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Abstract

Electronic Health Records (EHRs) now hold over 50 years of recorded patient

information and, with increased adoption and high levels of population cover-

age, are becoming foci of public health analyses. The structure of EHR patient

data limits existing clinical study paradigms, which fail to effectively capture

the relational, temporal, and intermittent data characteristics. This dissertation

develops statistical timeline analysis (STA), a set of algorithms that extend

existing modeling approaches to address EHR data challenges.

Statistical timeline analysis models EHR data as patient-specific, relational

timelines, where measurements and events occur in continuous-time instead

of at fixed intervals. First, we adopt a relational forest algorithm and show

improved performance at heart attack prediction compared to analogous non-

relational algorithms. Then we turn to richer timeline models: continuous-

time Bayesian networks (CTBNs), which model dependencies in rate among

discrete variables over continuous time. We introduce partition-based CTBNs,

a generalization that alleviates the exponential space constraints of CTBNs

yet maintains the ability to model complex dependencies. We then develop

a multiplicative forest learning algorithm with space linear in the number of

forest splits that efficiently maximizes the partition-based CTBN likelihood.

To address CTBN inference challenges, we identify a generalmethod for the

improvement of sequential importance samples. Our method reduces sample

weight variance by an order of magnitude, yielding a better approximation of

the posterior distribution.

We also study point processes, which avoid CTBN inference challenges al-

together. We show that themultiplicative forest learning algorithm applies and

improves upon existing learning algorithms both in modeling dependences

and as extracted features for forecasting heart attacks.

Finally we turn to attributable risk. The clinical study paradigm focuses on

population-average changes in risk. However, the average outcomes of such

studies are then applied to individuals when the application of the individual

outcome is more appropriate. We show that individualized-risk modeling
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improves average individual outcomes and provides evidence of the EHR as

an effective source for modeling individualized attributable risks.

Our contributions to statistical timeline analysis show algorithmic and

performance improvements that address EHR data challenges. We expect

further research combining these ideas to improve clinical understanding and

patient care.
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1 Introduction

Alongside initiatives to increase the availability of Electronic Health Record

(EHR) information through the Affordable Care Act and initiatives to deploy

increasing numbers of mobile health (mHealth) studies, analysts of clinical

data are discovering limitations of existing methodologies and are developing

machine learning methods to meet their data challenges (Jha, 2010; Kay et al.,

2011). These trends signal a shift in the collection and recording of patient

health data, with the EHR becoming a primary data source for clinical analysis.

As the adoption of the EHR as a data source increases, novel methods

in machine learning and biostatistics for analyzing EHR data are needed to

derive utility in the form of clinical findings. This thesis seeks to describe

the challenges of using EHR data to produce clinical findings and develop

a set of algorithms to answer clinically important queries from such data. A

few challenges in analyzing EHR data, which we describe in detail in Section

2.1, include the effective and efficient use of large-width tables, the ability to

capture temporal effects, the use of heterogeneous data sources, and the ability

to leverage relational database structure.

We should not be deterred by these challenges because the continued use

specifically of EHR data is certain to drive new clinical findings. For one, other

existing methods driving clinical findings–clinical studies and in particular

randomized trials–cannot scale to address each exposure-outcome pair of inter-

est. With thousands of diagnoses, e.g., ICD-10 codes, and orders of magnitude

more measurements of potential risk factors, clinical studies must limit their

focus to common outcomes or treatments with large benefit. Analyses from

EHR data do not have such limitations. Furthermore, EHR data may provide a

richer patient profile than clinical study data where potential risks measured

are pre-specified in the study protocol. Thus, the use of EHR data can lead

to improved predictions and better disease characterization per dollar spent.

Clinical trial findings can also become “stale”, i.e., the results may not apply

well to patients in the future because medical care protocol has changed. A

re-analysis from EHR data can update the clinical recommendations without

additional intervention. Finally, EHR data hold records on large and diverse

sets of people, increasing statistical power to detect clinical findings and to
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characterize heterogeneity among subpopulations.

This thesis develops an analysis of EHR data to answer two types of tasks:

first, the prediction or forecasting of a patient outcome, and second, the esti-

mation of the risk of an outcome attributable to an exposure or treatment. To

do so, we propose the framework of statistical timeline analysis (STA), which

places emphasis on the temporal nature of clinical events, on EHR data asso-

ciated specifically with patient identifiers, and on a probabilistic regime for

answering queries.

1.1 Clinical Motivation

To motivate the usefulness of clinical outcome prediction and risk attribution

from EHR data, let us consider an example of a physician note.

A 63 year old white male comes to clinic complaining of one

month’s duration of chest pain after non-strenuous exercise such

as climbing 2 flights of stairs to his apartment. The pain is diffuse

in the left front of the chest, rated an 8/10, and is relieved by rest

and sitting or lying down. Past medical history is significant for

high blood pressure and high cholesterol. The patient is a current

smoker with a history of 20 pack-years.

This clinic note briefly describes the chief complaint (CC), history of present

illness (HPI), and past medical history (PMH). In just a short note, the pertinent

features for establishing the abnormal condition let the physician construct a

differential diagnosis. Following the history (CC, HPI, and PMH), a physical

exam is performed. In broad terms, the physician initially follows a data

acquisition phase, followed by an exploratory or confirmatory phase, finally

leading to a diagnosis, prognosis and treatment.

At each phase of this process, clinical findings guide the physician. Clas-

sifiers can help the physician weigh likely diagnoses and models can help

characterize likely underlying disease processes. Risk scores can help the

physician understand the expected benefit of treatment choices and the range

of likely outcomes. Computerized alerts can remind the physician to renew

or terminate drug prescriptions, as illustrated in Figure 1.1. At each decision

point, a physician armed with such information can make more informed

decisions that may improve the average outcome of patients.
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Predicted diagnosis Predicted incidence S.D.

1 Myocardial infarction 0.33/yr +2.5 σ Manage risk

2 Stroke 0.47/yr +2.5 σ Manage risk

3 Depression 0.60/yr +1.0 σ Manage risk

Manage risk

Manage risk

Manage risk

Elevated risk Suggested labs Drugs/dosing Don’t forget...

Figure 1.1: This figure shows a possible future EHR interface for the physician
that includesmachine learning predictions for the current patient. The diagram
shows model results suggesting that the patient is at elevated risk for specific
diagnoses. It depicts a tabbed environment,where themachine learning system
also provides optimal drug regimens, recommends the collection of additional
health information such as laboratory assays, and reminds physicians of steps
involved in providing continuing care.

Here is another use case. As medical students learn to hone their clinical

acumen, two of the most common questions posed to them are: (1) what is the

most likely diagnosis, and (2) what is the next step? Again, the answers come

back to the use of clinical findings to guide medical decision-making.

In terms of applied machine learning, these two questions translate to (1)

prediction and (2) risk attribution. The “most likely diagnosis” question asks

for a classification and is typically followed by a question to list alternative

but less probable diagnoses. The “next step” question typically requests the

student to identify missing features that would help improve the certainty

about the prediction of one or a few diseases. Our goal is to show that machine

learning can provide patient-specific answers to these questions directly from

EHR data. In the next section we describe methodologies to provide answers

to these two questions in more detail.

1.2 Clinically-Applied Machine Learning

Both the “prediction” and the “risk attribution” tasks have devoted fields of

study. We introduce these fields, discuss their limitations in addressing EHR

data challenges, and describe how statistical timeline analysis improves upon

them.
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Clinical forecasting

For prediction, machine learning and statistics have methods for classifica-

tion and regression. However, existing methods do not meet the challenges

existing in EHR data, such as its temporal, relational, and intermittent-arrival

characteristics. Chapter 2 discusses these challenges at length, as they guide

our choice of algorithm.

Specifically, work in Chapter 3 addresses the relational representation of

EHR data. For prediction of primary myocardial infarctions (MIs), the work

shows that a state-of-the-art relational forest learning method outperforms

analogous algorithms that do not leverage the relational representation.

However, the relational forest algorithm does not model the temporal

relationships beyond logical event time comparisons. Chapters 4, 5, and 6

discuss continuous-time Bayesian networks (CTBNs) and point processes,

both of which model the rates of events over continuous time. As described

in Section 2.1, continuous-time modeling is important for patient timelines,

because observations of medical encounters do not arrive at regular intervals,

an assumption that pervades existing clinical analyses.

In particular, CTBNs model events for every time t, but because EHR data

describe events at time points, inferences about the events between time points

becomes necessary. An improvement to existing CTBN inference methods

based on the incorporation of a rejection sampling step in sequential impor-

tance sampling is the subject of Chapter 5.

Point processes, on the other hand, do not require interpolative inference

and thus can scale to problems involving many event types. This comes at

the cost of making a closed-world assumption, namely, that the observation

of events define the occurrence of the event and the absence of observation

means the event does not occur.

These three chapters lay the foundation for statistical timeline analysis:

they show that, by representing EHR data as timelines, we can learn models

that effectively describe medical event dependencies, which can then be used

to improve forecasts about patient outcomes.

Risk attribution

For risk attribution, clinical studies from biostatistics and epidemiology are

well-suited to answer such questions from data that are produced according
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to specific study designs. Randomized controlled trials (RCTs), cohort studies,

and case-control studies all seek to approximate the risk attribution of an

exposure for a disease of interest. Their main outcome, the average treatment

effect (ATE), or its fractional relative, the relative risk (RR), describes the

expected reduction in risk in the studied population given exposure.

RCTs have the important characteristic that confounding effects are miti-

gated by the randomization procedure, so an unbiased estimate of the ATE

can be computed. They are, however, often impractical, infeasible, or unethi-

cal, so cohort and case-control studies are used in an attempt to mimic their

outcomes. A variety of approaches are used, including controlling for con-

founders, propensity scoring, or inverse-probability-of-treatment weighting

(Prentice, 1976; Austin, 2011; Rosenbaum & Rubin, 1983; Robins et al., 2000).

One critical drawback of all these methods is that they seek to calculate

the average treatment effect, when most applications of risk attribution really

desire the individualized treatment effect (ITE). The ITE provides the effect

per individual instead of a population-level effect, and information about

future individuals can be leveraged in determining optimal treatment choices.

The predominant method for providing individualized treatment effects from

RCT-style analyses is through subgroup analyses, called heterogeneity of

treatment effect (HTE) analysis. Our work in Chapter 7 suggests that, given

clinical interest in the ITE, the procedure of finding the ATE and performing a

secondary HTE analysis is indirect and possesses generalizability limitations

that are not applicable to our method of ITE estimation. Furthermore, the

use of EHR data introduces challenges for clinical study analyses; machine

learning methods may be better suited to such data.

The field of machine learning focuses less on risk attribution estimation

directly, but the closely related analysis ofmodel interpretability is emphasized.

Sometimes, interpretations of models directly answer the outcome of interest,

e.g. the exposure coefficient of the logistic regression as the log odds ratio. The

predominantmodel used in ourwork is themultiplicative forest, which ismore

challenging to interpret. We describe the forest models in detail in Chapters 4

and 6; here, we say that the forests determine if there is a dependency between

two events, and the magnitude of the dependency can be calculated given

the state of other pertinent events (i.e., effect modifiers). We explore boosted

forests in Chapter 7 for ITE estimation as an alternative to model inspection

for interpretable results.
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The use of EHR data and the development of algorithms that address the

prediction and risk attribution questions bring us to the thesis statement.

1.3 Thesis Statement

In this thesis, we develop statistical timeline analysis, a set of algorithms that

extend existing modeling approaches, to learn from Electronic Health Records

data. We demonstrate that statistical timeline analysis has utility in capturing the

temporal and relational characteristics of population data and can be used to discover

patient-specific clinical findings.
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2 Background

This chapter provides descriptions and definitions of foundational fields and

tools for ensuing chapters. We motivate the use of Electronic Health Record

data, introduce Statistical Relational Learning, describe two timeline models–

the continuous-time Bayesian network and the point process–and finish with

a brief review of clinical study methodology.

2.1 The Electronic Health Record as a Data Source

Electronic Health Records (EHRs) are an emerging data source of great poten-

tial use in disease prevention, diagnosis and treatment. An EHR tracks health

trajectories of its patients through time for cohorts with stable populations

(Figure 2.1). As of yet they have been used primarily as a data warehouse

for patient health queries, rather than as a source for population-level risk

assessment and prevention. This trend is changing, however, as exemplified by

the Heritage Health Prize contest, which uses medical claims data to predict

future hospitalization Heritage Provider Network (2011). In our work we will

suggest that the emergence of the EHR as the new data source for population

health analyses may allow us answer individualized clinical questions, as

shown in Figure 2.2.

Findings discovered from EHR data can improve patient care, for example,

by providing prompts to clinicians such as, “your patient is at high risk for an

MI and is not currently on an aspirin regimen.” Second, models build from

EHRs can be inspected in order to identify surprising connections, such as a

correlation between the outcome and the use of certain drugs, which might in

turn provide important clinical insights. Third, findings derived from EHRs

can be used in research to identify potential subjects for research studies. For

example, if we want to test a new therapy for its ability to prevent an event

such as MI, it would be most instructive to test it in a population of high-risk

subjects.

EHR data present significant challenges to current machine learning

methodology. If we hope to augment traditional clinical study analyses, we

must be able to effectively address these challenges. A few of them are listed
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Pt ID Date Diagnosis/Prescription/Procedure

207a3d56 2007.7 Lipitor

207a3d56 2010.8 Chest pain

207a3d56 2010.83 Angina pectoris

207a3d56 2011.2 Myocardial infarction

Pt ID Date Laboratory Test Laboratory Value

207a3d56 2007.7 Cholesterol High

207a3d56 2007.7 LDL High

207a3d56 2008.7 LDL Normal

207a3d56 2010.83 LDL Normal

Pt ID Gender Date of Birth

207a3d56 Male 1962.34

Pt ID Date Vital Type Vital Value

207a3d56 2007.7 BP High

207a3d56 2007.7 BMI Overweight

207a3d56 2008.7 BP Normal

207a3d56 2010.83 BP High

Figure 2.1: Example of patient-specific tables in the EHR. The EHR database
consists of tables including information such as diagnoses, drugs, labs, and
genetic information.

below.

• Incomplete data. Data typically consist of a variety of incomplete in-

formation: patient medical history, procedures history, family history,

demographic information, self-reported questionnaire answers, lab tests,

and genetic information. There is also provider information: location

of services, pharmacy records, and insurance records. Integrating the

variety of information available in an EHR is challenging, doubly so

given that the extraction of insightful results comes from incomplete

records.

• EHR size. EHRs include patients (thousands), providers (thousands), di-

agnoses anddrugs (thousands), and in the near future genetic biomarkers

(millions) and sequence data. Identifying complex relationships between

these entities in a computationally efficient manner can be problematic.

• Timestamps. The trajectories of medical events are highly non-uniform;

most medical encounters occur early and late in life. Events arrive at
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Electronic health record

Data Tables:

• Hx

• Rx

• Dx

• SNPs/genomes

Population-level clinical analyses:

• Case-control studies

• Cohort studies

• Randomized controlled trials

• Survival analyses

Patient medical timeline:

• Hx

• Rx

• Dx

• SNPs/genome

Machine learning system

Model
Model

Model
Model

Disease

susceptibility

profile

Figure 2.2: Machine learning systems (blue) can augment current clinical
analyses (orange) by producing personalized health profiles given medical
timelines of incoming patients. The clinical analyses typically identify and
quantify risk factors that lead to disease; machine learning models integrate
such risk factors into comprehensive predictive models. Medical history (Hx),
drugs prescribed (Rx), and diagnoses (Dx) are abbreviated.

irregular intervals unlike in canonical clinical studies; see, e.g., Figure

2.3.

