope”: αg(z). The density h∗(z) is optimal in the sense that, for appropriate choice of α such that
f∗(z) < αg(z) for all z, h∗(z) = f∗(z). When h∗(z) = f∗(z), the importance weights are exactly 1, and the
effective sample size is n.

In many applications the direct calculation of f∗(z) is intractable or impossible and thus we cannot directly
recover a∗(z) or h∗(z). However, we can still use these ideas to find h∗(z) through sequential importance
sampling (Liu et al., 1998), which we describe next.

Now, we consider the sequential importance sampling (SIS) extension, where we again need to iden-
tify the relationship between the target and proposal decompositions. Recall that we are interested in
sampling directly from the conditional distribution f∗(z) = f(z|e) for fixed e. We define interval distri-
butions f∗1 (z1) and f∗i (zi|z(i−1)←1) such that f∗(z) can be factored into the interval distributions: f∗(z) =
f∗1 (z1)

∏k
i=2 f

∗
i (zi|z(i−1)←1). Using Bayes’ theorem, we have:

f∗(z) = p(e|z1)
p(e) p(z1)

k∏
i=2

p(e|zi←1)
p(e|z(i−1)←1)p(zi|z(i−1)←1).

Thus, we define the interval distributions:

f∗i (zi|z(i−1)←1) = p(e|zi←1)
p(e|z(i−1)←1)p(zi|z(i−1)←1)

for i > 1 and p(e|z(i−1)←1) > 0, and f∗(z1) = p(e|z1)p(z1)/p(e) for i = 1 and p(e) > 0. Then, by the law of
probability, we have:

f∗i (zi|z(i−1)←1) = Ef [1[e, z]|zi←1]
Ef [1[e, z]|z(i−1)←1]p(zi|z(i−1)←1). (5.2)

The indicator function 1[e, z] is shorthand for 1[
⋂
l∈κ{zl=el}|z] and takes value 1 if the evidence matches

z and 0 otherwise. Note that in the sampling framework, Equation 5.2 corresponds to sampling from the
unconditioned proposal distribution p(zi|z(i−1)←1) and calculating the expected weight of sample comple-
tions zk←(i+1) and zk←i, given by the indicator functions. This procedure describes the expected outcome
obtained by forward sampling with rejection.
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However, when f∗ and f are highly dissimilar, the vast majority of samples from f will be rejected, i.e.,
1[e, z] = 0 for most z. It may be better to sample from a proposal g with weight function w = f/g so that
sampling leads to fewer rejections. Substituting g in Equation 5.2, we get:

f∗i (zi|z(i−1)←1) = Eg[wak←i]
Eg[wrk←i]

gi(zi|z(i−1)←1). (5.3)

The terms Eg[wak←i] and Eg[wrk←i] are the expected forward importance sampling weights of zk→i given
acceptance (a) or rejection (r) of proposed assignment zi.

To derive Equation 5.3, we relate the target densities f∗i (zi|z(i−1)←1) with the proposal densities
gi(zi|z(i−1)←1) via the (standard) derivation of Equation 4 by employing Bayes’ theorem, the law of total
probability, and substitution:

f∗i (zi|z(i−1)←1)

= p(e|zi←1)
p(e|z(i−1)←1)p(zi|z(i−1)←1)

=

∑
zk←i+1

p(e|zk←i+1, zi←1)p(zk←i+1|zi←1)∑
zk←i

p(e|zk←i, zi−1←1)p(zk←i|zi−1←1) p(zi|zi−1←1)

=

∑
zk←i+1

1[
⋂
l∈κ{zl=el}|{z}]p(zk←i+1|zi←1)∑

zk←i

1[
⋂
l∈κ{zl=el}|{z}]p(zk←i|zi−1←1) p(zi|zi−1←1)

=
Eg[1[e, z]

∏k
j=i+1 wj(zj |zj−1←1)|zi←1]

Eg[1[e, z]
∏k
j=i wj(zj |zj−1←1)|zi−1←1]

p(zi|zi−1←1)

=
Eg[1[e, z]

∏k
j=i wj(zj |zj−1←1)|zi←1]

Eg[1[e, z]
∏k
j=i wj(zj |zj−1←1)|zi−1←1]

gi(zi|zi−1←1)

= Eg[wak←i]
Eg[wrk←i]

gi(zi|z(i−1)←1). �

Equation 5.3 provides the relationship we want: f∗i versus gi, given by the ratio of expected weights of
completion of sample z under acceptance or rejection of zi. This allows us to further improve g and gives us
the sampling distribution h.

Rejection Sampling to Recover f∗i

Because Equation 5.3 relates the two distributions, we can generate samples from f∗i by conducting rejection
sampling from gi. Selecting constant α such that f∗i ≤ αgi, i.e., αgi is the rejection envelope, we define the
optimal interval acceptance probability a∗i by:

a∗i (zi|z(i−1)←1) =
f∗i (zi|z(i−1)←1)
αgi(zi|z(i−1)←1) = Eg[wak←i]

αEg[wrk←i]
. (5.4)

By defining a∗i for all i, we can generate an unweighted sample from f∗(z) in O(k maxi(f∗i (·)/gi(·))) steps
given the weight ratio expectations and appropriate choice of α. Thus, if we can recover a∗i for all i, we get
h = f∗ as desired and our procedure generates unweighted samples.
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Estimating the Weight Ratio

The procedure of sampling intervals to completion depends on the expected weight ratio in Equation 5.3.
Unfortunately, exact calculation of the ratio is impractical because the expectations involved require summing
over an exponential number of terms. We could resort to estimating it from weighted importance samples:
completions of z given zi←1 and z given z(i−1)←1. While possible, this is inefficient because (1) it would
require weight estimations for every zi given zi←1, and (2) the estimation of the expected weights itself relies
on importance sampling.

However, we can cast the estimation of the weight ratio as a machine learning problem of binary classi-
fication. We recognize that similar situations, in terms of state zi←1, evidence e, model (providing f ) and
proposal g, result in similar values of a∗i . Thus, we can learn a binary classifier Φi(zi←1, e, f, g) to represent
the probability of {acceptance, rejection} = {φi(·), 1− φi(·)} as a function of the situation.

In particular, the expected weight ratio in Equation 5.3 is proportional to the odds under f∗ of accepting the
zi sampled from gi. The binary classifier provides an estimate of the probability of acceptance φi(zi←1, e, f, g),
from which we can derive the odds of acceptance. Substituting into Equation 5.4, we have:

a∗i (zi|z(i−1)←1) ≈ 1
α

(
φi(zi←1, e, f, g)

1− φi(zi←1, e, f, g)

)
= ai(zi|z(i−1)←1)

denoting the approximations as ai for all i. Then our empirical proposal density h is:

h(z) = h1(z1)
k∏
i=2

hi(zi)

= g1(z1)a1(z1)c1[g1, a1]
k∏
i=2

gi(zi|z(i−1)←1)ai(zi|z(i−1)←1)ci[gi, ai]

where the ci are the normalizing functionals as in Equation 5.1. We provide pseudocode for the rejection-based
SIS procedure in Algorithm 2.

Training the Classifier Φi

Conceptually, generating examples for the classifier Φi is straightforward. Given some z(i−1)←1, we sample
zi from gi, accept with probability ρ = 1/2, and sample to completion using g to get the importance weight.
Then, an example is (y, x, w): y = {accept, reject}, x is a set of features encoding the “situation”, and w is the
importance weight.

The training procedure works because the mean weight of the positive examples estimates Eg[wak←i],
and likewise the mean weight of the negative examples estimates Eg[wrk←i]. By sampling with training
acceptance probability ρ, a calibrated classifier Φρi (i.e., one that minimizes the L2 loss) estimates the proba-
bility: ρEg[wak←i]/(ρEg[wak←i] + (1− ρ)Eg[wrk←i]). The estimated probability can then be used to recover the
expected weight ratio:

Eg[wak←i]
Eg[wrk←i]

≈
(

1− ρ
ρ

)(
φρi (zi←1, e, f, g)

1− φρi (zi←1, e, f, g)

)
,

and thus, the optimal classifier can be used to recover the rejection-based acceptance probability a∗i . We get
our particular estimator φi/(1− φi) by setting ρ = 1/2, though in principle we could use other values of ρ.

In practice, we sample trajectories alternating acceptance and rejection of samples zi to get a proportion
ρ = 1/2. Then, we continue sampling the same trajectory to produce 2k training examples for a sequence
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Algorithm 2 Rejection-based SIS
Input: conditional distributions {fj} and {gj} ∀j, evidence e; constants α, k; i = 1, z = {}, w = 1; classifiers
{φj}

Output: sample z with weight w
1: function SampleH(...)
2: while i ≤ k do
3: accept = false
4: while not accept do
5: Sample zi ∼ gi, r ∼ U[0, 1]
6: a = 1

α

(
φi(zi,z,e,f,g)

1−φi(zi,z,e,f,g)

)
7: if r < a then
8: accept = true
9: end if

10: end while
11: z = {zi, z}, w = wfi(zi)c[gi(zi), a(zi)]/(gi(zi)a)
12: i = i+ 1
13: end while
14: return (z, w)
15: end function

of length k. We adopt this procedure for efficiency at the cost of generating related training examples. We
provide pseudocode for the example generation procedure for learning the classifier in Algorithm 3.

Inevitably, there is some cost to pay to construct h, including time for feature construction, classifier
training, and classifier use. The level of sophistication needed will be problem-dependent. However, in many
challenging problems the simpler methods will not produce an ESS of any appreciable size, in our case
because of a mismatch between f∗ and g, and in MCMC because of mode hopping difficulties. Our method
adopts an approach complementary to particle methods to help tackle such problems, and we show its utility
in the CTBN application.

5.3 Sampling in CTBNs

Evidence provided in data is typically incomplete, i.e., the joint state is partially or fully unobserved over time.
Thus, inference is performed to probabilistically complete the unobserved regions. CTBNs are generative
models and provide a sampling framework to complete such regions. Let a trajectory z be a sequence of
(state,time) pairs (zi={x1i, x2i, . . . , xdi}, ti) for i = {0, . . . , k}, where xji is the jth CTBN variable at the ith
time, such that the sequence of ti are in [tstart, tend). Given an initial state z0 = {x10, x20, . . . , xd0}, transition
times are sampled for each variable x according to qx|ue−qx|ut where x is the active state of X . The variable
Xi that transitions in the interval is selected based on the shortest sampled transition time. The state to which
Xi transitions is sampled from Θxix′i|u. Then the transition times are resampled according to intensities qx|u,
noting that these intensities may be different because of potential changes in the parents setting u. Due to the
memoryless property of exponential distributions, no resampling of the transition time for a variable X is
needed if the intensity qx|u is unchanged. The trajectory terminates when all sampled transition times exceed
a specified ending time.