• Relational data. To use most standard machine learning methods, data

must be preprocessed into a flattened feature format which causes a loss

of information and introduces statistical skew using autocorrelation and

linkage (Jensen & Neville, 2002).

• Definition shifts. Disease definitions are changing; subcategories and

new types are introduced. New modalities in imaging and sequencing

affect disease identification procedures and alter treatment guidelines.

The medical trajectory of a patient one decade ago is different than it is

today, making generalizations across time prone to bias.

While these challenges have been presented in themedical diagnosis frame-

work, the nature of the data is not specific to this application. What the data

capture are event timelines embedded in a relational domain. Algorithms for

prediction in relational and continuous-time domains exist individually, but

to our knowledge none exist that scalably and efficiently address this prob-

lem formulation. We develop methods that better handle these relational and

temporal challenges in Chapter 3 through Chapter 6.
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EHR data Time Framingham study measurements (FSM) Framingham score dependencies

labs, -cholesterol, +HDL,

(FSM) 0 physical exam (PE), -blood pressure (-BP),

medical history (Hx) smoker

+BP, hydrochlorothiazide

-BP

tachycardia

(FSM) 2 labs, PE, Hx -cholesterol, -HDL, -BP, smoker

+BP

atrial fibrillation

beta blocker, calcium channel blocker

-BP

(FSM) 4 labs, PE, Hx -cholesterol, -HDL, -BP, smoker

Figure 2.3: A diagram comparing EHR data extracted to timelines (left) and
Framingham Heart Study (FHS) data collection as a time series (right). The
Framingham health cohort requires clinic visits every other year to perform
laboratory assays (e.g. cholesterol levels), conduct physical exams including
blood pressure measurements (BP), and document medical history (e.g. smok-
ing status). The EHR contains FHS data and additional medical information
with accurate timestamps, shown on the left. The Framingham Risk Score
(FRS) is recalculated every two years, whereas one based on the EHR would
be updated as new clinical events occur.

2.2 Statistical Relational Learning

To preface material in Chapter 3, we introduce Statistical Relational Learning

(SRL). Relational models describe the relationships between objects, often

using logic, which allows for more expressive descriptions than the classical al-

ternative: an object as a vector in feature space. Many relational algorithms are

extensions of their classical machine learning counterparts and are upgraded

to the relational domain. SRL is the field that bridges relational modeling

and probabilistic model learning. For example, relational probability trees are

decision trees upgraded to first-order logic, and relational functional gradient

boosting is the relational extension of functional gradient boosting (Neville

et al., 2003; Natarajan et al., 2011b). Upgraded probabilistic models such as

these comprise a major fraction of SRL methods. From the other perspective,

established relational methods in databases and theorem-proving have been

extended to corresponding probabilistic representations (Cavallo & Pittarelli,

1987; Raedt, 2008) and also fall within the field of SRL. All of these methods

attempt to capture probabilistic behavior in richer, relational domains; see

(Getoor & Taskar, 2007) for more examples.
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Patient

related-to
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Disease
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event: {list[actors], time, zipcode}

Actor

is_a

is_a Time

Drug takes

treats

Figure 2.4: Schematic of the relationships one might be interested in modeling
in the medical diagnosis domain. Each node represents an entity type, and
the edges represent relationships among the entities that describe pertinent
information about the domain. These complicated relationships challenge the
notion of i.i.d data and fixed-size representations. In Ahmadi et al. (2012), the
relational example is referred to as single mega-example, as each so-called
example is intertwined with others due to the relationships among them.

The primary advantage of SRL methods is their ability to work with the

structure and relations in data; that is, information about one object helps the

learning algorithms to reach conclusions about other objects. This helps in two

primary ways.

• Examples are no longer assumed to be drawn i.i.d. from some underlying

distribution, which is an impractical assumption inmany domains.When

relations between examples are provided in the data, e.g. if one subject

is a sibling of another, SRL algorithms incorporate these relations and

use them in their predictions.

• Complex objects can be better represented in the relational domain. In

the medical prediction task, if patients have multiple blood pressure

measurements, a relational framework can record each one, whereas

a propositional framework requires either making aggregation design

decisions or moving to a multiple instance problem setup.

Figure 2.4 shows a diagram illustrating the interconnectedness of pertinent
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health information for a medical diagnosis prediction problem. It depicts

the relationships between patients, diagnoses, medications, and environment.

It depicts the hierarchical nature of clinical records, for example having zip

codes in states and diagnosis types in ICD-9 categories. Finally, it depicts

an event as a set of objects at a particular time and place. In clinical studies

we are often interested in the temporal health trajectory of a patient. The

relationships in Figure 2.4, and many others that were omitted for clarity,

form a complicated web of information. By using SRL algorithms we directly

incorporate the structure of the domain, avoiding lossy feature extraction

methods and modeling with fixed-length features.

The challenges associated with probabilistic relational algorithms typically

center around the difficulty of scaling to large data sets. The three main ma-

chine learning tasks are defining model representation, doing model learning,

and performing inference. Each task can be challenging in relational domains.

For model representation, a probability distribution needs to be defined over

some space; common spaces include possible worlds (e.g. in Bayesian net-

works and probabilistic databases) or possible proofs (e.g. stochastic context

free grammars). Model learning, split into structure and parameter learning,

often requires expanding the relationship graph to the grounded network

including all relationships among and within individual examples. The size

of the ground network may be exponential in the number of examples or

worse, making learning difficult. Model inference presents similar challenges

in scalability, as the goal or query may require finding the distribution over the

joint probability space encompassing the exponential-size ground network.

2.3 Continuous-Time Bayesian Networks

We turn to temporal analyses, where analyses over time series data with fixed,

discrete time intervals predominate, as for example in Dean & Kanazawa

(1989). However there are many domains in which discretizing the time leads

to intervals where no observations are made, producing “missing data” in

those periods, or there is no natural discretization available and so the time

series assumptions are restrictive. Of note, experiments in previous work

provide evidence that coercing continuous-time data into time series and

conducting time series analysis is less effective than learning models built with

continuous-time data in mind (Nodelman et al., 2003).
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Figure 2.5: Example of a complete trajectory in a two-node CTBN. The arrows
show the transitions and time intervals that are aggregated to compute selected
sufficient statistics (M’s and T’s). A and a denote two states for one variable,
and B and b two states for a second variable (left). The cardiovascular health
(CV health) structure used in experiments (right).

The prevailing model in continuous-time discrete state analysis is the

continuous-time Markov process (CTMP), a model that provides an initial dis-

tribution over states and a rate matrix parameterizing the rate of transitioning

between states. However, this model does not scale for the case where a CTMP

state is a joint state overmany variable states. Because the number of joint states

is exponential in the number of variables, the size of the CTMP rate matrix

grows exponentially in the number of variables. Continuous-time Bayesian

networks (CTBNs), a family of CTMPs with a factored representation, encode

rate matrices for each variable and the dependencies among variables (Nodel-

man, 2007). Figure 2.5 shows a complete trajectory, i.e., a timeline where the

state of each variable is known for all times t, for a CTMP with four joint states

(a, b), (a, B), (A, b), and (A, B) factorized into two binary CTBN variables α

and β (with states a and A, and b and B, respectively).

Formally, CTBNs are probabilistic graphical models that capture depen-

dencies between variables over continuous time. A CTBN is defined by 1) a

distribution for the initial state over variables X given by a Bayesian Network



14

B, and 2) a directed (possibly cyclic) graph over variables X with a set of

Conditional Intensity Matrices (CIMs) for each variable X ∈ X that hold the

rates (intensities) qx|u of variable transitions given their parents UX in the

directed graph. Here a CTBN variable X ∈ X has states x1, . . . , xk, and there

is an intensity qx|u for every state x ∈ X given an instantiation over its parents

u ∈ UX . The intensity corresponds to the rate of transitioning out of state x;

the probability density function for staying in state x given an instantiation

of parents u is qx|ue−qx|ut. Given a transition, X moves to some other state x′

with probability Θxx′|u.
The likelihood of a CTBN model given data is computed as follows. A

trajectory is a sequence of intervals of fixed state. For each interval [t0, t1), the
duration t = t1 − t0 passes, and a variable X transitions at t1 from state x to x′.
During the interval all other variables Xi �= X remain in their current states

xi. The interval likelihood is given by:

qx|ue−qx|ut

︸ ︷︷ ︸
X transitions

Θxx′|u

︸ ︷︷ ︸
to statex′

∏
xi:Xi �=X

e−qxi|ut

︸ ︷︷ ︸
whileXi’s rest

. (2.1)

Taking the product over intervals bounded by single transitions, we obtain the

CTBN trajectory likelihood:

∏
X∈X

∏
x∈X

∏
u∈UX

q
Mx|u
x|u e−qx|uTx|u

∏
x′ �=x

ΘMxx′|u
xx′|u (2.2)

where the Mx|u and Mxx′|u are the sufficient statistics indicating the number

of transitions out of state x (total, and to x′, respectively), and the Tx|u are the

sufficient statistics for the amount of time spent in x given the parents are in

state u.

The CTBN model provides a generative framework for forward sam-

pling a trajectory z defined by a sequence of (state,time) pairs zi =
({x1i, x2i, . . . , xni}, ti), where xji is the jth CTBN variable at the ith time. Given

an initial state {x10, x20, . . . , xn0}:

• Transition times are sampled for each variable xj according to qxj |u.

• The one variable xj that transitions is selected based on the sampled tran-

sition with the shortest time. The state that xj transitions to is sampled

from the multinomial θxjx′
j |u.
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Figure 2.6: The Nodelman CTBN drug network. Note the graphical model
representation for CTBNs allows cycles.

• The transition times are resampled according to intensities qxj |u, noting
that these intensities may be different because of potential changes in

the parents setting u. Due to the memoryless property of exponential

distributions, no resampling of the transition time for xj is needed if the

intensity qxj |u is unchanged.

The trajectory terminates when all sampled transition times exceed a specified

ending time.

Figure 2.6 shows the graphical model representation of the first published

CTBN network (Nodelman, 2007). Note that the graph is directed and con-

tains a cycle. Cycles are allowed because the parents setting determines the

child’s rate of transitioning instead of the child’s state. Thus factorization of

the likelihood does not require the acyclicity constraint imposed in Bayesian

networks. Similar to discrete state Bayesian networks, the parameter space

grows exponentially in the number of parents per variable. This limits the

scalability of CTBNs; for example, in the model in Figure 2.6, the maximum

number of incoming edges into a node is two. In line with context specific

independence, our previous work has addressed how to maintain compact

representations and facilitate efficient learning in such systems.

When CTBN trajectories have durations of time where the state of events
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are not completely observed, inference becomes necessary. Previous work on

CTBN inference includes Nodelman et al. (2005); Saria et al. (2007); Cohn et al.

(2009); Fan & Shelton (2008); Rao & Teh (2011), and we focus on extensions to

the approximate inference methods (Fan & Shelton, 2008; Rao & Teh, 2011).

Specifically, we seek to extend the sequential importance sampling methods

presented in Fan & Shelton (2008). To build upon this work, we give a brief

review of importance sampling and its sequential extension.

2.4 Sequential Importance Sampling

In this section we provide the basic problem setups for importance sampling

and sequential importance sampling. These methods produce samples from

generative models; in particular if we want to sample from a target distribution

f , we can generate samples from surrogate distribution g, where each sample

comes with a weight. The weighted distribution of samples from g takes

into account our sampling of g so will approximate f if we generate enough

samples.

Formally, let f be a p.d.f. defined on an ordered set of random variables

Z = {Z1, . . . , Zk} over an event space Ω. We are interested in the conditional

distribution f(z|e), where evidence e is a set of observations about a subset κ

of values {Zi = zi}i∈κ. For fixed e, we define our target p.d.f. f∗(z) = f(z|e).
Let g(z) be a surrogate distribution from which we can sample such that if

f∗(z) > 0 then g(z) > 0. Then for any subset Z ⊆ Ω, we can approximate f∗

with n weighted samples from g:

∫
z∈Z

f∗(z)dz =
∫

Z
f∗(z)
g(z) g(z)dz ≈ 1

n

n∑
i=1

1[zi∈Z]f
∗(zi)

g(zi) = 1
n

n∑
i=1

1[zi∈Z]wi

where 1[zi∈Z] is the indicator function with value 1 if zi ∈ Z and 0 otherwise,

and wi is the importance sample weight.

Sequential importance sampling (SIS) is used when estimating the distri-

bution f∗ over the factorization of Z. In time-series models, Zi is a random

variable over the joint state corresponding to a time step; in continuous-time

models, Zi is the random variable corresponding to an interval. Defining

zj←i = {zj , zj−1, . . . , zi} for i, j ∈ {1, . . . , k} and j ≥ i, we have the decompo-
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sition:

f∗(z) = p(z1, . . . , zk|e)

= p(z1|e)
k∏

i=2
p(zi|z(i−1)←1, e)

= g1(z1|e)w1(z1|e)
k∏

i=2
gi(zi|z(i−1)←1, e)wi(zi|z(i−1)←1, e) (2.3)

where p(·) is the probability distribution under f . Equation 2.3 substitutes

p with p.d.f. gi by defining functions gi and wi(·) = p(·)/gi(·) and requiring

gi to have the same support as p. Then g is defined by the composition of

gi: g(z|e) = g1(z1|e) ∏k
i=2 gi(zi|z(i−1)←1, e), and likewise for w. To generate a

sample zj from proposal distribution g(z|e), SIS samples each zi in order from

1 to k.

2.5 Point Processes

A complementary timeline formulation to CTBNs are point processes, which

avoid CTBN inference challenges altogether. Instead of modeling variable

states for every time t in some duration, point processes simply model the

variable events that occur in the duration.

We can think of a timeline as a sequence of {event,time} pairs capturing the

relative frequency and ordering of events and is a representation that arises

in many domains, including neuron spike trains (Brown et al., 2004), high-

frequency trading (Engle, 2000), andmedical forecasting (Diggle&Rowlingson,

1994). A point process is a model that characterizes the distribution over

emissions of an individual event over time. Thus, the point process treats each

timeline event type individually and specifies that it (re-)occurs according to

the intensity (or rate) function λ(t|h) over time t given an event history h.

Figure 2.7 shows a sample timeline of events deconstructed into individual

point processes. The conditional intensity model (CIM) is a probabilistic model

formed by the composition of individual point processes.

Let us consider the finite set of event types l ∈ L. An event sequence or

trajectory x is an ordered set of {time, event} pairs (t, l)n
i=1. A history h at time t

is the subset of x whose times are less than t. Let l0 denote the null event type,

and use the null event pairs (l0, t0) and (l0, tend) to denote the start and end
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Figure 2.7: A timeline (top) deconstructed into point processes (bottom).

times of the trajectory. Then the likelihood of the trajectory given the CIM θ is:

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)�(l=li)e
∫ t

−∞ λl(τ |x,θ)dτ

If we assume that λl(ti|hi, θ) is constant,

p(x|S, θ) =
∏
l∈L

λ
Ml(x)
l e−λlTl(x) (2.4)

where Ml(x) is the count of events of type l in trajectory x, and Tl(x) is the total
duration l is modeled. In Chapter 6, we will leverage the similarity between

Equations 2.2 and 2.4 to show that the learning frameworks we develop apply

to each type of model.