Previous work by Fan et al. describes a framework for importance sampling, particle filtering, and
particle smoothing in CTBNs (Fan et al., 2010). The idea is to modify the sampling of each interval so that
the interval end time cannot pass by impending, non-matching evidence. The process is as follows. The
first future non-matching evidence states are found for each variable and their corresponding evidence
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Algorithm 3 Training examples for learning
Input: conditional distributions {fj} and {gj} ∀j, evidence el for l in evidence data; n examples
Output: classifier φ

1: function get_examples(e, {fj}, {gj}, k)
2: z = {}; i = 1;w = 1; d = 1
3: while i ≤ k do
4: // one negative, one positive example //
5: for l ∈ {reject, accept} do
6: Sample zi ∼ gi(z)
7: wi = fi(zi)/gi(zi)
8: (y, x, u)d = (l,get_x(zi, z, e, {fj}, {gj}), wi)
9: d = d+ 1

10: end for
11: z = {zi, z};w = wwi; i = i+ 1
12: end while
13: for i = 1 to d do
14: (y, x, u)i = (y, x, w/u)i // w/ui : sequence completion weight //
15: end for
16: return {(y, x, u)}
17: end function
18: list = []
19: while size(list)< n do
20: for all trajectories zj of length k do:
21: list.append(get_examples(ej , {fj}, {gj}, k))
22: end for
23: end while
24: φ = learn(list)
25: return φ

times τi are recorded. If no non-matching evidence exists for a variable, τi =∞. Then, instead of sampling
transition times from exponential distributions, the times for eachX are sampled from truncated exponentials:
t1 ∼ t0 + qx|ue

−qx|ut/(1− e−qx|uτ ).
By sampling from truncated exponentials, Fan et al. incur importance sample downweights on their

samples. Recall that Equation 2.1 is broken into three components. The weights f∗i /gi are decomposed
likewise: (1) a downweight for the variable x that transitions, according to the ratio of the exponential to the
truncated exponential: (1− e−qx|uτ ), (2) a downweight corresponding to a lookahead point-estimate of Θu

assuming no other variables change until the evidence (we leave this unmodified in our implementation),
and (3) a downweight for each resting variable xi given by the ratio of not sampling a transition in time t
from an exponential and a truncated exponential: (1− e−qxi|uτi)/(1− e−qxi|u(τi−t1)). Finally, the product of
all interval downweights provides the trajectory importance sample weight.

While ensuring the validity of each sample, the proposal distribution g in Fan et al. (2010) is non-optimal
for sampling complete trajectories. Figure 5.2 shows that stochastic downweighting of some particles occurs
at every evidence point, increasing the variance of importance sampling weights each time.

Rejection-Based Importance Sampling in CTBNs

Before we can extend our methodology to CTBNs, we need to show the equivalence of a fixed continuous-time
trajectory and the discrete sequences described in Section 5.2. In particular, the rejection-based importance
sampling method requires that the number of intervals k must be fixed, while CTBNs produce trajectories
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Figure 5.2: Sampling from g results in stochastic downweights. A sample trajectory z, given evidence of
“blue” (tick at t = 2.3), is shown at bottom, with colors showing the sequence state {yellow, blue, yellow, blue}.
The sampled truncated exponentials result in weights equal to the ratio of densities f∗/g (gray/maroon). In
this trajectory, the weight is the product of interval weights: (0.9)(1)(0.1). Some sample trajectories pass the
evidence with full weight and some do not, resulting in a weight variance factor per evidence point.

with varying numbers of intervals (in fact, the number is unbounded). Nevertheless, for any set of trajectories,
we can define ε-width intervals small enough that at most one transition occurs per interval and that such
transitions occur at the end of the interval. Then for any set of trajectories over the duration [tstart, tend), we set
k = (tend− tstart)/ε. Using the memoryless property of exponential distributions, it is straightforward to show
that the density of a single, one-transition interval is equal to the density of the product of a sequence of
ε-width, zero-transition intervals and one ε-width, one-transition interval. This equivalence between ε-width
sequences and CTBN trajectories allows us to define CTBNs in relation to the analysis from Section 5.2. In
practice, it is simpler to use the CTBN sampling framework so that each interval is of appreciable size. We
denote the evidence e as a sequence of tuples of type (state, start time, duration): (ei, ti,0, τi) allowing for
point evidence with zero duration, τi = 0, and 1[e, z] checks to see if z agrees with each ei throughout the
duration.

Unlike the discrete-time case where we can enumerate the states zi, in the continuous-time case the
calculation of wgh can be time-consuming because of the normalizing integrals ci[gi, ai]. From Equation 5.1,
we have, omitting the conditioning:

gi(zi)
hi(zi)

=
∫

Ωi
ai(ζ)gi(ζ)dζ
ai(zi)

.



47

For appropriate α and optimal acceptance a∗, we get:

gi(zi)
h∗i (zi)

=
∫

Ωi
a∗i (ζ)gi(ζ)dζ
a∗i (zi)

=
∫

Ωi
α−1f∗i (ζ)dζ

f∗i (zi)(αgi(zi))−1 = 1
wi;f∗g

.

For appropriate α and acceptance ai, we get:

gi(zi)
hi(zi)

=
∫

Ωi
ai(ζ)gi(ζ)dζ
ai(zi)

≈ 1
αai(zi)

= 1− φi(·)
φi(·)

. (5.5)

The approximation here is that the learned acceptance probability produces a proper conditional probability
distribution for each situation. While not guaranteed, the classifier mimics the data distribution, which is
drawn from a valid probability distribution. Thus for appropriate, e.g., non-parametric, classifiers and ample
data, the approximation error tends to be small as we demonstrate empirically.

For arbitrary α and acceptance ai, we are left to compute the integral in Equation 5.5. Approaches could
include (1) approximating it with samples from gi, or (2) constraining the classifier to output acceptance
probabilities such that the product gi(zi)ai(zi) can be calculated in closed form. In our experiments, we
follow Equation 5.5 and verify the approximation does not introduce significant bias, see, e.g., Figure 5.3
(bottom).

Several properties of CTBNs make our learning framework appealing. First, CTBNs possess the Markov
property; namely, the next state is independent of previous states given the current one. Second, CTBNs are
homogeneous processes, so the model rate parameters are shared across all intervals. We leverage these facts
when learning each acceptance probability ai. The Markov property simplifies the learned probability of
acceptance φi(zi|z(i−1)←1, e, f, g) to φi(zi|z(i−1), e, f, g). Homogeneity simplifies the learning process because,
if z(i−1) = z(j−1) and ti,0 = tj,0 for j 6= i, then φi(zi|z(i−1), e, f, g) = φi(zj |z(j−1), e, f, g). The degeneracy of
these two cases indicates that the probability of acceptance is a function of the situation and independent of
the interval index, so a single classifier can be learned in place of k classifiers.

5.4 Experiments

We compare our learning-based rejection method (setting α = 2) with the truncated exponential sampler
for modeling CTBNs (Fan et al., 2010). We learn a logistic regression (LR) model using online, stochastic
gradient descent for each CTBN state. An LR data example is (y, x, w), where y is one of {accept, reject}, x is
a set of features, and w is the sequence completion weight. For our experiments we use per-variable features
encoding the state (as indicator variables), the time from the current time to next evidence, the time from the
proposed sample to next evidence, and the time from the proposed sample to next matching evidence. The
times are mapped to intervals [0, 1] by using a e−t/λ transformation, with λ = {10−2, 10−1, 100, 101, 102} to
capture effects at different time scales. Because of the high variance in weights for samples of full sequence
completions, we instead choose a local weight: the weight of the sequence through the next m = 10 evidence
times. This biases the learner to have low variance weights within the local window, but it does not bias the
proposal h.

We analyze the performance of the rejection-based sampler by inspection of learned transition probability
densities and the effective sample size (ESS) (Kong et al., 1994). ESS is an indicator of the quality of the
samples, and a larger value is better: ESS = 1/(

∑n
i=1(W i)2), where W i = wi/

∑n
j=1 w

j . We test our method
in several models: one-, two- and three- variable, strong-cycle binary-state CTBNs, and the partially-binary,
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Table 5.1: Table of the geometric mean of effective sample size (ESS) over 100 sequences, each with 100
observations; ESS is per 105 samples. The proposal h was learned with 1000 sequences.

Model Fan et al. (g) Rejection SIS (h)
Strong cycle, n=1 690 6400
Strong cycle, n=2 19000 35000
Strong cycle, n=3 960 5800

Drug 29 170

8-variable drug model presented in the original CTBN paper (Nodelman, 2007). The “strong-cycle” models
encode an intensity path for particular joint states by shifting bit registers and adding and filling in an empty
register with a 0 or 1 as in the following example. For the 3-variable strong cycle, intensities involved in the
path 000 → 001 → 011 → 111 → 110 → 100 → 000 are 1, and intensities are 0.1 for all other transitions.
We generate sequences from ground truth models and censor each to retain only 100 point evidences with
times ti drawn randomly, uniformly over the duration [0,20). We provide the active state, intensities, point
evidence times, variables and states in the form of features to the classifier.

Figure 5.3 (top) illustrates the ability of h to mimic f∗, the target distribution, in a one-node binary-state
CTBN with matching evidence at t = 5. The Fan et al. proposal g is chosen to match the target density in the
absence of evidence f . However, when approaching evidence (at t = 5), the probability of a transition given
evidence goes to 0 as the next transition must also occur before t = 5 to be a viable sequence. Only f∗ and h
exhibit this behavior. Figure 5.3 (bottom) shows the density approximations after weighting the samples,
given a trajectory with evidence at t = 5 and 19 evidence points after t = 20. Each method recovers the target
distribution, but h does so more precisely than g, given a fixed number of samples (one million). As a proxy
for the extra work required to sample from h, the proposal acceptance rate was measured to be 45 percent.

Table 5.1 shows that the learned, rejection-based proposal h outperforms the other CTBN importance
sampler g across all 4 models, resulting in an ESS 2 to 10 times larger. Generally as the number of variables
increases, the ESS decreases because of the increasing mismatch between f∗ and g. With an average ESS
of only 29 in an 8-variable model, as we increase model sizes, we expect that g would fail to produce a
meaningful sample distribution more quickly than h would.

To illustrate further, using the drug model and 10 evidence points, Figure 5.4 shows that the weight
distribution from h is narrower than that from g on the log scale. The interpretation is that a larger fraction of
examples from h contribute substantially to the total weight, resulting in a lower variance sample distribution.
For example, any sample with weight below e−10 has negligible relative weight and does not substantially
affect the sample distribution. There are many fewer such samples generated from h than from g.

5.5 Discussion

Continued investigations are warranted, and we discuss several possible extensions: (1) the use of non-
parametric learning algorithms, (2) a procedure for expanding the local weight approximations to the full
sequence, and (3) an iterative procedure to learn the acceptance probability and construct a new proposal g′

not requiring rejection sampling. First, in our experiments we used logistic regression models; however, we
know that there is a correct outcome for every “situation”, so the function we wish to learn is distribution-
free. Non-parametric learning algorithms are appropriate for such problems, although their relative lack of
scalability to large dimensions could be problematic. Ones that take into account the form of the normalizing
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functionals ci[giai] should also be investigated. Second, the generation of examples with weights reflecting the
expected weight ratio is intractable for the full sequence. In our experiments we show a good approximation
using weights based on a window of m evidence steps. We believe we can iteratively extend the window
size to decrease the approximation error. Finally, if the initial surrogate distribution gi is far from f∗i , the
rejection rate r = (α − 1)/α = maxf∗i (·)/gi(·) must be large to recover f∗i from gi. Instead, a closed-form
function approximating hi can be used to learn a new rejection-based proposal h′i. Akin to works in adaptive
importance sampling, e.g., (Cheng & Druzdzel, 2000), this iterative procedure would generate an improving
sequence of closed-form sampling distributions while lowering the rate of rejection.

5.6 Summary

Our work has demonstrated that machine learning can be used to improve sequential importance sampling
via a rejection sampling framework. First, we showed that the proposal and target distributions are related
by an expected weight ratio. Then, the weight ratio can be estimated by the probabilistic output of a binary
classifier learned from weighted, local importance samples. We extended the algorithm to CTBNs, where we
found experimentally that using our learning algorithm produces a sampling distribution closer to the target
and generates more effective samples.

Despite this, our algorithm will have trouble with EHR-sized inference problems, so in the next chapter
we consider point processes which sidestep the CTBN inference problem altogether. We maintain that CTBNs
richly model uncertainty and are often preferable in cases where inference is possible. The next chapter
highlights the differences between CTBNs and point processes in detail.
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Figure 5.3: Approximate transition densities (top) of f∗ (target), f (target without evidence), g (surrogate),
and h (learned rejection surrogate) in a one-variable, binary-state CTBN with uniform transition rates of
0.1 and matching evidence at t=5. The learned distribution h closely mimics f∗, the target distribution with
evidence, while g was constructed to mimic f (exactly, in this situation). All methods recover the weighted
transition densities (bottom); for 20 evidence points with one at t=5 and 19 after t=20, h recovers the target
distribution more precisely than g per 106 samples.
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6 Learning Multiplicative Forests for Point Processes and
Event Prediction from Electronic Health Records

Overview

Motivated by the challenges in CTBN inference we turn now to point process, an alternative model that
models event data arriving at semi-irregular intervals. We extend our CTBN forest idea to build multiplicative-
forest point processes (MFPPs), which learn the rate of future events based on an event history. MFPPs join
theory in partition-based continuous-time Bayesian networks and piecewise-continuous conditional intensity
models. We analyze the advantages of using MFPPs over previous methods and show that on synthetic and
real EHR forecasting of heart attacks, MFPPs outperform earlier methods and augment off-the-shelf machine
learning algorithms. This work is based on published work in Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2013).

6.1 Introduction

EHRs record information about individuals who have regular check-ups interspersed with hospitalizations
and medical emergencies. These sequences of semi-irregular events can be considered as timelines. However,
the majority of models incorporating time use a time-series data representation, where data are assumed
to arrive at regular intervals. Irregular arrivals of events violate this assumption and lead to missing data
and/or aggregation, resulting in a loss of information. Experimentally, such methods have been shown to
underperform analogous continuous-time models (Nodelman et al., 2003).

To address the irregularity of medical event arrivals, we develop a continuous-time model: multiplicative-
forest point processes (MFPPs). Unlike CTBNs, which model event durations, MFPPs model the rate of
event occurrences. Futhermore, they make the assume that they are dependent on an event history in a
piecewise-constant manner. For example, the event of aspirin consumption (or lack thereof) may affect the rate
of myocardial infarction, or heart attack, which in turn affects the rate of thrombolytic therapy administration.
Our goal is to learn a model that identifies such associations from data.

MFPPs build on previous work in piecewise-constant conditional intensity models (PCIMs) using ideas
from multiplicative-forest continuous-time Bayesian networks (mfCTBNs) (Gunawardana et al., 2011; Weiss
et al., 2012c). MFPPs extends the regression tree structure of PCIMs to regression forests. Unlike most forest
learning algorithms, which minimize a classification loss through functional gradient ascent or ensembling,
MFPPs are based on a multiplicative-forest technique developed in CTBNs. Here, a multiplicative assumption
for combining regression tree values leads to optimal marginal log likelihood updates with changes in forest
structure. The multiplicative representation allows MFPPs to concisely represent composite rates, yet also to
have the flexibility to model rates with complicated dependencies. As the multiplicative forest model leads
to representational and computational gains in mfCTBNs, we show that similar gains can be achieved in the
point process domain. We conduct experiments to test two main hypotheses. First, we test for improvements
in learning MFPPs over PCIMs, validating the usefulness of the multiplicative-forest concept. Second, we
assess the ability of MFPPs to classify individuals for myocardial infarction from EHR data, compared to
PCIMs and off-the-shelf machine learning algorithms.
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Specifically we address two modeling scenarios for forecasting: ex ante (meaning “from the past”) fore-
casting and supervised forecasting. An ex ante forecast is the traditional type of forecasting and occurs if
no labels are available in the forecast region. An example of ex ante forecasting is the prediction of future
disease onset from the present day forwards. Acquiring labels from the future is not possible, and labels from
the past may introduce bias through a cohort effect. However, in some cases, labels may be used, and we
call such forecasts “supervised”. An example of supervised forecasting is the retrospective cohort study to
predict the class of unlabeled examples as well as to identify risk factors leading to disease. The application
of continuous-time models to the forecasting case is straightforward. When labels are available, however, we
choose to apply MFPPs in a cascade learning framework, where the MFPP predictions contribute as features
to supervised learning models.

In Section 6.2, we discuss point processes and contrast them from continuous-time Bayesian networks
(CTBNs) noting their matching likelihood formulations given somewhat different problem setups. We show
that multiplicative forest methods can be extended to point processes. We also introduce the problem of
predicting myocardial infarction, discuss the various approaches to answering medical queries, and introduce
our method of analysis. In Section 6.3, we present results on synthetic timelines and real health records data
and show that MFPPs outperform PCIMs on these tasks, and that the timeline analysis approach outperforms
other standard machine learning approaches to the problem. We conclude in Section 6.4.

6.2 Point Processes

We note that with this assumption the likelihood formulation becomes identical to the one used in continuous-
time Bayesian networks (CTBNs). The shared likelihood formula lets us apply a recent advance in learning
CTBNs: the use of multiplicative forests. Multiplicative forests produce intensities by taking the product of
the regression values in active leaves. For example, a multiplicative forest equivalent to the tree described
above is shown in Figure 6.1 (right). These models were shown to have large empirical gains for parameter
and structure learning similar to those seen in the transition from tree models to random forests or boosted
trees (Weiss et al., 2012c). Our first goal is to show that a similar learning framework can be applied to point
processes. We describe the model in fuller detail below.

Piecewise-Continuous Conditional Intensity Models (PCIMs)

Recall from Chapter 2 the form of the point process: given a finite set of event types l ∈ L, an event sequence
or trajectory x is an ordered set of {time, event} pairs (t, l)ni=1. Given a history h of event, the likelihood of the
trajectory given the CIM θ is:

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)1(l=li)e

∫ t

−∞
λl(τ |x,θ)dτ

PCIMs introduce the assumption that the intensity functions are constant over intervals. As described in
(Gunawardana et al., 2011), let Σl be a set of discrete states so that we obtain the set of parameters λls for
s ∈ Σl. The active state s is determined by a mapping σl(t, x) from time and trajectory to s. Let Sl hold the
pair (Σl, σl(t, x)) and let S = {Sl}l∈L. Then the PCIM likelihood simplifies to:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
Mls(x)
ls e−λlsTls(x), (6.1)
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Figure 6.1: A piecewise-constant conditional intensity tree for determining the rate of event type A (left). An
equivalent multiplicative intensity forest (right). An example of active paths are shown in red. The active
path in the tree corresponds to the intersection of active paths in the forest, and the output intensity is the
same (3 = 1× 3).

where Mls(x) is the count of events of type l while s is active in trajectory x, and Tls(x) is the total duration
that s, for event type l, is active.

Continuous-Time Bayesian Networks (CTBNs)

For clarity, we restate the CTBN likelihood formulation here. A trajectory, or a timeline, is broken down
into independent intervals of fixed state. For each interval [t0, tend), the duration t = tend − t0 passes and a
variable x transitions at tend from state xj to xk. All other variables xi 6= x rest during this interval in their
active states x′i. Then, the interval density is given by:

λxj |ue
−λxj |ut

︸ ︷︷ ︸
x transitions

Θxjxk|u︸ ︷︷ ︸
to state xk

∏
x′

i
:xi 6=x

e
−λx′

i
|ut

︸ ︷︷ ︸
while xi’s rest

The trajectory likelihood is given by the product of intervals:∏
x∈X

∏
xj∈x

∏
u∈Ux

λ
Mxj |u
xj |u e−λxj |uTxj |u

∏
xk 6=xj

Θ
M

xj xk|u
xjxk|u (6.2)

where the Mxj |u (and Mxjxk|u) are the numbers of transitions out of state xj (to state xk), and where the Txj |u

are the amounts of time spent in xj given parents settings u. Defining rate parameter λxixj |u = λxi|uΘxixj |u

and set element p = xj × u (as in (Weiss et al., 2012c)), Equation 6.2 can be rewritten as:∏
x∈X

∏
x′∈x

∏
p

λ
Mx′|p
x′|p e−λx′|pTp (6.3)
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Table 6.1: Contrasting piecewise-constant continuous intensity models (PCIMs) and multiplicative-forest
continuous-time Bayesian networks (mfCTBNs). Key similarities are highlighted in blue.

PCIM mfCTBN
Model of: event sequence persistent state
Intensities piecewise-constant network-dependent constant

Dependence event history joint state (Markovian)
Labels event types variables

Emissions events states (x′, 1 of si)
Structure regression tree multiplicative forest
Evidence events (partial) observations of states

Likelihood
∏
l

∏
s
λ
Mls
ls e−λlsTls

∏
x′

∏
p
λ
Mx′|p
x′|p e−λx′|pTp

Note how the form of the likelihood in Equation 6.1 is identical to Equation 6.3.