2.6 Clinical Study Designs

Previous sections have described modeling frameworks to address temporal

and relational aspects of EHR data. Here we provide background regarding

the predominant use of clinical data–risk attribution–to give insight into the

integration of EHR-based machine learning into existing biostatistics analyses.

The randomized controlled trial (RCT) is the primary risk attribution

method. It randomizes patients to different treatment arms and measures

the rate or probability of an outcome. The treatment arm with the highest

success rate determines the preferred treatment, and the conclusion is that

future patients who fit the entry criterion of the study should get the pre-

ferred treatment. Randomization is crucial to balance confounders, which are

covariates that lead to the outcome and are associated with the treatment.

Randomization also balances unmeasured confounders, so the study conclu-

sion is free of confounding bias in expectation. The quantitative outcome of
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the RCT study is the average treatment effect (ATE), the average difference in

probability of the outcome between two treatment arms.

In general, one cannot know what will happen to a specific patient under

each treatment arm. The treatment that is given elicits the “true” outcome,

and the treatment(s) not given elicits the “counterfactual” outcome. The coun-

terfactual outcome is impossible to measure, but with randomization and the

assumption that patients are drawn from an underlying population distri-

bution, the expected outcome of patients assigned to a treatment arm is the

same as the expected outcome of patients with the same treatment, true or

counterfactual. Thus, RCTs provide a recommendation about the treatment

effect for every treatment arm in the study for every patient.

The RCT is not feasible in many cases. Randomization to harmful treat-

ments is unethical; for example, one does not randomize patients to “smoking”

and “non-smoking” treatment arms. In such cases, observational studies are

used to derive risk attribution statements, and these include cohort and case-

control studies. Observational studies make the no unobserved confounders

assumption (NUCA); the techniques rely uponmodeling to pseudo-randomize

the population distribution, but cannot do so effectively if they are missing

important contributors to their model–the unobserved confounders. Observa-

tional studies are designed to produce estimates for either the odds ratio, which

can in turn be used to estimate the relative risk and the average treatment effect,

or use pseudo-randomization techniques to mimic RCT data distributions.

When estimating the odds ratio, a conditional probability distribution

(CPD) is used to model the probability of the outcome given the treatment

and covariates as in, e.g., Prentice (1976). The key is to include all confounders

as covariates in the model, but not to include any intermediate variables. In-

termediate variables are variables whose value are determined in part by the

treatment and in turn affect the outcome, i.e., they are on the “causal” pathway.

Logistic regression models are often used and have the convenient characteris-

tic that the coefficient associated with the treatment variable corresponds to

the log odds ratio.

When using pseudo-randomization techniques, the idea is to re-weight

the population distribution to make the treatment independent of covariates

given the outcome. Propensity score matching constructs a model–typically a

logistic regression–to stratify patients based on their propensity of treatment,

matches patients within strata, and uses the matched population as its data set
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(Austin, 2011; Rosenbaum&Rubin, 1983). An alternative is to weight examples

by the inverse probability-of-treatment (IPT); this involves modeling the IPT,

weighting examples by 1 divided by the weights, and estimating the ATE

from the pseudo-randomized population (Robins et al., 2000). A stabilized

IPT weighting scheme is often used to reduce the potentially-large weight

variance.

Combinations of these approaches exist: e.g., the doubly-robust method

using IPT and then modeling the CPD from the weighted distribution (Bang &

Robins, 2005). The doubly-robust method is consistent if either the IPT estima-

tor or the CPD model is properly specified. Unfortunately proper specification

is often difficult to achieve and hard to assess in practice.

All of the above methods estimate the ATE, and there is a growing interest

inmodeling the individual treatment effect (ITE). The ITE is preferable because

ITE-recommendations are patient- not population- specific. As a preview of

Chapter 7, we suggest that machine learning could be useful in ITE estimation,

and with developments in statistical timeline analysis, EHR data could become

a leading source for future risk attribution findings.
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3 Learning Relational Forests to

Predict Primary Myocardial

Infarction from Electronic Health

Records

Overview

The previous chapter provided background important for Statistical Timeline

Analysis. This chapter focuses on the relational challenges of the data. In par-

ticular, EHR data come from multiple tables potentially with different fields.

This data representation cannot be practically coerced into fixed-length feature

vectors, the primary data representation for machine learning and statistics,

without losing information. To address these issues, relational learning uses

the multiple table structure directly, and we adopt one such approach to lever-

age the relations available in EHR data. We apply two statistical relational

learning (SRL) algorithms to the task of predicting primary myocardial infarc-

tion. We show that one SRL algorithm, relational functional gradient boosting,

outperforms propositional learners particularly in the medically-relevant high

recall region. We observe that both SRL algorithms predict outcomes better

than their propositional analogs and suggest how our methods can augment

current epidemiological practices. Similar versions of the work in this chapter

were published in the Artificial Intelligence Magazine and Proceedings of the

Innovative Applications of Artificial Intelligence (Weiss et al., 2012b;a).

3.1 Introduction

One of the most studied pathways in medicine is the health trajectory leading

to heart attacks, known clinically as myocardial infarctions (MIs). MIs are

common and deadly, causing one in three deaths overall in the United States

totaling 600,000 per year (Manson et al., 1992). Because of its medical signif-

icance, MI has been studied in depth, mostly in the fields of epidemiology

and biostatistics, yet rarely in machine learning. So far, it has been established
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that prediction of future MI is a challenging task. Risk stratification has been

the predictive tool of choice (Diverse Populations Collaborative Group, 2002;

Wilson et al., 1998), but these methods cannot reliably isolate the negative class;

that is, everyone is still at risk. A much richer area of study is the identification

of risk factors for MI. Common risk factors have been identified such as age,

gender, blood pressure, low-density lipoprotein (LDL) cholesterol, diabetes,

obesity, inactivity, alcohol and smoking. Studies have also identified less com-

mon risk factors as well as subgroups with particular risk profiles (Greenland

et al., 2010; Antonopoulos, 2002).

The canonical method of study in this field is the identification or quan-

tification of the risk attributable to a variable in isolation using: case-control

studies, cohort studies, and randomized controlled trials. Case-control or

cross-sectional studies identify odds ratios for the variable (or exposure) while

controlling for confounders to estimate the relative risk. Cohort studies mea-

sure variables of interest at some early time point and follow the subjects to

observe who succumbs to the disease. Randomized controlled trials are the

gold standard for determining relative risks of single interventions on single

outcomes. Each of these methods is highly focused, centered on the goal of

providing the best risk assessment for one particular variable. One natural

question to ask is: by using machine learning, can we conduct fewer studies

by analyzing the effects of many variables instead?

A different and crucial limitation of the longitudinal methods is that they

make measurements at fixed points in time. In these studies, data is collected

at the study onset t0 to serve as the baseline variables, whose values are the

ones used to determined risk. To illustrate this, consider the Skaraborg cohort

study (Bog-Hansen et al., 2007) for the identification of acute MI mortality

risk factors. The study measured established risk factors for MI at t0, and

then the subjects participated in annual checkups to assess patient health and

determine if an MI event had occurred. It is important to note that, in line with

current practice, the subjects who did not possess risk factors at time t0 but

developed them at some later time were considered as not possessing them

in the analysis. If we knew that these developments had occurred, say from

an EHR, would it be possible to estimate the attributable risk more precisely?

In the extreme, can we estimate the risk factors and make reliable predictions

without the annual checkups and the baseline t0 measurements?

More generally, can we bring a machine learning perspective to this task
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that provides new insights to the study of MI prediction and risk factor iden-

tification? The answer is yes, and we present here a glimpse of the potential

machine learning has to bring to this field. We suggest that the emergence of

the EHR as the new data source for population health analyses may be able

to answer these clinical questions more efficiently, effectively adding another

method of study to the standard three. For the prediction task, we emphasize

the evaluation of methods on statistics that are clinically relevant, specifically

on class separability (for risk stratification) and precision at high recalls (for

use as a screening tool). Class separability, which can be directly assessed

using ROC curves, is a well-established tool for risk stratification (Diverse

Populations Collaborative Group, 2002). Evaluating precision at high recalls

assesses an algorithm’s ability to predict while disallowing many false nega-

tives, which is the critical component to a good screening tool. For predicting

MI, a false negative means categorizing a patient as “low-risk” who goes on

to have a heart attack, a costly outcome we wish to avoid. We also focus our

methodology on algorithms with good interpretability, as this is critical for

using the models for risk factor identification. In this work we survey a host of

established machine learning algorithms for their performance on this task

and select the most promising algorithm for further analysis. We attempt to

answer some of these questions by providing an EHR-based framework for

prediction and risk factor identification.

As mentioned in Chapter 2, EHR data presents significant challenges to

current machine learning methodology. If we hope to augment traditional

clinical study analyses, we must be able to effectively address these challenges.

A few of them are: size, time-stamped data, relational data, and definition

shifts over time.

We use Relational Functional Gradient Boosting (RFGB) because it ad-

dresses all but the last challenge, which is difficult for any algorithm to capture.

Notably, it is one of the few relational methods capable of learning from large

data sets. Moreover, RFGB can incorporate time by introducing temporal pred-

icates like before(A, B):-A < B. Also, unlike most other state-of-the-art SRL

algorithms, RFGB allows us to learn structure and parameters simultaneously

and grows the number of models as needed. Hence, we apply RFGB (Natarajan

et al., 2010) and relational probability trees (RPTs) (Neville et al., 2003) to the

task of predicting primary myocardial infarction (MI). Our goal is to establish

that, even for large scale domains such as EHRs, that relational methods, and
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in particular RFBG and RPTs, can scale and outperform propositional variants.

This chapter makes a few key contributions: First, we address the chal-

lenging problem of predicting MI in real patients and identify ways in which

machine learning can augment current methodologies in clinical studies. Sec-

ond, we address this problem using recently-developed SRL techniques, adapt

these algorithms to predicting MI and present the algorithms from the per-

spective of this task. Third, the task of MI prediction is introduced to the SRL

community. To our knowledge, this is the first work to use SRL methods to

predict MI in real patients. Fourth, we focus our analysis on interpretable RPT

models, making it easy to discern the relationship between different risk fac-

tors and MI. Finally, our paper serves as a first step to bridge the gap between

SRL techniques and important, real-world medical problems.

3.2 Tree-Based Statistical Relational Learning

Statistical Relational Learning (SRL) (Getoor & Taskar, 2007), also known as

relational probabilisticmodels, model structure and relations in data; that is, in-

formation about one object helps the learning algorithms to reach conclusions

about other objects. Unfortunately, most SRL algorithms have difficulty scaling

to large data sets. One efficient approach that yields good results from large

data sets is the relational probability tree (Neville et al., 2003). The performance

increase observed moving from propositional decision trees to forests is also

seen in the relational domain (Anderson & Pfahringer, 2009; Natarajan et al.,

2010). One method called functional gradient boosting (FGB) has achieved

good performance in the propositional domain (Friedman, 2001). We apply it

to the relational domain for our task: the prediction and risk stratification of

MI from EHRs.

Relational Probability Trees

RPTs (Neville et al., 2003) were introduced for capturing conditional distri-

butions in relational domains. These trees upgrade decision trees to the rela-

tional setting and have been demonstrated to build significantly smaller trees

than other conditional models and obtain comparable performance. We use a

version of RPTs that employs the TILDE relational regression (RRT) learner

(Blockeel & Raedt, 1998) where we learn a regression tree to predict positive

examples (in this case, patients with MI) and turn the regression values in
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the leaves into probabilities by exponentiating the regression value and nor-

malizing them. Hence, the leaves of the RPTs are still the probability that a

person has an MI given the other attributes. The key advantage of TILDE is

that it can use conjunctions of predicates in the inner nodes as against a single

test by the traditional RPT learner. This modification has been shown to have

better performance than RPTs by others (Natarajan et al., 2010; Anderson &

Pfahringer, 2009). In RRTs, the inner nodes (i.e., test nodes) are conjunctions

of literals and each RRT can be viewed as defining several new feature combi-

nations, one corresponding to each path from the root to a leaf. The resulting

potential functions from all these different RRTs still have the form of a linear

combination of features but the features can be quite complex (Gutmann &

Kersting, 2006). We use weighted variance as the criterion to split on in the

inner nodes. We augment the RRT learner with aggregation functions such

as count, max, average that are used in the standard SRL literature (Getoor &

Taskar, 2007) thus making it possible to learn complex features for a given tar-

get. These aggregators are pre-specified and the thresholds of the aggregators

are automatically learned from the data. Continuous features such as cholesterol

level, ldl, bmi, etc. are discretized into bins based on domain knowledge.

Relational Functional Gradient Boosting

Assume that the training examples are of the form (xi, yi) for i = 1, ..., N

and yi ∈ {0, 1} where y = MI and x represents the set of all observations

about the current patient i. The goal is to fit a model P (y|x) ∝ eψ(y,x). The

standard method of supervised learning is based on gradient-descent where

the learning algorithm starts with initial parameters θ0 and computes the

gradient of the likelihood function. A more general approach is to train the

potential functions based on Friedman’s gradient-tree boosting algorithm

where the potential functions are represented by sums of regression trees that

are grown stage-wise (Friedman, 2001). More formally, functional gradient

ascent starts with an initial potential ψ0 and iteratively adds gradients Δi.

Thus, after m iterations, the potential is given by ψm = ψ0 + Δ1 + ... + Δm.

Here, Δm is the functional gradient at episode m and is

Δm = ηm × Ex,y[∂/∂ψm−1log P (y|x; ψm−1)] (3.1)
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where ηm is the learning rate. Dietterich et al.(Dietterich et al., 2004) suggested

evaluating the gradient at every position in every training example and fitting

a regression tree to these derived examples i.e., fit a regression tree hm on the

training examples [(xi, yi), Δm(yi; xi)]. They point out that although the fitted

function hm is not exactly the same as the desired Δm, it will point in the same

direction, assuming that there are enough training examples. So ascent in the

direction of hm will approximate the true functional gradient. The same idea

has later been used to learn several relational models and policies (Natarajan

et al., 2010; Sutton et al., 2000; Kersting & Driessens, 2008; Natarajan et al.,

2011a; Gutmann & Kersting, 2006).

Let us denote the MI as y and it is binary valued (i.e., occurrence of MI).

Let us denote all the other variables measured over the different years as x.
Hence, we are interested in learning P (y|x) where P (y|x) = eψ(y;x)/

∑
y eψ(y;x).

Note that in the functional gradient presented in Equation 3.1, the expectation

Ex,y[..] cannot be computed as the joint distributionP (x, y) is unknown.Hence,

RFGB treats the data as a surrogate for the joint distribution.

Instead of computing the functional gradients over the potential function,

they are instead computed for each training example i given as (xi, yi). Now

this set of local gradients form a set of training examples for the gradient

at stage m. Recall that the main idea in the gradient-tree boosting is to fit a

regression-tree on the training examples at each gradient step. In this work,

we replace the propositional regression trees with relational regression trees

(Gutmann & Kersting, 2006; Natarajan et al., 2010; Kersting & Driessens, 2008).