Contrasting PCIMs and CTBNs

Despite the similarity in form, PCIMs and CTBNs model distinctly different types of continuous-time
processes. Table 6.1 contrasts the two models. The primary difference is that, unlike point processes, CTBNs
model a persistent, joint state over time. That is, a CTBN provides a distribution over the joint state for
any time t. Additionally, CTBN variables must possess a 1-of-si state representation for si > 1 whereas
point processes typically assume non-complementary event types. Furthermore, in CTBNs, observations are
typically not of changes in state at particular times but instead probes of the state at a time point or interval.
With persistent states, CTBNs can be used to answer interpolative queries, whereas CIMs are designed
specifically for forecasting. Another notable difference is that CTBNs are Markovian: the intensities are
determined entirely by the current state of the system. While more restrictive, this assumption allows for
variational and MCMC methods to be applied. On the other hand, PCIMs lend themselves to forecasting
because the potentially prohibitive inference about the persistent state that CTBNs require is no longer
necessary. This is because the rate of event occurrences depends on the event history instead of the current
state.

Multiplicative-Forest Point Processes (MFPPs)

The similar likelihood forms allow us to extend the multiplicative-forest concept (Weiss et al., 2012c) to
PCIMs. Following (Gunawardana et al., 2011), we define the state Σl and mapping σl(t, x) according to
regression trees. Let Bl be the set of basis state functions f(t, x) that maps to a basis state set Σf , akin to
σ(t, x) that maps to a single element s. As in (Weiss et al., 2012c), we can view the basis functions as set
partitions of the space over Σ = Σl1 × Σl2 × . . .Σl|L| . Each interior node in the regression tree is associated
with a basis function f . Each leaf holds a non-negative real value: the intensity. Thus one path ρ through
the regression tree for event type l corresponds to a recursive subpartition resulting in a set Σρ, and every
(l, s) ∈ Σρ corresponds to leaf intensity λlρ, i.e., we set λls = λlρ. Figure 6.1 shows an example of the active
path providing the intensity (λls = λlρ = 3).

MFPPs replace these trees with random forests. Given that each tree represents a partition, the intersection
of trees, i.e. a forest, forms a finer partition. The subpartition corresponding to a single intensity is given by
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the intersection Σρ =
⋂k
j=1 Σρ,j of sets corresponding to the active paths through trees 1 . . . k. The intensity

λlρ is given by the product of leaf intensities. Figure 6.1 (right) shows an example of the active paths in a tree,
producing the forest intensity (λls = λlρ = 1× 3).

MFPPs use the PCIM generative framework. Forecasting is performed by forward sampling or importance
sampling to generate an approximation to the distribution at future times. Learning MFPPs is analogous to
learning mfCTBNs. A tree is learned iteratively by replacing a leaf with a branch with corresponding leaves.
As in forest CTBNs, MFPPs have (1) a closed form marginal log likelihood update and (2) a simple maximum
likelihood calculation for modification proposals. The intensities for the modification are the ratios between
observed (Mls) divided by expected (λlsTls) number of events prior to modification and while Σρ is active.
These two properties together provide the best greedy update to the forest model.

The use of multiplicative forest point processes has several advantages over previous methods.

• Compared to trees, forest models can represent more intensities per parameter, which is equal to the
number of leaves in the model. For example, if a ground truth model has k stumps, that is, k single-split
binary trees, then the forest can represent the model with 2k parameters. An equivalent tree would
require 2k parameters. This example arises whenever two risk factors are independent, i.e., their risks
multiply.

• While forests can represent these independences when needed, they also can represent non-linear
processes by increasing the depth of the tree beyond one. This advantage was established in previous
work comparing trees to Poisson Networks (Gunawardana et al., 2011; Rajaram et al., 2005), and forests
possess advantages of both approaches.

• Unlike most forest models, multiplicative-forest trees may be learned in an order that is neither sequen-
tial nor simultaneous. The forest appends a stump to the end of its tree list when that modification
improves the marginal likelihood the most. Otherwise it increases the depth of one tree. The data
determines which expansion is selected.

• Multiplicative forests in CTBNs are restricted to learning from the current state (the Markovian assump-
tion), whereas MFPPs learn from a basis set over some combination of the event history, deterministic,
and constant features.

• Compared to the application of supervised classification methods to temporal data, the point process
model identifies patterns of event sequences over time and uses them for forecasting. Figure 6.2 shows
an example of the supervised forecasting setup. In this case, it may be harder to predict eventB without
using recurrent patterns of event sequences.

We hypothesize that these advantages will result in improved performance at forecasting, particularly in
domains where risk factors are independent. As many established risk factors for cardiovascular disease
are believed to contribute to the overall risk independently, we believe that MFPPs should outperform tree
methods at this task. Because of their facility in modeling irregular series of events, we also believe that
MFPPs should also outperform off-the-shelf machine learning methods.

Related Work

A rich literature exists on point processes focusing predominantly on spatial forecasting. In spatial domains,
the point process is the temporal component of a model used to predict spatiotemporal patterns in data.
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Figure 6.2: Supervised forecasting. Labels are provided by the binary classification outcome: whether at least
one event occurs in the forecasted region.

The analysis of multivariate, spatial point processes is related to our work in its attempt to characterize
the joint behavior of variables, for example, using Ripley’s K function test for spatial homogeneity (Ripley,
1976). However, these methods do not learn dependency structures among variables; instead they seek
to characterize cross-correlations observed in data. Generalized linear models for simple point processes
are more closely related to our work. Here, a linear assumption for the intensity function is made, seen
for example in Poisson networks (Rajaram et al., 2005). PCIMs adopt a non-parametric approach and was
shown to substantially improve upon previous methods in terms of model accuracy and learning time
(Gunawardana et al., 2011). Our method builds on upon the PCIM framework.

Risk assessment for cardiovascular disease is also well studied. The primary outcome of most studies
is the identification of one or a few risk factors and the quantification of the attributable risk. Our task is
slightly different; we seek to predict from data the onset of future myocardial infarctions. The prediction
task is closely related to risk stratification. For cardiovascular disease, the Framingham Heart Study is the
landmark study for risk assessment (Wilson et al., 1998). They provide a 10-year risk of cardiovascular disease
based on age, cholesterol (total and HDL), smoking status, and blood pressure. A number of studies have
been since conducted purporting significant improvements over the Framingham Risk Score using different
models or by collecting additional information (Tzoulaki et al., 2009). In particular, the use of EHR data to
predict heart attacks was previously addressed in Weiss et al. (2012b). However, in that work the temporal
dependence of the outcome and its predictors was strictly logical and limited the success of their approach.
We seek to show that, compared to standard approaches learning from features segmented in time, a point
process naturally models timeline data and results in improved risk prediction.

6.3 Experiments

We evaluate MFPPs in two experiments. The first uses a model of myocardial infarction and stroke, and the
goal is to learn MFPPs to recover the ground truth model from sampled data. The second is an evaluation of
MFPPs in predicting myocardial infarction diagnoses from real EHR data.

Model Experiment: Myocardial Infarction and Stroke

We introduce a ground truth PCIM model of myocardial infarction and stroke. The dependency structure of
the model is shown in Figure 6.3. To compare MFPPs with PCIMs, we sample k trajectories from time 0 to 80
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Figure 6.3: Ground truth dependency structure of heart attack and stroke model. Labels on the edges
determine the active duration of the dependency. Omitted in the graph is the age dependency for all non-
deterministic nodes if the subject is older than 18.

for k = {50, 100, 500, 1000, 5000, 10000}. We train each model with these samples and calculate the average
log likelihood on a testing set of 1000 sampled trajectories. Each model used a BIC penalty to determine
when to terminate learning. For features, we constructed a feature generator that uniformly at random selects
an event type trigger and an active duration of one of {t− 1, t− 5, t− 10, t− 20, t− 50} to t. Note that the
feature durations do not have a direct overlap with the dependency intervals shown in Figure 6.3. Our goal
was to show that, even without being able to recover the exact ground truth model, we could get close with
surrogate features. MFPPs were allowed to learn up to 10 trees each with 10 splitting features; PCIMs were
allowed 1 tree with 100 splitting features. We also performed a two-tailed paired t-test to test for significant
differences in MFPP and PCIM log likelihood. We ran each algorithm 250 times for each value of k.

Figure 6.4 shows the average log likelihood results. Both MFPPs and PCIMs appear to converge to close to
the ground truth model with increasing training set sizes. The lack of complete convergence is likely due to
the mismatch in ground truth dependencies and the features available for learning. Error bars indicating the
empirical 95 percent confidence intervals are also shown for MFPP. Similar error bars were observed for the
ground truth and PCIM models but were omitted for clarity. The width of the interval is due to the variance
in testing set log likelihoods. If we look at level average log likelihood lines in Figure 6.4, we observe that
we only need a fraction of the data to learn a MFPP model equally good as the PCIM model. Both models
completed all runs in under 15 minutes each.
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Figure 6.4: Average log likelihoods for the {ground truth, MFPP, PCIM} model by the number of training set
trajectories. Error bars in gray indicate the 95 percent confidence interval (omitted for the ground truth and
PCIM models). Paired t-tests comparing MFPPs and PCIMs were significant at a p-value of 1-e20. Dotted
lines show the likelihoods when ground truth features were made available to the models.

We used a two-sided paired t-test to test for significant differences in the average log likelihood. For
all numbers of trajectories k, the p-value was smaller than 1e-20. We conclude that the MFPP algorithm
significantly outperformed the PCIM algorithm at recovering the ground truth model from data of this size.

EHR Prediction: Myocardial Infarction

In this section we describe the experiment on real EHR data. We define the task to be forecasting future onset
of myocardial infarction between the years 2005 and 2010 given event data prior to 2005. We propose two
forms of this experiment: ex ante and supervised forecasting. First, we test the ability of MFPP to forecast
events between 2005 and 2010 in all patients given the data leading up to 2005. Figure 6.5 depicts the ex ante
forecasting setup.

Second, we split our data into training and testing sets to test MFPP in its ability to perform supervised
forecasting. In this setup, we provide data between 2005 and 2010 for the training set in addition to all data
prior to 2005 for both training and testing sets. We choose to focus on the outcome of whether a subject has at
least one myocardial infarction event between the 2005 and 2010. Figure 6.2 shows the supervised forecasting
setup.