The functional gradient with respect to ψ(yi = 1; xi) of the likelihood for

each example (xi, yi) can be shown to be:

∂ log P (yi; xi)
∂ψ(yi = 1; xi)

= I(yi = 1; xi) − P (yi = 1; xi),

where I is the indicator function that is 1 if yi = 1 and 0 otherwise. The

expression is very similar to the one derived in Dietterich et al.(Dietterich

et al., 2004). The key idea in this work is to represent the distribution over

MI of a patient as a set of RRTs on the features. These trees are learned such

that at each iteration the new set of RRTs aim to maximize the likelihood of

the distributions with respect to ψ. Hence, when computing P (MI(X)|f(X))
for a particular patient X , given the feature set f , each branch in each tree

is considered to determine the branches that are satisfied for that particular
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Figure 3.1: Flow chart depicting experimental setup

grounding (x) and their corresponding regression values are added to the

potential ψ.

3.3 Experimental Methods

We analyzed de-identified EHR data on 18, 386 subjects enrolled in the Per-

sonalized Medicine Research Project (PMRP) at Marshfield Clinic (McCarty

et al., 2005; 2008). The PMRP cohort is one of the largest population-based

bio-banks in the United States and consists of individuals who are 18 years

of age or older, who have consented to the study and provided DNA, plasma

and serum samples along with access to their health information in the EHR.

Most of the subjects in this cohort received most, if not all, of their medical

care through the Marshfield Clinic integrated health care system.
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Case definition

Within the PMRP cohort, 1153 cases were selected using the first International

Classification of Diseases 9th revision (ICD9) code of 410.0 through 410.1.
Cases were excluded if the incident diagnosis indicated treatment for sequelae

of MI or “MI with subsequent care”. The age of the first case diagnosis was

recorded and used to right-censor EHR data from both the case and the match-

ing control one month prior to the case event. In other words, all facts linked

to the case and the matched controls after the case age–one month prior to

case diagnosis–were removed so that recent and future events could not be

used in MI prediction.

Controls

To achieve a 1-1 ratio of cases to controls (i.e., positive and negative examples),

cases were matched with controls based on the last age recorded in the EHR.

For many matches, this corresponds to a case who is alive being matched to a

control of the same age. For others it means matching someone who died from

a heart attack to someone who died from other causes or was lost to follow-up.

Matching on last reported age was chosen so that each subject would have

both a similar age and similar presence in the EHR.

Feature selection

As CHD is the leading cause of mortality in the US, of which MI is a primary

component, risk factors are well-studied (Antonopoulos, 2002; Greenland et al.,

2010; Manson et al., 1992; Wilson et al., 1998), and those represented in the

EHR were included in our experiments. We included major risk factors such

as cholesterol levels (LDL in particular), gender, smoking status, and systolic

blood pressure, as well as less common risk factors such as history of alco-

holism and procedures for echocardiograms and valve replacements. Drugs

known to have cardiac effects were included, notably the coxibs and tricyclic

antidepressants. As EHR literals are coded in hierarchies, we chose to use the

most specific level of information, which often split established risk factors

into multiple subcategories. The risk factors were chosen a priori as opposed

to employing algorithmic feature selection (e.g. the feature selection inher-

ent in decision trees) to shrink the feature size from hundreds of thousands

(excluding genetic data) to thousands for computational reasons and so that
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algorithms without inherent feature selection would perform comparably. The

features chosen came from relational tables for diagnoses, medications, labs,

procedures, vitals, and demographics.

Propositionalization

Patient relations were extracted to temporally-defined features in the form

of “patient ever had x ∈ X” or “patient had x ∈ X within the last year”. For

laboratory values and vitals, both of which require an additional literal for

the result of the test, the result was binned into established value categories

(e.g. for blood pressure, we created five binary features by mapping the real

value to {critically high, high, normal, low, and critically low}). This resulted

in a total of 1,528 binary features.

Evaluation measures

The cases and controls were split into ten folds for cross-validation in a nine-

fold train set to one-fold test set. Although we did choose a one-to-one ratio

of cases to controls, in general this would not be the case, so we chose to

assess the performance of the algorithms with the area under the ROC curve

(AUC-ROC), accuracy, and by visualizing the results with a precision-recall

plot. Also, precision at high recalls {0.95, 0.99, 0.995} were calculated to assess

a model’s usefulness as a screening tool. p-values were calculated comparing

the RFGB model with the comparison methods using a two-sided paired t-test

on the ten-fold test sets, testing for significant differences in accuracy and

precision at a recall of 0.99.

Comparison methods

The key question is whether the relational algorithms consistently produced

better predictions than their corresponding propositional variant. Thus we

compared RFGBmodels to boosted decision trees (AdaBoostM1 (Ada); default

parameters) and RPTs with decision tree learners (J48; C=0.25, M=2). We also

included other common models: Naive Bayes (NB; default parameters), Tree-

Augmented Naive Bayes (TAN; SimpleEstimator), support vector machines

(SVMs; linear kernel, C 1.0; radial basis function kernel, C 250007, G 0.01), and

random forests (RF; 10 trees, default parameters). All propositional learners

were run using Weka software (Hall et al., 2009).
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Table 3.1: Area under the ROC curve, accuracy and corresponding p-
value(RFGB vs. all), precision at recall (P@R), and p-value(RFGB vs. all,
P@R=0.99). Bold indicates best performance.

AUC-ROC Accuracy p P@R=0.99 p(P@R=0.99)

Tree J48 0.744 0.716 4e-5 0.500 6e-7

Boosted Trees 0.807 0.753 1e-4 0.572 4e-4

Random Forests 0.826 0.785 4e-1 0.593 2e-3

NB 0.840 0.788 8e-1 0.513 1e-4

TAN 0.830 0.768 6e-3 0.518 2e-4

SVM (linear) 0.704 0.704 5e-6 – –

SVM (rbf) 0.761 0.761 1e-2 – –

RFGB 0.845 0.791 – 0.655 –

RPT 0.792 0.738 4e-6 0.595 4e-5

Secondary analysis

In our secondary analysis, we varied both the experimental setup and the

RFGB parameters to investigate the effect on their predictive ability. First, we

altered the case-control ratio {1:1, 1:2, 1:3}, holding the number of cases fixed.

Second, we altered the maximum number of clauses (for internal node splits)

allowed per tree {3, 10 (default), 20, 30}. Third, we altered the maximum depth

of the tree {1 (stump), 5}. Finally, we altered the number of trees {3, 10 (default),

20, 30}. We also compared the results among these analyses if they contained

the same maximum number of parameters (e.g. 30 parameters: 3 trees × 10

clauses, 10 trees × 3 clauses).

3.4 Results

The best cross-validated predictor of primary MI according to AUC-ROC was

the RFGB model as shown in Table 3.1. RFGB outperformed the other tree

learners, forest learners and SVMs. The RPT model did not score as well,

ranking in the middle of the propositional learners. It is of note that the RFGB

and RPT models significantly outperformed their direct propositional analogs

(Boosted Tree and Tree models, respectively). The Bayesian model (NB; TAN)

scores may be somewhat inflated because only features known to be CHD risk

factors were specifically chosen for this analysis. They may be more prone to

irrelevant feature noise as those models include all features into their final
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Figure 3.2: Precision-recall curves, with vertical lines denoting the recall thresh-
olds {0.95, 0.99, 0.995}. RFGB (dashed) and RPT (dotted) are bolded. RFGB
outperforms all other algorithms in the medically-relevant region (high recall).
At recall=0.9, the ordering of algorithms (best to worst) is: RFGB, Random
Forests, TAN, NB, RPT, Boosted Trees, J48.

models.

The precision-recall curves for the algorithms are shown in Figure 3.2

(SVMs are omitted as their outputs do not admit a ranking over examples).

Medically, the most important area is the region of high recall (i.e. sensitiv-

ity) because typically the cost of leaving a condition undiagnosed is high. In

Table 3.2: Secondary analyses: RFGB performance as case-control ratio (CC),
number of clauses, trees and tree depth are modified. Default number of
clauses = 10 and trees = 10

AUC-ROC Accuracy P@R=0.99

CC 1:1;1:2;1:3 .84;.87;.88 .79;.80;.82 .66;.51;.43

Trees 3;20;30 .80;.85;.85 .74;.80;.80 .61;.67;.66

Clauses 3;20;30 .85;.85;.85 .79;.79;.79 .66;.66;.66

Tree depth 1;5 .85;.85 .79;.79 .66;.66
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Figure 3.3: The first learned tree in the RFGB forest

other words, the expected cost of a false positive is much smaller than a false

negative because a false positive incurs the costs of additional interventions,

while a false negative incurs costs of untreated human morbidity, and usu-

ally expensive, delayed treatments. Given that we cannot accept models with

many false negatives (i.e. low recall), we look to the high recall region for the

best performing algorithm, and RFGB gives the highest precision as shown in

Table 3.1.

In our secondary analysis, when changing the case-control ratio we ob-

served an increase in the AUC-ROC aswell as the expected increase in accuracy

and decrease in precision shown in Table 3.2. We suspect the improvement

in AUC-ROC may be attributed to the larger population size, as for example

CC 1:3 has twice as many examples as CC 1:1. RFGB performance improved

with increases with forest size, with the greatest gains coming between using

three and ten trees, and no overfitting was observed using our largest fifty-tree

forest (see our website: http://cs.wisc.edu/~jcweiss/iaai2012). Varying
the number of clauses or tree depth made no visible difference in RFGB perfor-

mance, at least when holding the number of trees fixed at ten. Per parameter,

we found that increasing forest size improved prediction more than increasing

individual tree sizes, as we see by comparing equal-parameter rows in Table

3.2.

Figure 3.3 shows an example tree produced in the RFGB forest. We can

read this as follows. Given a patient A and their censor age B (i.e. for cases,

one month before their first MI; for controls, the censor age of the corre-

sponding case), if A had a normal non-HDL cholesterol measurement at

time C, take the left branch, otherwise take the right branch. Assuming we
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took the left branch, if the measurement C was within one year of the cen-

sor age, take the left branch again. The leaf regression value is the best es-

timate of the residual of the probability of the covered examples given the

model at that iteration. The whole RFGB forest is available at our website:

http://cs.wisc.edu/~jcweiss/iaai2012.
Direct interpretation of the tree can lead to useful insights. In the example

above, the tree indicates that a patient is more likely to have a future MI event

if they have had a normal non-HDL cholesterol level reading in the last year

compared to patients who have had normal cholesterol readings not in the

last year. Now, since it is implausible that the measurement itself is causing

MI, it could be considered a proxy for another “risk factor”, which in this

case could be physician concern, as frequent lipoprotein measurements may

display a concern for atherosclerosis-related illness. The set of trees can also

be converted into a list of weighted rules to make them more interpretable

(Craven & Shavlik, 1996).

The density plot in Figure 3.4 shows the ability of RFGB and RPT models

to separate the MI class from the controls. It is clear from the far left region

of the RFGB graph that we can accurately identify a substantial fraction of

controls with few cases by thresholding around 0.25, or more stringently at

0.05. This region captures an algorithm’s utility as a screening tool, where we

see that RFGB significantly outperforms the others.

3.5 Discussion

One layer of complexity not addressed in this experiment is the use of other

relational information such as hierarchies. EHRs have hierarchies for diagnoses,

drugs, and laboratory values, and it is important to be able to capture detail

at each level. For example, characteristic disease progression pathways stem

from infarctions of different heart walls, but at a high level, the presence of any

MI leads to standard sequelae. Relational domains can easily incorporate this

knowledge into hierarchical “is a” relations, whereas propositional learners

must create new features for every level. The challenge for relational tree-based

learners is that the search algorithm is greedy; identifying high-level relations

requires traversing several “is a” relationships first, and thus they might not

be found in a greedy search. Expanding internal nodes to longer clauses has

been implemented with some success (Natarajan et al., 2010; Anderson &
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Figure 3.4: Density of cases (dashed) and controls (solid) by {RFGB (left), RPT
(right)} prediction, one line per fold. Taking the integral from 0 to cutoff c for
example at c = 0.05 and c = 0.25 shows that RFGB identifies many controls at
low-risk of developing MI.

Pfahringer, 2009), although this does have the effect of rapidly increasing the

number of features to consider during branching. The use of SRL algorithms

could also allow the use of relations like patient physicians and providers,

which form complex relations less “patient-disease”-oriented but ones that

still may be central to patient care. Questions regarding disease heritability

could also be addressed through relational family-based analyses.

Given the success of the RFGB method, one extension would include the

addition of more potential risk factors for learning (i.e., include all the mea-

surements on all the patients). This could be challenging as the number and

frequencies of the measurements differ greatly across patients. In the exper-

imental RFGB model, we used time as the last argument of our predicates.

While a vast body of work discusses learning and reasoning with temporal

models in propositional domains, the situation is not the same for relational

models. The investigation of a principled approach to learn and reason with

relational dynamic models that allows physicians to monitor the cardiovas-

cular risk levels of patients over time and develop personalized treatment

plans could be extremely valuable. Finally, deployment of a complete machine
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learning system for identifying risk factors across many diseases given EHR

data could immediately augment the clinical work flow.

3.6 Summary

In this chapter, we presented the challenging and high-impact problem of

primary MI from an EHR database using a subset of known risk factors. We

adapted two SRL algorithms in this prediction problem and compared them

with standard machine learning techniques. We demonstrated that RFGB is as

good as or better than propositional learners at the task of predicting primary

MI from EHR data. Each relational learner does better than its corresponding

propositional variant, and in the medically-relevant, high recall region of the

precision-recall curve, RFGB outperforms all the other methods that were

considered. One limitation of this method is that time could only be used

logically in the forest learning algorithm. In the next three chapters, we explore

explicit timeline models, which capture time in continuous fashion and can

model over multiple time scales.
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4 Learning Multiplicative Forests for

Continuous-Time Bayesian Networks

Overview

We turn now to modeling EHR patient data as timelines in a continuous-time

framework. This framework allows us to effectively learn temporal depen-

dencies between variables at varying time scales, which is important medi-

cally because events tend to arrive in clusters. We adopt the continuous-time

Bayesian network (CTBN) model, which effectively model events over con-

tinuous time. However, it is limited by the number of conditional intensity

matrices, which grows exponentially in the number of parents per variable.

We develop a partition-based representation using regression trees and forests

whose parameter spaces grow linearly in the number of node splits. Using

a multiplicative assumption we show how to update the forest likelihood in

closed form, producing efficient model updates. Our results show multiplica-

tive forests can be learned from few temporal trajectories with large gains in

performance and scalability. A similar version of this chapter was published

in the Proceedings of the Neural Information Processing Systems Conference

(Weiss et al., 2012c).

4.1 Introduction

The modeling of temporal dependencies is an important and challenging task

with applications in fields that use forecasting or retrospective analysis, such

as finance, biomedicine, and anomaly detection. Many studies have analyzed

temporal data using fixed, discrete time intervals, e.g., Dean&Kanazawa (1989),

but for many timelines, there is no natural discretization available making the

time series assumption overly restrictive. Previous work provides evidence

that using time series analysis on continuous-time data is less effective than

using continuous-time models directly (Nodelman et al., 2003).

We specifically investigate probabilistic models over finite event spaces

across continuous time, i.e., continuous-time Markov process (CTMP). This

model provides an initial distribution over states and a rate matrix parame-
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terizing the rate of transitioning between states. However, it does not scale to

joint states over many variable states because the number of joint states is expo-

nential in the number of variables, and thus the size of the CTMP rate matrix

grows exponentially in the number of variables. Continuous-time Bayesian

networks (CTBNs) are a family of CTMPs with a factored representation that

encode rate matrices for each variable and the dependencies among variables

(Nodelman, 2007). Figure 2.5 shows an example of a trajectory, i.e., a timeline

where the state of each variable is known for all times t, for a CTMP with four

joint states (a, b), (a, B), (A, b), and (A, B) factorized into two binary CTBN

variables α and β (with states a and A, and b and B, respectively).