We use EHR data from the Personalized Medicine Research Project (PMRP) cohort study run at the
Marshfield Clinic Research Foundation (McCarty et al., 2005). The Marshfield Clinic has followed a patient
population residing in northern Wisconsin and the outlying areas starting in the early 1960s up to the present.
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Figure 6.5: Ex ante (traditional) forecasting. No labels for any example are available in the forecast region.
The goal is to recover the events (B and C) from observations in the past.

From this cohort, we include all subjects with at least one event between 1970 and 2005, and with at least
one event after 2010 or a death record after 2005. Filtering with these inclusion criteria resulted in a study
population of 15,446, with 428 identified individuals with a myocardial infarction event between 2005 and
2010.

To make learning and inference tractable, we selected additional event types from the EHR corresponding
to risk factors identified in the Framingham Heart Study(Wilson et al., 1998): age, date, gender, LDL (critical
low, low, normal, high, critical high, abnormal), blood pressure (normal, high), obesity, statin use, diabetes,
stroke, angina, and bypass surgery. Because the level of detail specified in EHR event codes is fine, we use
the above terms that represent aggregates over the terms in our database, i.e., we map the event codes to one
of the coarse terms. For example, an embolism lodged in the basilar artery is one type of stroke, and we code
it simply as “stroke”. The features we selected produced an event list with over 1.8 million events. As MFPPs
require selecting active duration windows to learn, we used durations of size {0.25, 1, 2, 5, 10, 100 (ever)},
with more features focused on the recent past. Our intuition suggests that events occurring in the recent past
are more informative than more distant events.

We compare MFPP against two sets of machine learning algorithms based on the experimental setup.
For ex ante forecasting, we test against PCIMs (Gunawardana et al., 2011) and homogeneous Poisson point
processes, which assume independent and constant event rates. We assess their performance using the
average log likelihood of the true events in the forecast region and precision-recall curves for our target event
of interest: myocardial infarction. For supervised forecasting, we test against random forests and logistic
regression (Gunawardana et al., 2011; Breiman, 2001). As MFPP is not an inherently supervised learning
algorithm, we also include a random forest learner using features corresponding to the intensity estimates
based on the ex ante forecasting setup. We call this method MFPP-RF. We use modified bootstrapping to
generate non-overlapping training and testing sets, and we train on 80 percent of the entire data. We compare
the supervised forecasting methods only in terms of precision-recall due to the non-correspondence of the
methods’ likelihoods.

We also make a small modification to the MFPP and PCIM learning procedure when learning for modeling
myocardial infarction, i.e., rare, events. On each iteration we expand one node in the forest of every event
type instead of the forest of a single event type. The reason for this is that low intensity variables contribute
less to the likelihood, so choosing the largest change in marginal log likelihood will tend to ignore modeling
low intensity variables. By selecting an expansion for every event type each iteration, we ensure a rich
modeling of myocardial infarction in the face of high frequency events such as blood pressure measurements
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Figure 6.6: Precision-recall curves for ex ante forecasting. MFPPs are compared against PCIMs and homoge-
neous Poisson point processes.

Table 6.2: Log likelihood of {MFPP, PCIM, independent homogeneous Poisson processes} for forecasting
patient medical events between 2005 and 2010.

Method Log likelihood
MFPP 12.1
PCIM 10.3

Poisson -54.8

and prescription refills. We note that because of the independence of likelihood components for each event
type, this type of round-robin expansion is still guaranteed to increase the model likelihood. This statement
would not hold, for example, in CTBNs, where a change in a variable intensity may change its latent state
distribution, affecting the likelihood of another variable. Finally, for ease of implementation and sampling,
we learn trees sequentially and limit the forest size to 40 total splits.

Ex Ante Forecasting Results

Table 6.2 shows the average log likelihood results for ex ante forecasting for the MFPP, PCIM and homogeneous
Poisson point process models. Both MFPPs and PCIMs perform much better than the baseline homogeneous
model. MFPPs outperform PCIMs by a similar margin observed in the synthetic data set.

Figure 6.6 shows the precision-recall curve for predicting a myocardial infarction event between 2005 and
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Figure 6.7: Precision-recall curves for supervised forecasting. MFPPs are compared against random forests,
logistic regression, and random forests augmented with MFPP intensity features.

2010 given data on subjects prior to 2005. MFPPs and PCIMs perform similarly at this task. The high-recall
region is of particular interest in the medical domain because it is more costly to miss a false negative
(e.g. undiagnosed heart attack) than a false positive (false alarm). Simply put, clinical practice follows the
“better safe than sorry” paradigm, so performance high-recall region is of highest concern. We plot the
precision-recall curves between recalls of 0.5 and 1.0 for this reason. The absolute precision for all methods
remains low and might exhibit the challenging nature of ex ante forecasting. Alternatively, the low precision
results could be a result of potential incompatibility of the exponential waiting time assumption and medical
event data. Since forecasting can be considered a type of extrapolative prediction, a violation of the model
assumptions could lead to suboptimal predictions. Despite these limitations, compared to the baseline
precision of 428/15,446 = 0.028, the trained methods do provide utility in forecasting future MI events
nonetheless.

Supervised Forecasting Results

Figure 6.7 provides the precision-recall curve for the supervised forecasting experiment predicting at least
one myocardial infarction event between 2005 and 2010. As we see, MFPP underperforms compared to
all supervised learning methods. However, the MFPP predicted intensities features boosts the MFPP-RF
performance compared to the other classifiers. This suggests that while MFPP is a valuable model but may
not be optimized for classification.
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Figure 6.8: First two trees in the MFPP forest. The model shows the rate predictions for myocardial infarction
(MI) based on cholesterol (LDL), blood pressure (BP), previous MI, and bypass surgery. Time is in years; for
example, [t-1,t) means “within the last year”, and (-Inf, t) means “ever before”.

MFPPs also provide insight into the temporal progression of events. Figure 6.8 shows the first two trees
of the forest learned for the rate of myocardial infarction. We observe the effects on increased risk: history of
heart attack, elevated LDL cholesterol levels, abnormal blood pressure, and history of bypass surgery. While
the whole forest is not shown (see http://cs.wisc.edu/~jcweiss/ecml2013/), the first two trees provide
the main effects on the rate. As you progress through the forest, the range over intensity factors narrows
towards 1. The tapering effect of relative tree “importance” is a consequence of experimental decision to learn
the forest sequentially, and it provides for nice interpretation: the first few trees identify the main effects, and
subsequent trees make fine adjustments for the contribution of additional risk factors.

As Figure 6.8 shows, the dominating factor of the rate is whether a recent myocardial infarction event
was observed. In part, this may be due to an increased risk of recurrent disease, but also because some EHR
events are “treated for” events, meaning that the diagnosis is documented because care is provided. Care for
incident heart attacks occurs over the following weeks, and so-called myocardial infarction events may recur
over that time frame.

Despite the recurrence effect, the MFPP model provides an interpretable representation of risk factors and
their interactions with other events. For example, Tree 1 shows that elevated cholesterol levels increase the
rate of heart attack recurrence while normotensive blood pressure measurements decrease it. The findings
corroborate established risk factors and their trends.

6.4 Summary

In this chapter we introduced an efficient multiplicative forest learning algorithm to the point process
community. We developed this algorithm by combining elements of two continuous-time models taking
advantage of their similar likelihood forms. We contrasted the differences between the two models and
observed that the multiplicative forest extension of the CTBN framework would integrate cleanly into the
PCIM framework. We showed that unlike CTBNs, MFPP forests can be learned independently because of the

http://cs.wisc.edu/~jcweiss/ecml2013/
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PCIM likelihood decomposition and intensity dependence on event history. We applied this model to two
data sets: a synthetic model, where we showed significant improvements over the original PCIM model, and
a cohort study, where we observed that MFPP-RFs outperformed standard machine learning algorithms at
predicting future onset of myocardial infarctions. We provide multiplicative-forest point process code at
http://cs.wisc.edu/~jcweiss/ecml2013/.

While our work has shown improved performance in two different comparisons, it would also be worth-
while to consider extensions of this framework to marked point processes. Marked point processes are ones
where events contain additional information. The learning framework could leverage the information about
the events to make better predictions. For example, this could mean the difference between reporting that a
lab test was ordered and knowing the value of the lab test. The drawback of immediate extension to marked
point processes is that the learning algorithm needs to be paired with a generative model of events in order
to conduct accurate forecasting. Without the generative ability, sampled events would lack the information
required for continued sampling. The integration of these methods with continuous-state representations
would also help allow modeling of clinical events such as blood pressure to be more precise.

Finally, we would like to be able to scale our methods and apply MFPPs to any disease. Because EHR
systems are constantly updated, we can acquire new up-to-date information on both phenotype and risk
factors. To fully automate the process in the present framework, we need to develop a way to address the
scope of the EHR, selecting and aggregating the pertinent features for each disease of interest and identifying
the meaningful time frames of interest.

Next we turn to the task of risk attribution. Inspection of learned models, e.g., Figure 6.8, allows us to
identify potential risk factors for disease. The next chapter investigates how to quantify the attributable risk
specific to individual patients and provides a comparison with the existing clinical paradigm, which applies
average results to each study participant.

http://cs.wisc.edu/~jcweiss/ecml2013/
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7 Individualized Risk Attribution from Electronic Health
Records

Overview

This chapter focuses on the task of risk attribution from EHR data. Given a disease and a risk factor of
interest, e.g., MI and statin use, we seek to quantify how much risk can be attached to the possession of the
risk factor. Clinical study paradigms seek to model the average treatment effect (ATE), but tend to apply this
population-level effect to future individuals. We argue for the use of the individualized treatment effect (ITE),
which has better applicability to new patients, but is harder to reliably estimate. We compare ATE-estimation
using randomized and observational analysis methods against ITE-estimation using conditional probability
modeling and describe how the ITE theoretically generalizes to new population distributions whereas the
ATE may not. On a synthetic data set of statin use and MI, we show that, without access to ground truth, the
ITE outperforms the ATE using randomization methodology from Vickers et al. (2007), and, given access to
ground truth, improves ITE recovery. We suggest that the conditional probability model should be learned
with a consistent, non-parametric algorithm from unweighted examples and show experiments in favor of
our argument. The work in this chapter is in preparation for submission.

7.1 Introduction

Randomized controlled trials (RCTs) are the gold standard for determining the risk of a disease attributable
to an exposure or treatment. They isolate the effect of a specific treatment on a population by randomization,
so that systematic differences in population outcomes can be attributed to the treatment. The primary
outcome of an RCT is the average treatment effect (ATE), i.e., the average difference between treatment arms
in the probability of the outcome. Because of randomization, the ATE is indicative of effect of treatment
even in the presence of other risk factors. The reliability of an RCT conclusion has led to the development
of randomization mimics from non-randomized data. These methods manipulate the treatment-outcome
frequency estimates of ATE to account for the possibility that the treatment is associated with one (or many)
factors causing the outcome but is not the cause itself.

However, when treatments are recommended to future patients, the ATE is not the primary statistic
of interest. We do not expect the same treatment effect in every person, and the diversity of effects goes
beyond a population’s nonuniform prior risk. The belief that treatment effects are individual suggests that
we model the individualized treatment effect (ITE), which is the effect of administering the treatment to a
person specified in data by a set of recorded features.

Access to the ITE in addition to the ATE is useful in many applications. As discussed in Rothwell (1995),
suppose we are considering outcomes of carotid endarterectomy, where our treatment options for carotid
stenosis are surgical intervention or watchful waiting. For severe cases of stenosis, the surgery is almost
always preferable, while for mild cases, waiting is preferred because of the risks of surgical intervention.
Treatment decisions should be individualized because the risk-benefit trade-off will differ according to patient
characteristics. Another example is the treatment of borderline-elevated blood pressure, where polypharmacy
can become a problem in many individuals with risk factors for type II diabetes and cardiovascular disease
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(Kent & Hayward, 2007).
Additionally, recommendations and approvals of drugs change over time. For example, hormone re-

placement therapy treatment effect findings in RCTs and observational studies were of opposite sign, and
advocacy of their use was rescinded when the RCT findings were released (Manson et al., 2013). Similarly,
many drugs are taken off the market due to excess harm from adverse drug effects. However, many of these
drugs are more effective than alternatives for select populations. ITE modeling can help determine which
patients are likely to receive benefit from such drugs and potentially bring drugs back to market safely.

In this chapter, we show the ability to recover the true ITE and the value of the ITE over ATE in synthetic
data where we know ground truth. Recovery of the true ITE is theoretically possible provided sufficient
data because of algorithmic consistency. We also emphasize another problem of the ATE: its calculation is
inherently dependent on the underlying population distribution, when what is desired is a prediction for
any new patient independent of the study population. We argue that a non-parametric learning algorithm
will recover the conditional probability distribution and do so independently of the population distribution
with sufficient data. On synthetic data we show the generalizability of the conditional probability model to
alternative population distributions of increasing KL-divergences. We also show that the use of unweighted
examples, instead of propensity-score matched examples or stable inverse probability of treatment weighted
examples, produces a conditional probability model with a lower MSE for the ITE.

7.2 Background

Randomized controlled trials are the gold standard for estimating the average treatment effect (ATE). The
technique randomizes confounders, measured and unmeasured, so that factors important to the disease
process are approximately balanced among treatment groups. If measured baseline factors are imbalanced
empirically after randomization, propensity scoring can be used obtain covariate balance.

Because RCTs are impractical or infeasible for many exposure-outcome pairs, observational studies
were developed to estimate attributable risk. These include studies that use known-confounder modeling,
propensity scoring, inverse probability of treatment weighting, and doubly robust estimators (Prentice, 1976;
Austin, 2011; Rosenbaum & Rubin, 1983; Robins et al., 2000; Bang & Robins, 2005). The two main ideas in
these methods are to (1) adjust for confounders by modeling them, and (2) change the population distribution
so that the treatment is independent of confounders given the outcome. One key assumption in all of these
models is that there are no unobserved confounders, which is difficult to determine in practice.

Also, in most of these approaches (and their variants), a model is assumed for the conditional probability
distribution (CPD) of the outcome given the exposure and covariate. In these cases, the counterfactual
outcomes, which are never observed, are assumed to follow the model CPD.

Unlike in ATE estimation, achieving sufficient counts to estimate the counterfactual ITE outcome is
infeasible for any moderate-sized feature vector because the number of possible feature states is exponentially
large. Therefore, a modeling approach to estimate the counterfactual outcome becomes necessary. These
can be the same CPD models used in pseudo-randomized ATE estimation, e.g. logistic regression, but in
Section 7.3 we will discuss two reasons to adopt other machine learning models: non-uniform treatment
recommendations and non-parametric consistency.
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Related Work

The call for adoption of the ITE is not new, and the limitations of applying population-average effects
on individuals has been noted, e.g., in Kent & Hayward (2007) and Rothwell (1995). The ATE or relative
risk is stated as the primary outcome, usually followed by a secondary analysis of the heterogeneity of
treatment effect. As mentioned in Hayward et al. (2006), performing subgroup treatment effects is usually
more effective in risk-stratified subgroups derived from multivariate analyses than in subgroups defined by
individual covariates, and these methods have been adopted for approximating individualized treatment
effects (Dorresteijn et al., 2011). While these methods do provide finer-grained treatment effect estimates,
factors beyond the outcome risk may influence the treatment effect and can be utilized when modeling the
ITE.

Modeling of the ITE has been implemented in several studies. Qian & Murphy (2011) develop the frame-
work of conditional probability modeling and use the predictions to estimate individualized treatment rules
(ITRs). Our work builds on this approach, making statements about the utility of the ITE, the generalizability
of the ITE, and the preference for using unweighted observational data for ITE estimation, all with simulations
to illustrate these advantages. Our simulations based on synthetic data have access to a ground truth ITE,
which we use to assess our ITE estimations.

However, it is possible to assess the benefit of ITE without access to ground truth. Vickers et al. (2007)
provides an unbiased method to estimate the advantages of using the ITE recommendation over the ATE
recommendation using existing RCT data. They show that by counting outcomes in the subset of patients
where ITE- and ATE- treatment recommendations disagree, the expected difference in treatment recom-
mendations is estimated. Our experiments include such analyses to show that the ITE-recommendation
can be estimated without access to the counterfactual outcomes. Unfortunately, this method can be severely
underpowered in the case that the ITE- and ATE- treatment recommendations are highly similar, and a
power calculation analysis to determine recruitment size would be helpful. Alternatively, a new RCT study
could be implemented randomizing to ITE- and ATE- treatment arms.

Neither the methods we adopt nor the methods presented in Qian & Murphy (2011) directly optimize the
ITE. Instead, they model the conditional probability distribution, and then the differences in probability are
estimated using the estimates for the treatment effect using true and counterfactual treatments. Zhao et al.
(2012) develops a method to directly optimize for the ITE under a surrogate loss function from RCT data.
While this method produces ITE recommendations, we believe a model should also provide treatment effect
estimates under each treatment arm, because the treatment effect itself is critical information clinically. Also
our methods do not require RCT data and scale easily to multiple treatment arms and factorial treatment
designs, which are not considered in Zhao et al. (2012).

7.3 Methods

We describe ITE modeling below. Let the ITE for an outcome y ∈ {0, 1} of a patient with features v given
treatment u ∈ {0, 1} be the difference in estimates: p(y = 1|u = 1, v)− p(y = 1|u = 0, v). The key assumption
made in these modeling approaches is that both the observed outcomes ytrue and the counterfactual outcomes
ycf come from the CPD model, that is, p(ycf|u, v) = p(ytrue|u, v) = p(y|u, v) for all u and v. The interpretation
of the ITE is only causal if the no unmeasured confounders assumption (NUCA) is made; otherwise, it is just
a statement about the difference in outcome probability given a new patient described by (u, v).

If we have a correctly specified model and NUCA holds, for any new patient with features v and treatment
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u, we have their ITE that guides our treatment choice. This statement is notably population-distribution
free and thus can generalize to arbitrary population distributions of (u, v). The ATE does not have this
characteristic; its calculation is dependent on the distribution of (u, v) so its application should be limited to
populations with similar covariate distributions unless the treatment effect is believed to be uniform.

Recalling that the application of the RCT-recommended treatment suggests that every patient should
receive that treatment, a logistic-regression-based model similarly provides a uniform decision. Its decision
will be in agreement with the sign of the treatment parameter. However, in many cases, and particularly in
those where the treatment effect has small magnitude but high variance, the optimal treatment decision is
nonuniform. Thus, we adopt machine learning methods which can estimate the CPD while also providing
nonuniform treatment choices. In particular, we use AdaBoost because it has consistency results and is a
non-parametric learning algorithm (Freund & Schapire, 1996; Culp et al., 2006). In other words, consistency
means AdaBoost will recover the correct CPD given enough examples, and will do so regardless of the train
(u, v) distribution provided proper support. Non-parametricity allows it to recover any CPD over (u, v), not
just ones in a parametric family.

With the adoption of a non-parametric learning algorithm comes the parametric/non-parametric learning
trade-off. Parametric models may require smaller sample sizes to learn effectively but are not consistent if
misspecified; non-parametric models may require larger sample sizes to achieve good CPD estimates but
have consistency results for arbitrary joint distributions.

Recall that propensity-score matching and inverse probability-of-treatment weighting (IPT-W) are meth-
ods to produce pseudo-randomized data for the estimation of the ATE. With ITE as the target statistic, these
methods become less desirable. In modeling the CPD, propensity score matching and IPT-W weighting
reduce the effective sample size, reducing our numbers for estimation. Thus, under the modeling assumption,
and, with the goal of modeling ITE, we argue for unweighted CPD estimation.

Experimental Approach

In this section, we restate the claims and reasoning in support of the individualized risk framework and
then provide experimental designs to confirm them, using synthetic data with access to ground truth, or
observational or RCT data.

As already noted, there is a strong argument for the calculation of the individualized treatment effect (ITE)
over the average treatment effect (ATE) because the the ITE can be used in patient-specific recommendations
in lieu of ATE-based, population-average recommendations. The value of the ITE recommendation can be
estimated, compared against an alternative–for example, the ATE recommendation–using the subsets of
randomized patients where treatment recommendation differs (Vickers et al., 2007). We use existing methods
to test the hypothesis of ITE superiority and illustrate the benefits of ITE estimation on synthetic data.

We suggest that, in preference for generalizability of study outcome, the conditional probability distribu-
tion p(y|u, v) should be modeled with non-parametric learning algorithms. That is, our goal should be to
learn the correct p(y|u, v) irrespective of the distribution p(u, v) because future data distributions p′(u, v) may
be different. Non-parametric learning algorithms achieve independence from p(u, v) in the limit of increasing
data. We empirically characterize the recovery of the ITE varying the train set data size and compare the
performance of parametric and non-parametric learners varying the similarity of train and test set population
distributions.

Note the relationship to propensity scoring methods, where examples are weighted or matched by a
function of p(u|v). Propensity score weighting and matching schemes reduce the effective sample size,
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Figure 7.1: Risk attribution model of statin use for MI

mimicking the independence of treatment from observed confounders but not assisting in the recovery of
the conditional probability distribution p(y|u, v). We show experimentally that estimating p(y|u, v) directly
from the original data distribution outperforms analogous estimators from propensity-score-weighted and
stabilized inverse probability-of-treatment weighting methods.