Previous work on CTBNs includes several approaches to performing CTBN

inference (Nodelman et al., 2005; Saria et al., 2007; Cohn et al., 2009; Fan &

Shelton, 2008; Rao & Teh, 2011) and learning (Nodelman et al., 2003; Nodelman,

2007). Briefly, CTBNs do not admit exact inference without transformation

to the exponential-size CTMP. Approximate inference methods including

expectation propagation (Nodelman et al., 2005), mean field (Cohn et al., 2009),

importance sampling-based methods (Fan & Shelton, 2008), and MCMC (Rao

& Teh, 2011) have been applied, and while these methods have helped mitigate

the inference problem, inference in large networks remains a challenge. CTBN

learning involves parameter learning using sufficient statistics (e.g. numbers

of transitions M and durations T in Figure 2.5) and structure learning over

a directed (possibly cyclic) graph over the variables to maximize a penalized

likelihood score. Our work addresses learning in a generalized framework to

which the inference methods mentioned above can be extended.

In this work we introduce a generalization of CTBNs: partition-based

CTBNs. Partition-basedCTBNs remove the restriction used inCTBNs of storing

one rate matrix per parents setting for every variable. Instead partition-based

CTBNs define partitions over the joint state space and define the transition rate

of each variable to be dependent on the membership of the current joint state

to an element (part) of a partition. As an example, suppose we have partition

P composed of parts p1 = {(a, b), (A, b)} and p2 = {(a, B), (A, B)}. Then the

transition into si from joint state (A, B) in Figure 2.5 would be parameterized

by transition rate qa|p2 . Partition-based CTBNs store one transition rate per

part, as opposed to one transition rate matrix per parents setting. Later we

will show that, for a particular choice of partitions, a partition-based CTBN

is equivalent to a CTBN. However, the more general framework offers other
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choices of partitions which may be more suitable for learning from data.

Partition-based CTBNs avoid one limitation of CTBNs: that the model size

is necessarily exponential in the maximum number of parents per variable.

For networks with sparse incoming connections, this issue is not apparent.

However, in many real domains, a variable’s transition rate may be a function

of many variables.

Given the framework of partition-based CTBNs, we need to provide a

way to determine useful partitions. Thus, we introduce partition-based CTBN

learning using regression tree modifications in place of CTBN learning using

graph operators of adding, reversing, and deleting edges. In the spirit of

context-specific independence (Heckerman, 1993), we can view tree learning

as a method for learning compact partition-based dependencies. However, tree

learning induces recursive subpartitions, which limits their ability to partition

the joint state space. We therefore introduce multiplicative forests for CTBNs,

which allow the model to represent up to an exponential number of transition

rates with parameters still linear in the number of splits.

Following canonical tree learningmethods, we perform greedy tree and for-

est learning using iterative structure modifications. We show that the partition-

based change in log likelihood can be calculated efficiently in closed form

using a multiplicative assumption. We also show that using multiplicative

forests, we can efficiently calculate the ML parameters. Thus, we can calculate

the maximum change in log likelihood for a forest modification proposal,

which gives us the best iterative update to the forest model.

Finally, we conduct experiments to compare CTBNs, regression tree CTBNs

(treeCTBNs) and multiplicative forest CTBNs (mfCTBNs) on three data sets.

Our hypothesis is twofold: first, that learning treeCTBNs and mfCTBNs will

scale better towards large domains because of their compact model structures,

and second, that mfCTBNs will outperform both CTBNs and treeCTBNs with

fewer data points because of their ability to capture multiplicative dependen-

cies.

The rest of the chapter is organized as follows: in Section 4.2 we provide

background on CTBNs. In Section 4.3 we present partition-based CTBNs,

show that they subsume CTBNs and define the partitions that tree and forest

structures induce. We also describe theoretical advantages of using forests

for learning and how to learn these models efficiently. We present results in

Section 4.4 showing that forest CTBNs are scalable to large state spaces and
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learn better than CTBNs, from fewer examples and in less time. Finally, in

Sections 4.5 and 4.6 we identify connections to functional gradient boosting

and related continuous-time processes and discuss how our work addresses

one limitation that prevents CTBNs from finding widespread use.

4.2 Background

CTBNs are probabilistic graphical models that capture dependencies between

variables over continuous time. As a reminder, and for notational consistency,

we reintroduce CTBNs here. Recall that a CTBN is defined by 1) a distribution

for the initial state over variables X given by a Bayesian Network B, and 2)

a directed (possibly cyclic) graph over variables X with a set of Conditional

Intensity Matrices (CIMs) for each variable X ∈ X that hold the rates (intensi-

ties) qx|u of variable transitions given their parents UX in the directed graph.

A CTBN variable X ∈ X has states x1, . . . , xk, and there is an intensity qx|u for

every state x ∈ X given an instantiation over its parents u ∈ UX . The intensity

is the rate of transitioning out of state x; the probability density function for

staying in state x given an instantiation of parents u is qx|ue−qx|ut. Given a

transition, X moves to some other state x′ with probability Θxx′|u. Taking the

product over intervals bounded by single transitions, we obtain the CTBN

trajectory likelihood:

∏
X∈X

∏
x∈X

∏
u∈UX

q
Mx|u
x|u e−qx|uTx|u

∏
x′ �=x

ΘMxx′|u
xx′|u

where the Mx|u and Mxx′|u are the sufficient statistics indicating the number

of transitions out of state x (total, and to x′, respectively), and the Tx|u are the

sufficient statistics for the amount of time spent in x given the parents are in

state u.

4.3 Partition-based CTBNs

Here we define partition-based CTBNs, an alternative framework for determin-

ing variable transition rates. We give the syntax and semantics of our model,

providing the generative model and likelihood formulation. We then show

that CTBNs are one instance in our framework. Next, we introduce regression

trees and multiplicative forests and describe the partitions they induce, which
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are then used in the partition-based CTBN framework. Finally, we discuss the

advantages of using trees and forests in terms of learning compact models

efficiently.

Let X be a finite set of discrete variables X of size n, with each variable

X having a discrete set of states {x1, x2, . . . , xk}, where k may differ for each

variable.We define a joint state s = {x1, x2, . . . , xn} over X where the subscript

indicates the variable index. We also define the partition space P = X 1. We

will shortly define set partitions P over P , composed of disjoint parts p, each

of which holds a set of elements s.

Next we define the dynamics of the model, which form a continuous-time

process over X . Each variable X transitions among its states with rate parame-

ter qx′|s for entering state x′ given the joint state s2. This rate parameter (called

an intensity) parameterizes the exponential distribution for transitioning into

x′, given by the pdf: p(x′, s, t) = qx′|se−qx′|st for time t ∈ [0, ∞).
A partition-based CTBN has a collection of set partitions P over P , one

Px′ for every variable state x′. For shorthand, we will often denote p = Px′(s)
to indicate the part p of partition Px′ to which state s belongs. We define the

intensity parameter as qx′|s = qx′|p for all s ∈ p. Note that this fixes this intensity

to be the same for every s ∈ p, and also note that the set of parts p covers P .

The pdf for transitioning is given by p(x′, s, t) = p(x′, Px′(s), t) = qx′|pe−qx′|pt

for all s in p.

Now we are ready to define the partition-based CTBN model. A partition-

based CTBN model M is composed of a distribution over the initial state of

our variables, defined by a Bayesian network B, and a set of partitions Px′ for

every variable state x′ with corresponding sets of intensities qx′|p.
The partition-based CTBN provides a generative framework for producing

a trajectory z defined by a sequence of (state, time) pairs (si, ti). Given an initial

state s0, transition times are sampled for each variable state x′ according to

p(x′, Px′(s0), t). The next state is selected based on the transition to the x′ with

the shortest time, after which the transition times are resampled according to

p(x′, si, t). Due to the memoryless property of exponential distributions, no

1Note we can generalize this to larger spaces P = R × X , where R is an external state
space as in (Gunawardana et al., 2011). but for our analysis we restrict R to be a single element
r, i.e. P ∼= X .

2Of note, partition-based CTBNs are modeling the intensity of transitioning to the recipient
state x′, rather than from the donor state x because we are more often interested in the causes
of entering a state.
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resampling of the transition time for x′ is needed if p(x′, si, t) = p(x′, si−1, t).
The trajectory terminates when all sampled transition times exceed a specified

ending time.

Given a trajectory z, we can also define the model likelihood. For each

interval ti, the joint state remains unchanged, and then one variable transitions

into x′. The likelihood given the interval is: qx′|si−1

∏
X

∏
x∈X e

−qx|si−1 ti , i.e.,

the product of the probability density for x′ and the probability that no other

variable transitions before ti. Taking the product over all intervals in z, we get

the model likelihood:

∏
X∈X

∏
x′∈X

∏
s

q
Mx′|s
x′|s e−qx′|sTs (4.1)

where Mx′|s is the number of transitions into x′ from state s, and Ts is the total

duration spent in s. Combining terms based on the membership of s to p and

defining Mx′|p = ∑
s∈p Mx′|s and Tp = ∑

s∈p Ts, we get:

Eq.(4.1) =
∏

X∈X

∏
x′∈X

∏
p∈Px′

q
Mx′|p
x′|p e−qx′|pTp

CTBN as a partition-based CTBN

Here we show that CTBNs can be viewed as an instance of partition-based

CTBNs. Each variable X is given a parent set UX , and the transition intensities

qx|u are recorded for leaving donor states x given the current setting of the

parents u ∈ UX . The CTBN likelihood can be shown to be:

∏
X∈X

∏
x∈X

∏
u∈UX

e−qx|uTx|u
∏

x′ �=x

q
Mxx′|u
xx′|u (4.2)

as in (Saria et al., 2007), where qxx′|u and Mxx′|u denote the intensity and

number of transitions from state x to state x′ given parents setting u, and∑
x′ �=x qxx′|u = qx|u. Rearranging the product from equation 4.2, we achieve a

likelihood in terms of recipient states x′:

Eq. (4.2) =
∏

X∈X

∏
x∈X

∏
u∈UX

∏
x′ �=x

q
Mxx′|u
xx′|u e−qxx′|uTx|u

=
∏

X∈X

∏
x′∈X

∏
p∈Px′

q
Mx′|p
x′|p e−qx′|pTp (4.3)
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where we define p as {x} × {u} × (X \ (X × UX)) in each partition Px′ , and

likewise: qx′|p = qxx′|u, Mx′|p = Mxx′|u, and Tp = Tx|u. Thus, CTBNs are one

instance of partition-basedCTBNs,with partitions corresponding to a specified

donor state x and parents setting u.

Tree and forest partitions

Trees and forests induce partitions over a space defined by the set of possible

split criteria (Strobl et al., 2009). Here we will define the Conditional Intensity

Trees (CITs): regression trees that determine the intensities qx′|p by inducing a

partition over P . Similarly, we will define Conditional Intensity Forests (CIFs),

where tree intensities are named intensity factors whose product determines

qx′|p. An example of a CIF, composed of a collection of CITs, is shown later in

the experiment results in Figure 4.3.

Formally, a Conditional Intensity Tree (CIT) fx′ is a directed tree structure

on a graph G(V, E) with nodes V and edges E(Vi, Vj). Internal nodes Vi of the

tree hold splits σVi = (πVi , {E(Vi, ·)}) composed of surjective maps πVi : s 	→
E(Vi, Vj) and lists of the outgoing edges. The maps π induce partitions over

P and endow each outgoing edge E(Vi, Vj) with part pVj . External nodes l,

or leaves, hold non-negative real values qCITx′|p called intensities. A path ρ from

the root to a leaf induces a part p, which is the intersection of the parts on the

edges of the path: p = ⋂
E(Vi,Vj)∈ρ pVj . The parts corresponding to paths of a

CIT form a partition over P , which can be shown easily using induction and

the fact that the maps πVi induce disjoint parts pVj that cover P .

A Conditional Intensity Forest (CIF) Fx′ is a set of CITs {fx′}. Because the

parts of each CIT form a partition, a CIF induces a joint partition over P where

a part p is the set of states s that have the same paths through all CITs. Finally,

a CIF produces intensities from joint states by taking the product over the

intensity factors from each CIT: qCIF
x′|pCIF = ∏

fx′ qCIT
x′|pCIT .

Using regression trees and forests can greatly reduce the number of model

parameters. In CTBNs, the number of parameters grows exponentially in

the number of parents per node. In tree and forest CTBNs, the number of

parameters may be linear in the number of parents per node, exploiting the

efficiency of using partitions. Notably, however, tree CTBNs are limited to

having one intensity per parameter. In forest CTBNs, the number of intensities

can be exponential in the number of parameters. Thus, the forest model has

much greater potential expressivity per parameter than the other models.



43

Forest CTBN learning

Here we discuss the reasoning for using the multiplicative assumption and

derive the changes in likelihood given modifications to the forest structure.

Previous forests learners have used an additive assumption, e.g. averaging and

aggregating, thereby taking advantage of properties of ensembles (Freund &

Schapire, 1995; Breiman, 2001). However, if we take the sum over the intensity

factors from each tree, there are no direct methods for calculating the change

in likelihood aside from calculating the likelihood before and after a forest

modification,whichwould require scanning the full data once permodification

proposal. Furthermore, summing intensity factors could lead to intensities

outside the valid domain [0, ∞).
Instead we use a multiplicative assumption since it gives us the correct

range over intensities. As we show below, using the multiplicative assump-

tion also has the advantage that it is easy to compute the change in log like-

lihood with changes in forest structure. Consider a partition-based CTBN

M = (B, {Fx′}) where the partitions Px′ and intensities qx′|p are given by the

CIFs {Fx′}. We focus on change in forest structure for one state x′ ∈ X and

remove x′ from the subscript notation for simplicity. Given a current forest

structure F and its partition P , we formulate the change in likelihood by

adding a new CIT f ′ and its partition P ′. One example of f ′ is a new a one-split

stub. Another example of f ′ is a tree copied to have the same structure as a

CIT f in F with all intensity factors set to one, except at one leaf node where

a split is added. This is equivalent to adding a split to f . We denote P̂ as the

joint partition of P and P ′ and parts p̂ ∈ P̂ , p ∈ P , and p′ ∈ P ′. We consider

the change in log likelihood ΔLL given the new and old models:

ΔLL = (
∑

p̂

Mp̂ log qp̂ − qp̂Tp̂) − (
∑

p

Mp log qp − qpTp)

= (
∑

p̂

Mp̂(log qp′ + log qp) − qp̂Tp̂) − (
∑

p

Mp log qp − qpTp)

= (
∑

p̂

Mp̂ log qp′ − qp̂Tp̂) +
∑

p

qpTp

=
∑
p′

Mp′ log qp′ −
∑

p̂

qp̂Tp̂ +
∑

p

qpTp (4.4)

We make use of the multiplicative assumption that qp̂ = qp′qp and
∑

p Mp =∑
p′ Mp′ = ∑

p̂ Mp̂ to arrive at equation 4.4. The first and third terms are easy
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to compute given the old intensities and new intensity factors. The second

term is slightly more complicated:

∑
p̂

qp̂Tp̂ =
∑

p̂

qp′qpTp̂ =
∑
p′

qp′
∑
p̂∼p′

qpTp̂

We introduce the notation p̂ ∼ p′ to denote the parts p̂ that correspond to the

part p′. The second term is a summation over parts p̂; we have simply grouped

together terms by membership in p′.
The number of parts in the joint partition set P̂ can be exponentially large,

but the only remaining dependency on the joint partition space in the change

in log likelihood is the term
∑

p̂∼p′ qpTp̂. We can keep track of this value as we

progress through the trajectories, so the actual time cost is linear in the number

of trajectory intervals. Thinking of intensities q as rates, and given durations

T , we observe that the second and third terms in equation 4.4 are expected

numbers of transitions: Ep̂ = ∑
p̂ qp̂Tp̂ and Ep = ∑

p qpTp. We additionally

define Ep′ = ∑
p̂∼p′ qpTp̂. Specifically, the expectations Ep′ and Ep are the

expected number of transitions in part p′ and p using the old model intensities,

respectively, whereas Ep̂ is the expected number of transitions using the new

intensities.

Maximum-likelihood parameters

The change in log likelihood is dependent on the intensity factor values {qp′}we

choose for the new partition.We calculate themaximum likelihood parameters

by setting the derivative with respect to these factors to zero to get qp′ =
Mp′∑

p̂∼p′ qpTp̂
= Mp′

Ep′ . Following the derivation in (Nodelman et al., 2003), we

assign priors to the sufficient statistics calculations. Note, however, that the

priors affect the multiplicative intensity factors, so a tree may split on the same

partition set twice to get a stronger effect on the intensity, with the possible

risk of undesirable overfitting.

Forest implementation

We use greedy likelihood maximization steps to learn multiplicative forests

(mfCTBNs). Each iteration requires repeating three steps: (re)initialization,

sufficient statistics updates, and model updates. Initially we are given a blank

forest Fx′ per state x′ containing a blank tree fx′ , that is, a single root node
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acting as a leaf with an intensity factor of one.We also are given sets of possible

splits {σ} and a penalty function κ(|Z|, |M|) to penalize increased model

complexity. First, for every leaf l in M, we (re)initialize the sufficient statistics

Ml and El in M, as well as sufficient statistics for potential forest modifications:

Ml,σ, El,σ, ∀l, σ. Then, we traverse each of our trajectories z ∈ Z to update each

leaf. For every (state, duration) pair (si, ti), where ti is the time spent in state

si−1 before the transition to si, we update the sufficient statistics that compose

equation 4.4. Finally, we compute the change in likelihood for possible forest

modifications, and choose the modification with the greatest score. If this score

is greater than the cost of the additional model complexity, κ, we accept the

modification. We replace the selected leaf with a branch node split upon the

selected σ. The new leaf intensity factors are the product of the old intensity

(factor) ql and the intensity factor qp′ . We present pseudocode in Algorithm 1.

Unlike most forest learning algorithms, mfCTBNs learn trees neither in

series nor in parallel. Notably, the best split is determined solely by the change

in log likelihood, regardless of the tree to which it belongs. If it belongs to the

blank tree at the end of the forest, that tree produces non-trivial factors and

a new blank tree is appended to the forest. In this way, as mfCTBN learns,

it automatically determines the forest size and tree depth according to the

evidence in the data.

4.4 Experiments

We evaluate our tree learning and forest learning algorithms on samples from

three models. The first model, which we call “Nodelman”, is the benchmark

model developed in (Nodelman, 2007; Nodelman et al., 2003). The second

is a cardiovascular health model we call “CV health” shown in Figure 4.1.

The cause of pathologies in this field are known to be multifactorial (Kannel,

1996). For example, it has been well-established that independent positive risk

factors for atherosclerosis include beingmale, a smoker, in old age, having high

glucose, high BMI, and high blood pressure. The primary tool for prediction

in this field is risk factor analysis, where transformations over the product of

risk factor values determines overall risk. The third model we call “S100” is a

large-scale model with one hundred binary variables. Parents are determined

by the binomial distribution B(0.05, 200) over variable states, with intensity

factor ratios of 1 : 0.5. Our goal is to show that treeCTBNs and mfCTBNs can
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Algorithm 1 Multiplicative forest learning

Input: trajectories zi ∈ Z, blank forests Fx′ ∈ M, partition sets {Π}, penalty κ =
κ(|Z|, |M|)

1: function learnModel(Z,M)
2: repeat

3: resetSufficientStatistics(M)
4: updateSufficientStatistics(Z, M, Π)
5: zeroSplits = makeSplits(M)
6: until zeroSplits = true
7: end function

8: function updateSufficientStatistics(Z,M,Π)
9: for (si, ti) ∈ zi ∈ Z do

10: for Leaf l = lj,x′ , {l ∈ {fx′} ∈ M | d(l, si) = ∅} do

11: if(d(si, si−1) = {x′}): Ml = Ml + 1
12: El = El + qx′|si−1ti

13: for π ∈ {Π} do

14: if(d(π, si) = ∅, d(si, si−1) = {x′}): Ml,π = Ml,π + 1
15: if(d(π, si) = ∅): El,π = El,π + qx′|si−1ti

16: end for

17: end for

18: end for

19: end function

20: function makeSplits(M)
21: madeSplit = false
22: for {fx′} ∈ M do

23: Splits {σl,Π} = {(Ml, El, {Ml,π, El,π}∀π ∈ Π)}, ∀Π, l ∈ {fx′}
24: (bestScore, bestSplit) = (argmaxσl,Π{deltaLogLikelihood(σl,Π) − κ}, σl,Π)
25: if (bestScore > 0) then

26: split(σl,Π)
27: if(¬Fx′ .lastTreeBlank()): Fx′ .addBlankTree()
28: madeSplit = true
29: end if

30: end for

31: return ¬madeSplit
32: end function

33: function deltaLogLikelihood(σl,Π)
34: qπ = Mπ/Eπ, ∀π ∈ Π
35: return (

∑
Π Mπ log qπ − qπEπ) + El

36: end function

scale to much larger model types and still learn effectively. In our experiments

we set the potential splits {σ} to be the set of binary splits determined by

indicators for each variable state x′. We set κ to be zero and terminate model

learning when the tune set likelihood begins to decrease.

We compare our algorithms against the learning algorithm presented in

(Nodelman et al., 2003) using code from (Shelton et al., 2010), which we will
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Figure 4.1: The cardiovascular health (CV health) structure used in experi-
ments.

call N-CTBN. N-CTBNs perform a greedy Bayesian structure search, adding,

removing, or reversing arcs to maximize the Bayesian information criterion

score, a trade-off between the likelihood and a combination of parameter and

data size. Our algorithms use a tune set by sieving off one quarter of the original

training set trajectories. We use the same Laplace prior as used in (Shelton

et al., 2010). We use the same training and testing set for each algorithm. The

trajectories are sampled from the ground truth models for durations 10, 10
and 2 units of time, respectively. We evaluate the three models using the

testing set average log likelihood. To provide an experimental comparison of

model performance, we choose to analyze the p-values for a two-sided paired

t-test for the average log likelihoods between mfCTBNs and N-CTBNs for

each training set size. The results come from testing sets with one thousand

sampled trajectories.
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Results

Figure 4.2 (top) shows that the mfCTBN substantially outperforms both the

treeCTBN and the N-CTBN on the Nodelman model in terms of average log

likelihood. This effect is most pronounced with relatively few trajectories,

suggesting that mfCTBNs are able to learn more quickly than either of the

other models.

We observe an even larger difference between the mfCTBN and the other

models in the CV health model in Figure 4.2 (middle). With relatively few tra-

jectories, the mfCTBN is able to identify the multifactorial causes as observed

in the high log likelihood and structural recall. For runs with fewer than 500

training set trajectories, many N-CTBN models have nodes including every

other node as a parent, requiring the estimation of about 300,000 parameters

on average.

Figure 4.2 (bottom) shows thatmfCTBNs can effectively learn densemodels

an order of magnitude larger than those previously studied. The expected

number of parents per node in the S100 model is approximately 20. In order

to exactly reconstruct the S100 model, a traditional CTBN would then need

to estimate 221 intensity values. For many applications, variables need more

parents than this. We observe that N-CTBNs have difficulty scaling to models

of this size. The N-CTBN learning time on this data set ranges from 4 hours

to more than 3 days; runs were stopped if they had not terminated in that

time. About one third of the runs failed to complete, and the runs that did

complete suggested that N-CTBN performed poorly, similar to the differences

observed in the CV health experiment. We suspect the algorithm may be

similarly building nodes with many parents; the model might need to estimate

2100 parameters, a bottleneck at minimum. By comparison, all runs using

treeCTBNs and mfCTBNs completed in less than 1 hour. The averaged results

of N-CTBNs on the S100 model are omitted accordingly.

We tested for significant differences in the average log likelihoods between

the N-CTBN and mfCTBN learning algorithms. In the Nodelman model, the

differences were significant at level of p =1e-10 for sizes 10 through 500,

p = 0.05 for sizes 1000 and 5000, and not significant for size 10000. In the CV

health model, the differences were significant at p =1e-9 for all training set

sizes. We were unable to generate a t-test comparison of the S100 model.

Figure 4.3 shows the ground truth forest and the mfCTBN forest learned

for the “severe atherosclerosis” state in the CV health model. To calculate the
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Figure 4.2: Average testing set log likelihood varying the training set size
for each model: Nodelman (top), CV health (middle), and S100 (bottom). N-
CTBN averages are omitted on the S100 model as one third of the runs did not
terminate.
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Figure 4.3: Ground truth (top) and mfCTBN forest learnt from 1000 trajectories
(bottom) for intensity/rate of developing severe atherosclerosis.

intensity of transitioning into this state, we identify the leaf in each forest that

matches the current state and take the product of their intensity factors. Figure

4.3 (bottom) shows the recovery of the correct dependencies in approximately

the right ratios.
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Learning curves

To characterize basic properties of multiplicative forest learning, we investi-

gated the importance of the tune set as the stopping criterion. Figure 4.4 shows

the learning curves for training and testing sets as a function of split attempts.

Vertical lines show where the BIC and AIC scores would have terminated

the process: κ(BIC) = 1
2 |H| log |Z| and κ(AIC) = |H|. Unlike forests used

in ensembles, multiplicative forests do not exhibit stabilizing behavior. We

suspect that the decreased model stability as the number of split attempts

increases might be due to the multiplicative assumption.
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Figure 4.4: Training and testing set average log likelihood (black and red,
respectively), for training set size of 10, 100, 1000 on the CV health model.
{Solid, dashed, dotted} vertical lines indicate the {tune set, BIC, and AIC}
stopping criterion if met.

4.5 Related Work

We discuss the relationships between mfCTBNs and related work in two

areas: forest learning and continuous-time processes. Forest learning with a

multiplicative assumption is equivalent to forest learning in the log space with

an additive assumption and exponentiating the result. This suggests that our

method shares similarities with functional gradient boosting (FGB), a leading
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method for constructing regression forests, run in the log space (Friedman,

2001).

Specifically, in Section 4.3, we showed that, given a new partition proposal

p′, the maximum likelihood intensity factors are given by the ratio of the

observed to expected number of transitions: Mp′/Ep′ .

Observed transitions in Z

Expected transitions under H
= Mp′

Ep′

This result suggests a connection to functional gradient boosting (FGB), one of

the leading methods for constructing regression forests (Friedman, 2001). FGB

methods perform gradient-descent in the function space by fitting regression

trees to residuals at every gradient step. Suppose we have observations y on

the domain [0, ∞); we might use FGB to learn log y because FGB uses additive

trees, and directly learning y from x could give negative values, i.e. ŷ = f(x)
outside the domain. Using FGB over log y|x builds multiplicative forests: the

residual predicted in the tree fi+1(x) is (log y − ∑
fi

fi(x)), and taking the

exponent of this quantity is simply the ratio y/ŷ.

Nevertheless, there are several critical differences between mfCTBNs and

FGB learning. First, mfCTBNs are not given explicit outcomes y, so updates

maximize the change in log likelihood based on sufficient statistics calculations

instead of minimizing a loss function in FGB. Second, our algorithm does

not restrict learning of additional trees prior to the completion of previous

trees, allowing the model to determine when to expand the forest size or tree

depth. Node splits in any tree can occur in any iteration of forest learning. By

comparison, in FGB, trees are constructed to completion and are static as new

trees are learned. To provide the ability to modify any tree at any learning

iteration, FGB would have to do leave-one-(tree)-out modeling, that is, predict

log y − ∑
fi,i�=j fi(x) for all j, a potentially expensive operation. To recap, our

method is different primarily in its direct use of a likelihood-based objective

function and in its ability to modify any tree in the forest at any iteration.

Several other works that model variable dependencies over continuous

time also exist. Poisson process networks and cascades model variable depen-

dencies and event rates (Rajaram et al., 2005; Simma, 2010). Perhaps the most

closely related work, piecewise-constant conditional intensity models (PCIMs),

reframes the concept of a factored CTMP to allow learning over arbitrary basis

state functions with trees, possibly piecewise over time (Gunawardana et al.,
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2011). These point process models focus on the “positive class”, i.e. the obser-

vation or count of observations of an event. Thus they run into the limitations

of making the closed-world assumption. That is, given a timeline, we receive

all observations of events but not necessarily all occurrences of the events, and

we would like to include this uncertainty in our model. In point processes, the

representation of the “negative” class is missing, when in some cases it is the

absent state of a variable that triggers a process, as for example in the case of

gene expression networks and negative regulation. Nonetheless, in Chapter

6 we extend the multiplicative forest idea to sidestep the inference problems

that are discussed in the next chapter.

4.6 Summary

We presented an alternative representation of the dynamics of CTBNs using

partition-based CTBNs instantiated by trees and forests. Our models grow

linearly in the number of forest node splits, while CTBNs grow exponentially

in the number of parent nodes per variable. Motivated by the domain over

intensities, we introduced multiplicative forests and showed that CTBN like-

lihood updates can be efficiently computed using changes in log likelihood.

Finally, we showed that mfCTBNs outperform both treeCTBNs and N-CTBNs

in three experiments and that mfCTBNs are scalable to problems with many

variables. With our contributions in developing scalable CTBNs and efficient

learning, along with continued improvements in inference, CTBNs can be a

powerful statistical tool to model complex processes over continuous time.

We expose the challenges of CTBN inference in the next chapter and develop

a sampling method that improves upon the existing sequential importance

sampler, in turn improving the scalability of CTBN inference to problems

where more evidence is observed.



54

5 Rejection-Based Inference for

Continuous-Time Bayesian Networks

Overview

Having presented an efficient representation and learning algorithm for

CTBNs in the previous chapter, in this chapter we discuss how to approach

timelines with incomplete observations. Approximate inference procedures

based on sequential importance sampling are often used, but when proposal

and target distributions are dissimilar, the procedures lead to biased esti-

mates or require a prohibitive number of samples. This chapter introduces a

method that better approximates the target distribution by sampling variable

by variable from existing importance samplers and accepting or rejecting each

proposed assignment in the sequence: a choice made based on anticipating up-

coming evidence. We relate the per-variable proposal and target distributions

by expected weight ratios of sequence completions and show that we can learn

accurate models of optimal acceptance probabilities from local samples. In a

continuous-time domain, our method improves upon previous importance

samplers by transforming a sequential importance sampling problem into a

machine learning one. A similar version of this chapter is in preparation for

submission.