Finally, we discuss applications of the conditional probability distribution modeling approach. Numerous
concerns have been voiced about the appropriateness of observational data as a data source for the effect of
treatments because confounding can bias the statistical interpretation. With free reign on the covariate defini-
tions in observational studies, we may have access to highly-correlated or even logically-related covariates,
such as “ever smoked” and “current smoker.” We opt to include such covariates for richness of representation
that can lead to better estimates of p(y|u, v), but must adapt our interpretation of “intervention” to specified
multivariate changes instead of a (univariate) change of treatment state. We discuss several desired conditions
when defining the set of “treatment” states and propose methods to provide interpretable recommendations
when the space of “treatment” states is large.

7.4 Experiments

We define two synthetic models of myocardial infarction (MI) with thirteen total variables: age, gender,
smoking status, HDL level, LDL level, diabetes status, family history of cardiovascular disease, blood pressure,
history of angina, history of stroke, history of depression, statin use, and MI. The network is shown in Figure
7.1. For simplicity, we define each variable to have binary values. The first model–an observational study
mimic–uses a Markov Random Field and feature functions corresponding to the edge skeleton of the graph.
The second model–an RCT mimic–uses the same graph, and allows us to “intervene” on a variable in the
causal network by simply removing the arcs who have the variable as a terminal node and sampling from
the new joint distribution. From these models, we can sample synthetic observational and RCT data from the
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joint distribution over variables to generate samples, or “patients”.
The question we seek to answer is the effect of statin use on heart attack or MI. We test the recommendation

from boosted trees against the ATE recommendation on our synthetic, randomized data set, both using
the RCT method in Vickers et al. (2007) and comparing against our ground truth knowledge. We use the
AdaBoost package in R and default parameter settings to learn the forest (Freund & Schapire, 1996; Culp
et al., 2006).

We also compare boosted trees to logistic regression in the observational study setup. We seek to charac-
terize estimation of the ITE under each method by looking at error modes of each model and producing
learning curves for the models as a function of training set size. To test for applicability to an arbitrary test
population distribution, we alter the distributions on variables with no parents in the causal DAG: age and
gender. Finally, we compare ITE and ATE estimation using the unweighted training set with estimation using
altered data sets via propensity-score matching and (stabilized) inverse probability-of-treatment weighting.

7.5 Results

Figure 7.2 shows the utility of adopting the ITE recommendation over the ATE recommendation. The upper
graph shows that the adoption of the ITE recommendation lowers the probability of MI by 0.0006 on average.
Thus, the number-needed-to-treat (NNT) is about 2000, i.e., treating 2000 patients with the ITE-recommended
treatment given that the recommendation differs results in one less MI on average. This is a small effect–small
due to the fact that there are few patients whose probability of MI would go up with administration of a
statin.

The lower graph in Figure 7.2 shows the estimated expected difference in probability of MI between ITE-
and ATE- recommended treatments among patients where they disagree on treatment choice. We see that
the ITE recommendation lowers the probability of MI in this subset by 0.06, or a NNT of 20.

The learning curves for logistic regression and AdaBoost are shown in Figure 7.3. As we expect, the
parametric logistic regression performs well for small train set sizes, but the error cannot approach 0 because
the model is misspecified (because the ground truth model is not log-linear in the exposure and covariates).
The error of AdaBoost decreases similarly until about 2000 train set examples, where it continues to reduce
the MSE towards 0. The approach toward 0 error is in line with the non-parametric consistency results that
exist for AdaBoost (Bartlett & Traskin, 2007).

Figure 7.4 shows the error modes for ITE estimations using logistic regression and AdaBoost; the errors
are smaller using AdaBoost. The plots show the estimated ITE versus the ground truth ITE for the test set
examples in black with the ATE applied to all examples overlaid in red. Having all points on the line y = x is
optimal. For logistic regression (top), all ITE estimates will be either above or below 0 because the model
assumes that a single coefficient determines the direction of the effect. AdaBoost does not have this restriction
and can provide individualized recommendations, though, as is shown, the errors are still non-zero.

The effect of different data-weighting and matching schemes is shown in Figure 7.5. The recovery of the
CPD model and thus the ITE requires the fewest examples by leaving the examples unweighted, more using
stabilized inverse weighting, and the most using 1:1 propensity score matching. One important consideration
is that our data set includes some patients without elevated LDL who take statins, motivated by the suggestion
that there could be therapeutic benefit of statins even in borderline hypercholesterolemia. However, in a
data set with few normal-LDL statin users, propensity-score matching and particularly stabilized inverse
weighting will impair the CPD model, because it will attach large excess weight to few examples.
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Figure 7.2: Average difference in treatment effect using the ITE recommendation in place of the ATE recom-
mendation as a function of train set size. The estimated difference in the population is shown at top; the
estimated difference in the subpopulation where treatment recommendations differ is shown at bottom. The
red dotted line indicates the least square fit. The difference in treatment effect is estimated by the Vickers
et al. (2007) method with a test set of 50000 examples.
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Figure 7.3: Learning curves for logistic regression (black) and AdaBoost (red); test set ITE mean-squared
error as a function of training set size.

Shifting the test set distribution by adjusting the prevalence of the young-and-female to old-and-male
subgroups had no substantial effect on the difference in AdaBoost and logistic regression MSE of the ITE.
This is surprising because the nonparametric AdaBoost would be expected to generalize to alternative
distributions better than the parametric logistic regression. It is possible that age and gender do not influence
the ITE of subgroups differently, suggesting that looking for heterogeneity of treatment effect in risk-based
strata (age and gender are risk factors for MI) may not detect underlying treatment effect differences.

7.6 Discussion

The work presented in this chapter is in preparation and will require empirical justification in several
directions.

• We seek to apply our framework to real clinical data: both to RCT and observational data. We intend
to use International Stroke Trial (RCT) and Marshfield Clinic Personalized Medicine Research Project
(EHR cohort) data (Sandercock et al., 2011; McCarty et al., 2005). In these settings, we will not have
access to the ground truth. Nevertheless, we can adopt the approach in Vickers et al. (2007) to compare
ITE and ATE outcomes. For evaluation, we must resort to the average outcome over some population,
preferably several populations with covariate distributions different from each other and the training
population. A characterization of which (u, v) provide reliable ITE recommendations is critical as well.
There may be more uncertainty in patients underrepresented in the train distribution, especially for
limited train set sizes.
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Figure 7.4: Estimated ITE (black) and ATE (red) versus the ground truth ITE for logistic regression (top)
and AdaBoost (bottom) for a train set size of 50000. Optimal estimation is given by the line y = x. Empirical
smoothed density of the ground truth ITE is shown at bottom.
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Figure 7.5: Learning curves for AdaBoost using unweighted examples (red circles), propensity-score matched
samples with a 1:1 ratio (blue squares), and stabilized inverse weighted examples (green diamonds): test set
ITE mean-squared error as a function of training set size.

• We want to characterize what train set size is needed for non-parametric learning algorithms to
outperform the parametric algorithms and specifically logistic regression. A characterization of the
number of examples needed to move past the mean squared error of the logistic regression outcome
for a given task is important as a factor in determining when we should recommend the model ITE
outcome or stick with the ATE.

• Using the Vickers et al. (2007) method, we would like to characterize our uncertainty in our point
estimates–ITEs for patients–as well as perform power calculations to determine sample sizes needed to
detect ITE superiority.

Another crucial issue preventing the automatic use of EHR data for risk attribution is the presence of
unobserved confounders, observed confounders, and intermediate variables. For a pure prediction problem,
it makes sense to use all features that carry information useful in prediction of the outcome, provided a large
enough training population. For risk attribution however, the exclusion of a confounder or the inclusion of
an intermediate variable can result in biased estimation of both the ITE and ATE. However, we should not
simply accept a regime that excludes intermediate variables, because the inclusion of intermediate variables
may enhance our modeling of the conditional probability distribution. At test time, we may simply not have
access to the intermediate variables and could instead have to infer their values and produce a Bayesian
estimate for the resulting ITE.

Issues with intermediate variables and confounders arise in EHR data also because of the multitude and
specificity of variable definitions. For example, suppose we have two logically related features: “history of
smoking” and “current smoker”. Clearly these variables are intertwined and potentially useful for outcomes,
e.g., lung cancer. When we ask what the risk attributable to smoking is, we need to be more specific as to
which variable we mean. Suppose we choose “history of smoking”. Most clinical analyses would then omit
“current smoker” from the analysis, despite its importance as a lung cancer predictor. The support for its
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removal is that it is an intermediate variable, or alternatively the study design might look at the effect of
“history of smoking” among the subpopulations of current and former smokers.

For confounders, e.g., when the exposure of interest is “alcohol consumption,” clinical analyses will
typically include one but not both features in the model. The inclusion of one feature allows the model
to control for smoking, i.e., that smoking behavior is associated with alcoholism and causes lung cancer.
Both features are not included to limit the degrees of freedom in the covariates to explain away the effect
of exposure. In either case, study design opts for the removals of features that improve the conditional
probability model.

Because of these challenges, we suggest several approaches to explore:

• For interventions, we can define the scope of their feature influence, potentially probabilistically, and
potentially including multiple features. For example, a diabetes intervention could be represented in
the replacement of feature values for “rosaglitazone”, “fasting blood sugar” and “HbA1c”. Then we
can model the effect of intervention by comparing probability of outcomes under intervention or no
intervention while richly modeling the conditional probability distribution.

• A timeline-based analysis where the effect of the intervention on apparent intermediate variables as
well as the outcome of interest could be modeled and hence improve outcome prediction.

Finally, though modeling of the ITE is enticing, robustness guarantees and validation of its performance
should be established before large-scale clinical deployment. A few sources of validation include replication
studies and heterogeneity of treatment effect analyses using ITE model strata.