5.1 Introduction

Sequential importance sampling (SIS) is a method for approximating a target

distribution that samples from a proposal distribution and weights by the ratio

of target and proposal distributions at each step of the sequence. It provides

the basis for many distribution approximations with applications including

robotic environment mapping and speech recognition (Montemerlo et al.,

2003; Wolfel & Faubel, 2007). The characteristic shortcoming of importance

sampling stems from the potentially high weight variance that results from

large differences in the target and proposal densities. SIS compounds this

problem by iteratively sampling over the steps of the sequence, resulting in

sequence weights that are the product of step weights. The sequence weight
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distribution is exponential, so only the high-weight tail of samples contributes

substantially to the distribution approximation. Two approaches to mitigate

this problem are filtering, e.g., (Doucet et al., 2000; Fan et al., 2010), where

particles are resampled according to their weights to maintain a low-variance

weight distribution, and adaptive importance sampling, e.g., (Cornebise et al.,

2008; Yuan & Druzdzel, 2003; 2007a), where the proposal distribution adapts

to be closer to the target.

One drawback of filtering is that it does not efficiently account for future ev-

idence, and in cases of severe proposal-evidence mismatch, many resampling

steps are required, leading to sample impoverishment. In line with adaptive

importance sampling, our method addresses proposal-evidence mismatch by

developing “foresight”, i.e. adaptation to approaching evidence, to guide its

proposals. It develops “foresight” by learning a binary classifier dependent on

approaching evidence to accept or reject the step from the original proposal

distribution. Our procedure can be viewed as the construction of a second

proposal distribution, learned to account for evidence and to better approxi-

mate the target distribution. Our method is a new form of adaptive importance

sampling; we contrast our method with earlier forms in Section 5.1.

In greater detail, our task is to recover a target distribution f∗, which can

be factored variable by variable into component conditional distributions f∗
i

for i ∈ 1 . . . k. The SIS framework provides a suboptimal surrogate distribution

g, which likewise can be factored into a set of conditional distributions gi.

We propose a second surrogate distribution h closer to f∗ based on learning

conditional acceptance probabilities ai of rejection samplers relating f∗
i and

gi. That is, to sample from h, we iteratively (re-)sample from proposals gi and

accept with probability ai.

Our key idea is to relate the proposal gi and target f∗
i distributions by

the ratio of expected weights of sequence completions, i.e., a setting for each

variable from i to k, given acceptance and rejection of the sample from gi. Given

the expected weight ratio, we can recover the optimal acceptance probability

a∗
i and thus f∗

i .

Unfortunately, the calculation of the expected weights, and thus the ratio,

is typically intractable because of the exponential number of sequence comple-

tions. Instead, we can approximate it using machine learning. First, we show

that the expected weight ratio equals the odds of accepting a proposal from gi

under the f∗
i distribution. Then, transforming the odds to a probability, we
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can learn a binary classifier for the probability of acceptance under f∗
i given

the sample proposal from gi. Finally, we show how to generate examples to

train a classifier to make the optimal accept/reject decision.

We specifically examine the application of our rejection-based SIS algo-

rithm to continuous-timeBayesian networks (CTBNs) (Nodelman, 2007),which

have applications for example in anomaly detection (Xu & Shelton, 2010) and

medicine (Weiss et al., 2012c). We find our methods to be more generally appli-

cable, e.g., to dynamic Bayesian networks and sequential forecasting models,

but we focus our analysis on CTBNs. The existing CTBN importance sampler

g uses a combination of exponential and truncated exponential distributions

to select interval transitions that agree with evidence (Fan et al., 2010). Using

g, each evidence point causes a stochastic downweighting in a fraction of the

samples, which results in an increase in variance of the importance weights

and exhibits a mismatch between f∗ and g. Because a sequence weight corre-

sponds to the product of its interval weights, the stochastic downweighting

of intervals approaching non-matching evidence produces a high-variance

distribution of sequenceweights. Experimentally, we show that rejection-based

SIS improves our ability to approximate f∗ with many fewer samples.

We proceed as follows. We conclude the introduction with an illustrative

example and related work. In Section 5.2, we define rejection sampling within

sequential importance sampling and show how to approximate the target

distribution via binary classification. In Section 5.3, we extend our analysis

to continuous-time Bayesian networks. We describe experiments in Section

5.4 that show the empirical advantages of our method over previous CTBN

importance samplers. Possible extensions related to our work are provided in

Section 5.5 and we conclude in Section 5.6.

An Illustrative Example

Figure 5.1 describes our method in the simplest relevant example: a binary-

state Markov chain. For our example, let k = 3: then we have evidence that

z3 = 1. One possible sample procedure could be:

S, accept z2
1 , reject z2

2 , accept z1
2 , reject z2

3 , accept z1
3 , T,

giving us the path: S, z2
1 , z1

2 , z1
3 , T . Note that if the proposal g3 to z1

3 given state

z1
2 were very improbable under g but not f (i.e., proposal-evidence mismatch),
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f1 f2 f3f:
g1 g2 g3g:

(f( |e), target)
(g, proposal)

S T

z1
1

z1
2

z2
1

z2
2

zk
1

zk
2

...

...

...

...

Figure 5.1: A source-to-sink representation of a binary-state Markov chain
with evidence at zk (red). Distributions f and g are defined over paths from
source S to sink T and are composed of element-wise distributions fi and gi.
If a sample is at state z2

1 (dark blue), an assignment to z2
2 is proposed (light

blue) according to g2. To mimic sampling from f∗
2 = f2(·|e), the proposed

assignment is accepted with probability proportional to the ratio of expected
weights of path completions from z2

2 and z2
1 to T , giving us our proposal h2.

all samples running through z1
2 would have very large weight. By introducing

the possibility of rejection at each step, our procedure can learn to reject

samples to z2
3 , reducing the importance sampling weight, and learn to enter

states z1
2 and z2

2 proportionally to f(·|e), i.e., develop “foresight”.

Related Work

As mentioned above, batch resampling techniques based on rejection control

(Liu et al., 1998; Yuan & Druzdzel, 2007b) or sequential Monte Carlo (SMC)

(Doucet et al., 2000; Fan et al., 2010), i.e. particle filtering, can mitigate the SIS

weight variance problem, but they can lead to reduced particle diversity, es-

pecially when many resampling iterations are required. Particle smoothing

(Fan et al., 2010) combats particle impoverishment, but the exponentially-large

state spaces used in CTBNs limit its ability to find alternative, probable sample

histories. Previous adaptive importance sampling methods rely on structural

knowledge and other inference methods, e.g., (Cheng & Druzdzel, 2000; Yuan

&Druzdzel, 2003), to develop improved proposals, whereas our method learns

a classifier to help guide samples through regions of proposal-evidence mis-

match. One interesting idea combining work in filtering and adaptive impor-
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tance sampling is the SMC2 algorithm (Chopin et al., 2011), which maintains

a sample distribution over both particles and parameters determining the

proposal distribution, resampling along either dimension as necessary. The

method does not anticipate future evidence, so it may complement our work,

which can similarly be used in the SMC framework. Other MCMC (Rao & Teh,

2011) or particle MCMC (Andrieu et al., 2010) methods may have trouble in

large state spaces (e.g., CTBNs) with multiple modes and low density regions

in between, especially if there is proposal-evidence mismatch.

5.2 Learning to Reject

Recall from the importance sampling setup that we have two distributions f

and g, and the existing sampling approach approximates f with samples from

g. Each sample from g comes with an associated weight wfg. Now, we design

a second surrogate h(z) with the density corresponding to accepting a sample

from g:

h(z) = g(z)a(z)
(∫

Ω
g(ζ)a(ζ)dζ

)−1
(5.1)

where a(z) is the acceptance probability of the sample from g. The last term in

Equation 5.1 is a normalizing functional (of g and a) to ensure that h(z) is a
density. Procedurally, we sample from h by (re-)sampling from g and accepting

with probability a. The approximation of f∗ with h is given by:

∫
Z

f∗(z)dz =
∫

Z
f∗(z)
g(z)

g(z)
h(z)h(z)dz

≈ 1
n

n∑
i=1

1[zi∈Z]wi
f∗gwi

gh

with weights wi
f∗h = wi

f∗gwi
gh. To ensure that h has the support of f∗, we

require that both a and g are non-zero everywhere f∗ is non-zero.

Nowwe can define our optimal resampling density h∗(z) using the optimal

choice of acceptance probability a∗(z) = min(1, f∗(z)/αg(z)), where α ≥ 1 is

a constant determining the familiar rejection sampler “envelope”: αg(z). The
density h∗(z) is optimal in the sense that, for appropriate choice of α such that

f∗(z) < αg(z) for all z, h∗(z) = f∗(z). When h∗(z) = f∗(z), the importance

weights are exactly 1, and the effective sample size is n.
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In many applications the direct calculation of f∗(z) is intractable or im-

possible and thus we cannot directly recover a∗(z) or h∗(z). However, we can

still use these ideas to find h∗(z) through sequential importance sampling (Liu

et al., 1998), which we describe next.

Now, we consider the sequential importance sampling (SIS) extension,

where we again need to identify the relationship between the target and pro-

posal decompositions. Recall that we are interested in sampling directly from

the conditional distribution f∗(z) = f(z|e) for fixed e. We define interval

distributions f∗
1 (z1) and f∗

i (zi|z(i−1)←1) such that f∗(z) can be factored into

the interval distributions: f∗(z) = f∗
1 (z1) ∏k

i=2 f∗
i (zi|z(i−1)←1). Using Bayes’

theorem, we have:

f∗(z) = p(e|z1)
p(e) p(z1)

k∏
i=2

p(e|zi←1)
p(e|z(i−1)←1)p(zi|z(i−1)←1).

Thus, we define the interval distributions:

f∗
i (zi|z(i−1)←1) = p(e|zi←1)

p(e|z(i−1)←1)p(zi|z(i−1)←1)

for i > 1 and p(e|z(i−1)←1) > 0, and f∗(z1) = p(e|z1)p(z1)/p(e) for i = 1 and

p(e) > 0. Then, by the law of probability, we have:

f∗
i (zi|z(i−1)←1) = Ef [1[e, z]|zi←1]

Ef [1[e, z]|z(i−1)←1]p(zi|z(i−1)←1). (5.2)

The indicator function 1[e, z] is shorthand for 1[⋂l∈κ{zl = el}|z] and takes

value 1 if the evidence matches z and 0 otherwise. Note that in the sampling

framework, Equation 5.2 corresponds to sampling from the unconditioned

proposal distribution p(zi|z(i−1)←1) and calculating the expected weight of

sample completions zk←(i+1) and zk←i, given by the indicator functions. This

procedure describes the expected outcome obtained by forward sampling with

rejection.

However, when f∗ and f are highly dissimilar, the vast majority of samples

from f will be rejected, i.e., 1[e, z] = 0 for most z. It may be better to sample

from a proposal g with weight function w = f/g so that sampling leads to
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fewer rejections. Substituting g in Equation 5.2, we get:

f∗
i (zi|z(i−1)←1) = Eg[wa

k←i]
Eg[wr

k←i]
gi(zi|z(i−1)←1). (5.3)

The terms Eg[wa
k←i] and Eg[wr

k←i] are the expected forward importance sam-

pling weights of zk→i given acceptance (a) or rejection (r) of proposed assign-

ment zi.

To derive Equation 5.3, we relate the target densities f∗
i (zi|z(i−1)←1) with

the proposal densities gi(zi|z(i−1)←1) via the (standard) derivation of Equation

4 by employing Bayes’ theorem, the law of total probability, and substitution:

f∗
i (zi|z(i−1)←1)

= p(e|zi←1)
p(e|z(i−1)←1)p(zi|z(i−1)←1)

=

∑
zk←i+1

p(e|zk←i+1, zi←1)p(zk←i+1|zi←1)∑
zk←i

p(e|zk←i, zi−1←1)p(zk←i|zi−1←1) p(zi|zi−1←1)

=

∑
zk←i+1

1[⋂l∈κ{zl=el}|{z}]p(zk←i+1|zi←1)∑
zk←i

1[⋂l∈κ{zl=el}|{z}]p(zk←i|zi−1←1) p(zi|zi−1←1)

=
Eg[1[e, z] ∏k

j=i+1 wj(zj |zj−1←1)|zi←1]
Eg[1[e, z] ∏k

j=i wj(zj |zj−1←1)|zi−1←1]
p(zi|zi−1←1)

=
Eg[1[e, z] ∏k

j=i wj(zj |zj−1←1)|zi←1]
Eg[1[e, z] ∏k

j=i wj(zj |zj−1←1)|zi−1←1]
gi(zi|zi−1←1)

= Eg[wa
k←i]

Eg[wr
k←i]

gi(zi|z(i−1)←1). �

Equation 5.3 provides the relationship we want: f∗
i versus gi, given by

the ratio of expected weights of completion of sample z under acceptance or

rejection of zi. This allows us to further improve g and gives us the sampling

distribution h.

Rejection Sampling to Recover f ∗
i

Because Equation 5.3 relates the two distributions, we can generate samples

from f∗
i by conducting rejection sampling from gi. Selecting constant α such

that f∗
i ≤ αgi, i.e., αgi is the rejection envelope, we define the optimal interval
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acceptance probability a∗
i by:

a∗
i (zi|z(i−1)←1) =

f∗
i (zi|z(i−1)←1)

αgi(zi|z(i−1)←1) = Eg[wa
k←i]

αEg[wr
k←i]

. (5.4)

By defining a∗
i for all i, we can generate an unweighted sample from f∗(z) in

O(k maxi(f∗
i (·)/gi(·))) steps given the weight ratio expectations and appropri-

ate choice of α. Thus, if we can recover a∗
i for all i, we get h = f∗ as desired

and our procedure generates unweighted samples.

Estimating the Weight Ratio

The procedure of sampling intervals to completion depends on the expected

weight ratio in Equation 5.3. Unfortunately, exact calculation of the ratio is

impractical because the expectations involved require summing over an ex-

ponential number of terms. We could resort to estimating it from weighted

importance samples: completions of z given zi←1 and z given z(i−1)←1. While

possible, this is inefficient because (1) it would require weight estimations for

every zi given zi←1, and (2) the estimation of the expected weights itself relies

on importance sampling.

However, we can cast the estimation of the weight ratio as a machine

learning problem of binary classification. We recognize that similar situations,

in terms of state zi←1, evidence e, model (providing f ) and proposal g, result

in similar values of a∗
i . Thus, we can learn a binary classifier Φi(zi←1, e, f, g)

to represent the probability of {acceptance, rejection} = {φi(·), 1 − φi(·)} as a

function of the situation.