7.7 Summary

In this chapter, we illustrated the parallels between the standard clinical study framework designed to
determine the ATE and the burgeoning clinical study framework designed to determine the ITE. We first
argued that the ATE is favorable in its ability to leverage the RCT study design. Then, we highlighted
shortcomings of the ATE, first, that the ATE is an average outcome, when in practice we usually care
about the ITE for future patients, and second, that the ATE is population-distribution dependent. Then we
discussed modeling of the ITE. Notably the logistic regression can only recommend one treatment arm if we
exclude non-linear and exposure-covariate interaction terms because the coefficient for exposure is either
negative or non-negative. Furthermore, unless correctly-specified, the logistic regression is not a consistent
learning algorithm, so we cannot hope to recover the true conditional probability distribution even from
large populations. Instead, we adopted another popular framework, boosted trees, and showed that the
forest-based ITE outperformed the ATE on a synthetic problem of MI prediction. Finally, we showed that the
use of propensity-score matching and inverse-probability-of-treatment weighting impaired the learning of
the conditional probability distribution, so we recommend against the use of PSM and IPT-W unless you are
interested in an estimate for the ATE in a pseudo-randomized population.
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8 Conclusions

In this thesis we presented foundations for statistical timeline analysis (STA): the applications of temporal
and relational modeling to answer predictive and risk attribution questions from Electronic Health Records.
The need for STA comes from the limitations of existing methods at modeling the nascent framework of the
EHR as a data source for clinical modeling. These limitations come from the difficulty in addressing the
challenges of EHR data: relational, temporal, noisy, and incomplete not at random. We argued that patient
data could be effectively represented as timelines, and we developed methods to address aspects of timeline
data.

8.1 Contributions

In Chapter 3 we tackled the difficult problem of predicting primary MI from EHR data at the Marshfield Clinic
using a subset of known risk factors. We found that two SRL algorithms outperformed their propositional
analogues suggesting the utility of relational learning algorithms for EHR timeline analysis. The RFGB forest
learning method performed the best of any algorithm, particularly in the high recall region of the precision-
recall curve. Contrary to most clinical studies, important predictive features outside of the “patient-disease”
framework are also found, such as implicit physician awareness of disease observed in testing, and relational
information tying patients, physician and providers that hints at a patient’s medical condition but is not
measured in specified covariates.

We also stated several limitations to our RFGB experimentation. We did not use additional relational
information available to us, such as hierarchical diagnosis relationships, prescription relationships, and
family relationships. Decisions about the data representation would be necessary because the representation
affects the RFGB search behavior over relational features. Also, the use of timeline information in RFGB
is limited to logical, temporal comparison features, such as “did a hypertensive event within the last year
also precede a prescription of a beta blocker”? That the features switch from on to off in an instant seems
medically unreasonable, and the approaches modeling the instantaneous rate of events like CTBNs and point
processes move the discontinuities into the rates of events instead.

In Chapter 4, we turned to continuous-time Bayesian networks (CTBNs) for timeline modeling. We
reviewed the CTBN, an elegant mathematical model for describing a distribution of a set of discrete variables
over continuous time. We noted that it compactly represents the exponential-size joint state by modeling
the rate of state changes individually for each variable, where the rates are dependent on the state of parent
variables, which themselves are specified by a graphical model over the variables. Unfortunately, while a
CTBN is a compact representation of the joint state, the size of the model still scales exponentially in the
number of parents of a variable. This means, at learning time, that an exponential number of parameters
must be estimated.

Our work in Chapter 4 introduced a generalization of CTBNs: partition-based CTBNs. For each variable,
the rate is determined by one part of the partition, and the number of parts can be specified arbitrarily.
Our work showed that trees and forests could be used to represent the partitions, and that the number
of parameters for such a model would be linear (not exponential) in the number of splits in the forest.
Then, we showed that the forests could be learned efficiently using a maximum likelihood approach and
a multiplicative rate assumption. By addressing the limitation of scalability in parameter size, we showed
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experimentally that CTBN models on the order of hundreds of variables could be learned effectively.
Chapter 5 addressed the problem of CTBN inference. Despite the efficient learning algorithm provided

in Chapter 4, when the input data is missing the state of any variable for any interval duration, inference
must be performed to probabilistically complete the interval. EHR data serves as point event data so it tends
to missingness in the extreme because at any given time t, the number of events observed is zero with near
certainty. Thus CTBN inference is needed to “fill in” the timeline. A variety of CTBN inference algorithms
have been proposed, but none scale to EHR-sized data. Chapter 5 followed the sampling and particle filtering
approach presented in Fan & Shelton (2008). In particular, it introduced a general method of improvement to
sequential importance sampling and applied the solution to CTBN inference. The improvement is that, given
a target distribution f and surrogate distribution g from which we can sample, we selectively reject a portion
of the sample steps so that the weight distribution of samples from g has lower variance, which means that
we can approximate f equally well with fewer samples. We showed that the decision of sample rejection
can be learnt using weighted samples and a binary classifier that encodes the model and the evidence.
Experimentally, we showed that learning a logistic regression model for sample rejection improved CTBN
inference by an order of magnitude, assuming a willingness to pay the up front cost to train the classifier.
Extensions of this line of reasoning to achieve greater speed-ups should be investigated because more than
an order of magnitude scale-up will be necessary to apply CTBNs and CTBN inference on problems with
thousands or millions of variables seen in EHR data.

Given existing challenges in CTBN inference, in Chapter 6 we investigated an alternative model for
timelines: point processes. We sought to translate our learning contributions in CTBNs to the point process
framework and showed that it was possible if we used the piecewise-constant intensity model (PCIM)
framework. We connected CTBN and PCIM frameworks by noting their similarity in likelihood formulations
and extended PCIMs (Gunawardana et al., 2011) to forest models. We showed experimentally that learning
forests improved the model likelihood and that features derived from the forests improved prediction in
a variety of forecasting tasks for myocardial infarction. A few key differences between CTBN and point
processes were identified, such as the ability to learn models for each point process variable separately, due
to the lack of inference required and to the likelihood decomposition. Thus, in practice, one could learn a rate
dependence for individual outcomes of interest, instead of for every variable in the model. At the same time,
point processes are restricted in their ability to model clinical processes because of their strong assumptions
that the observation of an event equates to the occurrence of said event, and that the lack of observation of
an events means the event did not occur (i.e., the closed-world assumption).

Chapter 7 transitioned focus to the task of risk attribution. While mature methods are widely adopted
for determining the average treatment effect (ATE) using randomized controlled trials, cohort studies and
case-control analyses, methods focusing on individualized treatment effect (ITE) are just now being utilized.
Estimation of the ITE requires a modeling approach, which lends itself perfectly as a machine learning
task. Furthermore, because of the impracticality of performing a trial for exposure-outcome pair of interest,
modeling using EHR data becomes especially attractive. With these motivations, we investigated the use of
EHR data to determine a patient’s personalized risk attributable to an exposure or treatment of choice. To
motivate use of the ITE, we discussed the severe limitation of the applicability of the ATE. We suggested that
the ITE, unlike the ATE, could generalize to arbitrary population distributions. We showed that a choice of
binary classifiers different than logistic regression or a modeling of exposure-interaction terms would be
necessary for modeling the ITE in cases where there exists heterogeneity of treatment recommendation. On a
synthetic data set of statin treatment for MI prevention, we found that the personalized ITE recommendation
outperformed the uniform ATE recommendation. We also described learning curves and error modes for
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logistic regression and boosted trees, and showed that boosted trees outperformed logistic regression in ITE
recovery. Finally we showed that learning from unweighted data instead of from propensity-score matched
or inverse-probability-of-treatment weighted data results improves our ability to model the conditional
probability distribution.

8.2 Future Work

Discussions of future work specific to each chapter are contained in the chapters themselves; here we discuss
future directions for statistical timeline analysis as a whole.

Chapters 4, 5, and 6 hold the core temporal components of our work. We showed that the forest learning
algorithms can effectively recover temporal dependencies in data, which can lead to improved prediction.
However, as illustrated in Chapter 6 learning temporal dependency models does not optimize for predictions
of future outcomes. If the network we learn is not causal, or there are unobserved confounders or effect
modifiers, we should not hope that forward sampling from our models should make accurate predictions
beyond the near future. Future work in learning temporal, causal models could be difficult particularly
because of the need to address unobserved confounders and effect modifiers. However, a characterization
of the causal effect of variables in the system could determine a bound on the certainty of the forecast as a
function of time into the future.

The simpler approach is to make the assumption that the future will behave like the past, so we can
perform supervised learning on training examples from the past and apply them to examples in the future.
While this is straightforward and has immediate application, fields like medicine are always undergoing
rapid shifts in the practice of care and the definitions of disease, so inferring about the future using the
past will require constant relearning and will never get away from some small temporal bias. Regardless
of the methodology chosen, our temporal analysis does show improvement in performance over existing
models, suggesting that capturing the temporal dependencies is important both for forecasting and for
characterization of underlying processes.

This thesis presented a wide range of algorithms, which were developed to address key shortcomings
of existing methods when applied to the analysis of EHR data. Future work should investigate the com-
bination or hybridization of these models. Relational temporal models such as marked point processes or
relational CTBNs is worth exploring to better capture the relational nature of EHR data while maintaining an
appropriate continuous-time representation. A straightforward extension to learning comes to mind, though
inference in both models could be challenging. CTBN inference will undoubtedly have scaling challenges
when applied to relational data, though the use of, e.g., lifted particle filters Nitti et al. (2013) could mitigate
it. Sampling of marked point processes will require a relational generator in order to forecast, so its use to
undercover interesting relational dependencies may provide more immediate utility.

Hybrid forest CTBNs and point processes is a natural extension of our work. The limitation of forest point
processes is that inference must be based on forward sampling, i.e., sequential importance sampling, filtering
and smoothing. However, strong potential for scaling up such inference methods was presented in Chapter 5.

The combination of ITE estimation presented in Chapter 7 with temporal modeling is important and one
of the most challenging combination of themes. The ITE by definition is a difference in the individualized
probability of an outcome, and in many cases, the outcome value is defined by the presence or absence of
a disease over a time duration. A temporal ITE might then take a functional form, i.e., the instantaneous
difference in rate of the outcome occurring under the treatment and non-treatment arms. A temporal ITE
defined this way is similar to tracking the difference in intensities in a CTBN or point process over time.
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Establishing theoretical guarantees about a temporal ITE and how it could affect treatment choice would
be important next steps. The temporal ITE also bears some resemblance to the Cox proportional-hazards
model (Cox et al., 1972), which calculates the average attributable rate difference over time series data using
a semi-parametric model, though again, the modeling of individualized effects has distinct advantages over
population-average effects as described in Chapter 7.

Finally, returning to the medical utility of statistical timeline analysis for EHR data, the methods described
here could be the precursors to an automated system that provides clinical assessments of patients based
on data that is already collected for medical record-keeping and billing services. Additional pertinent
information can be introduced when clinical suspicion is high to update the clinical assessments, but the
ability of the EHR to provide clinical, statistical, and individualized guidance can improve patient care. A
system deployed now would not be perfect by any means, but observing its performance with the existing
methodology would highlight the improvements necessary to produce changes in clinical practice with
statistically minded improvements in outcome.
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