In particular, the expected weight ratio in Equation 5.3 is proportional to

the odds under f∗ of accepting the zi sampled from gi. The binary classifier

provides an estimate of the probability of acceptance φi(zi←1, e, f, g), from
which we can derive the odds of acceptance. Substituting into Equation 5.4,

we have:

a∗
i (zi|z(i−1)←1) ≈ 1

α

(
φi(zi←1, e, f, g)

1 − φi(zi←1, e, f, g)

)
= ai(zi|z(i−1)←1)

denoting the approximations as ai for all i. Then our empirical proposal density
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Algorithm 2 Rejection-based SIS

Input: conditional distributions {fj} and {gj} ∀j, evidence e; constants α, k;
i = 1, z = {}, w = 1; classifiers {φj}

Output: sample z with weight w
1: function SampleH(...)
2: while i ≤ k do

3: accept = false
4: while not accept do

5: Sample zi ∼ gi, r ∼ U[0, 1]
6: a = 1

α

(
φi(zi,z,e,f,g)

1−φi(zi,z,e,f,g)

)
7: if r < a then

8: accept = true
9: end if

10: end while

11: z = {zi, z}, w = wfi(zi)c[gi(zi), a(zi)]/(gi(zi)a)
12: i = i + 1
13: end while

14: return (z, w)
15: end function

h is:

h(z) = h1(z1)
k∏

i=2
hi(zi)

= g1(z1)a1(z1)c1[g1, a1]
k∏

i=2
gi(zi|z(i−1)←1)ai(zi|z(i−1)←1)ci[gi, ai]

where the ci are the normalizing functionals as in Equation 5.1. We provide

pseudocode for the rejection-based SIS procedure in Algorithm 2.

Training the Classifier Φi

Conceptually, generating examples for the classifier Φi is straightforward.

Given some z(i−1)←1, we sample zi from gi, accept with probability ρ = 1/2,
and sample to completion using g to get the importance weight. Then, an

example is (y, x, w): y = {accept, reject}, x is a set of features encoding the

“situation”, and w is the importance weight.

The training procedure works because the mean weight of the positive

examples estimatesEg[wa
k←i], and likewise the mean weight of the negative ex-

amples estimates Eg[wr
k←i]. By sampling with training acceptance probability
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ρ, a calibrated classifier Φρ
i (i.e., one that minimizes the L2 loss) estimates the

probability: ρEg[wa
k←i]/(ρEg[wa

k←i] + (1 − ρ)Eg[wr
k←i]). The estimated proba-

bility can then be used to recover the expected weight ratio:

Eg[wa
k←i]

Eg[wr
k←i]

≈
(1 − ρ

ρ

) (
φρ

i (zi←1, e, f, g)
1 − φρ

i (zi←1, e, f, g)

)
,

and thus, the optimal classifier can be used to recover the rejection-based

acceptance probability a∗
i . We get our particular estimator φi/(1−φi) by setting

ρ = 1/2, though in principle we could use other values of ρ.

In practice, we sample trajectories alternating acceptance and rejection

of samples zi to get a proportion ρ = 1/2. Then, we continue sampling the

same trajectory to produce 2k training examples for a sequence of length k.

We adopt this procedure for efficiency at the cost of generating related training

examples. We provide pseudocode for the example generation procedure for

learning the classifier in Algorithm 3.

Inevitably, there is some cost to pay to construct h, including time for feature

construction, classifier training, and classifier use. The level of sophistication

needed will be problem-dependent. However, in many challenging problems

the simpler methods will not produce an ESS of any appreciable size, in our

case because of a mismatch between f∗ and g, and in MCMC because of

mode hopping difficulties. Our method adopts an approach complementary

to particle methods to help tackle such problems, and we show its utility in

the CTBN application.

5.3 Sampling in CTBNs

Evidence provided in data is typically incomplete, i.e., the joint state is partially

or fully unobserved over time. Thus, inference is performed to probabilistically

complete the unobserved regions. CTBNs are generative models and provide a

sampling framework to complete such regions. Let a trajectory z be a sequence

of (state,time) pairs (zi ={x1i, x2i, . . . , xdi}, ti) for i = {0, . . . , k}, where xji

is the jth CTBN variable at the ith time, such that the sequence of ti are

in [tstart, tend). Given an initial state z0 = {x10, x20, . . . , xd0}, transition times

are sampled for each variable x according to qx|ue−qx|ut where x is the active

state of X . The variable Xi that transitions in the interval is selected based

on the shortest sampled transition time. The state to which Xi transitions
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Algorithm 3 Training examples for learning

Input: conditional distributions {fj} and {gj} ∀j, evidence el for l in evidence
data; n examples

Output: classifier φ
1: function get_examples(e, {fj}, {gj}, k)
2: z = {}; i = 1; w = 1; d = 1
3: while i ≤ k do

4: // one negative, one positive example //
5: for l ∈ {reject, accept} do

6: Sample zi ∼ gi(z)
7: wi = fi(zi)/gi(zi)
8: (y, x, u)d = (l,get_x(zi, z, e, {fj}, {gj}), wi)
9: d = d + 1

10: end for

11: z = {zi, z}; w = wwi; i = i + 1
12: end while

13: for i = 1 to d do

14: (y, x, u)i = (y, x, w/u)i // w/ui : sequence completion weight //
15: end for

16: return {(y, x, u)}
17: end function

18: list = []
19: while size(list)< n do

20: for all trajectories zj of length k do:
21: list.append(get_examples(ej , {fj}, {gj}, k))
22: end for

23: end while

24: φ = learn(list)
25: return φ

is sampled from Θxix′
i|u. Then the transition times are resampled according

to intensities qx|u, noting that these intensities may be different because of

potential changes in the parents setting u. Due to the memoryless property of

exponential distributions, no resampling of the transition time for a variable

X is needed if the intensity qx|u is unchanged. The trajectory terminates when

all sampled transition times exceed a specified ending time.

Previous work by Fan et al. describes a framework for importance sampling,

particle filtering, and particle smoothing in CTBNs (Fan et al., 2010). The idea

is to modify the sampling of each interval so that the interval end time cannot

pass by impending, non-matching evidence. The process is as follows. The
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Figure 5.2: Sampling from g results in stochastic downweights. A sample
trajectory z, given evidence of “blue” (tick at t = 2.3), is shown at bottom, with
colors showing the sequence state {yellow, blue, yellow, blue}. The sampled
truncated exponentials result in weights equal to the ratio of densities f∗/g
(gray/maroon). In this trajectory, the weight is the product of interval weights:
(0.9)(1)(0.1). Some sample trajectories pass the evidence with full weight and
some do not, resulting in a weight variance factor per evidence point.

first future non-matching evidence states are found for each variable and their

corresponding evidence times τi are recorded. If no non-matching evidence

exists for a variable, τi = ∞. Then, instead of sampling transition times from

exponential distributions, the times for each X are sampled from truncated

exponentials: t1 ∼ t0 + qx|ue−qx|ut/(1 − e−qx|uτ ).
By sampling from truncated exponentials, Fan et al. incur importance

sample downweights on their samples. Recall that Equation 2.1 is broken

into three components. The weights f∗
i /gi are decomposed likewise: (1) a

downweight for the variable x that transitions, according to the ratio of the

exponential to the truncated exponential: (1 − e−qx|uτ ), (2) a downweight

corresponding to a lookaheadpoint-estimate ofΘu assuming no other variables

change until the evidence (we leave this unmodified in our implementation),
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and (3) a downweight for each resting variable xi given by the ratio of not

sampling a transition in time t froman exponential and a truncated exponential:

(1−e−qxi|uτi)/(1−e−qxi|u(τi−t1)). Finally, the product of all interval downweights

provides the trajectory importance sample weight.

While ensuring the validity of each sample, the proposal distribution g

in Fan et al. (2010) is non-optimal for sampling complete trajectories. Figure

5.2 shows that stochastic downweighting of some particles occurs at every

evidence point, increasing the variance of importance sampling weights each

time.

Rejection-Based Importance Sampling in CTBNs

Before we can extend our methodology to CTBNs, we need to show the equiva-

lence of a fixed continuous-time trajectory and the discrete sequences described

in Section 5.2. In particular, the rejection-based importance sampling method

requires that the number of intervals k must be fixed, while CTBNs produce tra-

jectories with varying numbers of intervals (in fact, the number is unbounded).

Nevertheless, for any set of trajectories, we can define ε-width intervals small

enough that at most one transition occurs per interval and that such transitions

occur at the end of the interval. Then for any set of trajectories over the duration

[tstart, tend), we set k = (tend − tstart)/ε. Using the memoryless property of expo-

nential distributions, it is straightforward to show that the density of a single,

one-transition interval is equal to the density of the product of a sequence

of ε-width, zero-transition intervals and one ε-width, one-transition interval.

This equivalence between ε-width sequences and CTBN trajectories allows

us to define CTBNs in relation to the analysis from Section 5.2. In practice,

it is simpler to use the CTBN sampling framework so that each interval is of

appreciable size. We denote the evidence e as a sequence of tuples of type

(state, start time, duration): (ei, ti,0, τi) allowing for point evidence with zero

duration, τi = 0, and 1[e, z] checks to see if z agrees with each ei throughout

the duration.

Unlike the discrete-time case where we can enumerate the states zi, in the

continuous-time case the calculation of wgh can be time-consuming because of

the normalizing integrals ci[gi, ai]. From Equation 5.1, we have, omitting the

conditioning:
gi(zi)
hi(zi)

=
∫

Ωi
ai(ζ)gi(ζ)dζ

ai(zi)
.
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For appropriate α and optimal acceptance a∗, we get:

gi(zi)
h∗

i (zi)
=

∫
Ωi

a∗
i (ζ)gi(ζ)dζ

a∗
i (zi)

=
∫

Ωi
α−1f∗

i (ζ)dζ

f∗
i (zi)(αgi(zi))−1 = 1

wi;f∗g
.

For appropriate α and acceptance ai, we get:

gi(zi)
hi(zi)

=
∫

Ωi
ai(ζ)gi(ζ)dζ

ai(zi)
≈ 1

αai(zi)
= 1 − φi(·)

φi(·) . (5.5)

The approximation here is that the learned acceptance probability produces

a proper conditional probability distribution for each situation. While not

guaranteed, the classifier mimics the data distribution, which is drawn from

a valid probability distribution. Thus for appropriate, e.g., non-parametric,

classifiers and ample data, the approximation error tends to be small as we

demonstrate empirically.

For arbitrary α and acceptance ai, we are left to compute the integral in

Equation 5.5. Approaches could include (1) approximating it with samples

from gi, or (2) constraining the classifier to output acceptance probabilities

such that the product gi(zi)ai(zi) can be calculated in closed form. In our

experiments, we follow Equation 5.5 and verify the approximation does not

introduce significant bias, see, e.g., Figure 5.3 (bottom).

Several properties of CTBNs make our learning framework appealing.

First, CTBNs possess the Markov property; namely, the next state is inde-

pendent of previous states given the current one. Second, CTBNs are ho-

mogeneous processes, so the model rate parameters are shared across all

intervals. We leverage these facts when learning each acceptance proba-

bility ai. The Markov property simplifies the learned probability of accep-

tance φi(zi|z(i−1)←1, e, f, g) to φi(zi|z(i−1), e, f, g). Homogeneity simplifies the

learning process because, if z(i−1) = z(j−1) and ti,0 = tj,0 for j �= i, then

φi(zi|z(i−1), e, f, g) = φi(zj |z(j−1), e, f, g). The degeneracy of these two cases

indicates that the probability of acceptance is a function of the situation and

independent of the interval index, so a single classifier can be learned in place

of k classifiers.
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5.4 Experiments

We compare our learning-based rejection method (setting α = 2) with the

truncated exponential sampler for modeling CTBNs (Fan et al., 2010). We

learn a logistic regression (LR) model using online, stochastic gradient de-

scent for each CTBN state. An LR data example is (y, x, w), where y is one of

{accept, reject}, x is a set of features, and w is the sequence completion weight.

For our experiments we use per-variable features encoding the state (as indica-

tor variables), the time from the current time to next evidence, the time from

the proposed sample to next evidence, and the time from the proposed sample

to next matching evidence. The times are mapped to intervals [0, 1] by using a

e−t/λ transformation, with λ = {10−2, 10−1, 100, 101, 102} to capture effects at

different time scales. Because of the high variance in weights for samples of

full sequence completions, we instead choose a local weight: the weight of the

sequence through the next m = 10 evidence times. This biases the learner to

have low variance weights within the local window, but it does not bias the

proposal h.

We analyze the performance of the rejection-based sampler by inspection

of learned transition probability densities and the effective sample size (ESS)

(Kong et al., 1994). ESS is an indicator of the quality of the samples, and a

larger value is better: ESS = 1/(∑n
i=1(W i)2), where W i = wi/

∑n
j=1 wj . We

test our method in several models: one-, two- and three- variable, strong-

cycle binary-state CTBNs, and the partially-binary, 8-variable drug model

presented in the original CTBN paper (Nodelman, 2007). The “strong-cycle”

models encode an intensity path for particular joint states by shifting bit

registers and adding and filling in an empty register with a 0 or 1 as in the

following example. For the 3-variable strong cycle, intensities involved in the

path 000 → 001 → 011 → 111 → 110 → 100 → 000 are 1, and intensities

are 0.1 for all other transitions. We generate sequences from ground truth

models and censor each to retain only 100 point evidences with times ti drawn

randomly, uniformly over the duration [0,20). We provide the active state,

intensities, point evidence times, variables and states in the form of features to

the classifier.

Figure 5.3 (top) illustrates the ability of h tomimic f∗, the target distribution,
in a one-node binary-state CTBN with matching evidence at t = 5. The Fan et

al. proposal g is chosen to match the target density in the absence of evidence f .
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Figure 5.3: Approximate transition densities (top) of f∗ (target), f (target with-
out evidence), g (surrogate), and h (learned rejection surrogate) in a one-
variable, binary-state CTBN with uniform transition rates of 0.1 and matching
evidence at t=5. The learned distribution h closely mimics f∗, the target dis-
tribution with evidence, while g was constructed to mimic f (exactly, in this
situation). All methods recover the weighted transition densities (bottom); for
20 evidence points with one at t=5 and 19 after t=20, h recovers the target
distribution more precisely than g per 106 samples.

However, when approaching evidence (at t = 5), the probability of a transition

given evidence goes to 0 as the next transition must also occur before t =
5 to be a viable sequence. Only f∗ and h exhibit this behavior. Figure 5.3

(bottom) shows the density approximations after weighting the samples, given
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Table 5.1: Table of the geometric mean of effective sample size (ESS) over 100
sequences, each with 100 observations; ESS is per 105 samples. The proposal h
was learned with 1000 sequences.

Model Fan et al. (g) Rejection SIS (h)

Strong cycle, n=1 690 6400
Strong cycle, n=2 19000 35000
Strong cycle, n=3 960 5800

Drug 29 170

a trajectory with evidence at t = 5 and 19 evidence points after t = 20. Each
method recovers the target distribution, but h does so more precisely than g,

given a fixed number of samples (one million). As a proxy for the extra work

required to sample from h, the proposal acceptance rate was measured to be

45 percent.

Table 5.1 shows that the learned, rejection-based proposal h outperforms

the other CTBN importance sampler g across all 4 models, resulting in an

ESS 2 to 10 times larger. Generally as the number of variables increases, the

ESS decreases because of the increasing mismatch between f∗ and g. With an

average ESS of only 29 in an 8-variable model, as we increase model sizes, we

expect that g would fail to produce a meaningful sample distribution more

quickly than h would.

To illustrate further, using the drug model and 10 evidence points, Figure

5.4 shows that the weight distribution from h is narrower than that from g on

the log scale. The interpretation is that a larger fraction of examples from h

contribute substantially to the total weight, resulting in a lower variance sample

distribution. For example, any sample with weight below e−10 has negligible

relative weight and does not substantially affect the sample distribution. There

are many fewer such samples generated from h than from g.

5.5 Discussion

Continued investigations are warranted, and we discuss several possible ex-

tensions: (1) the use of non-parametric learning algorithms, (2) a procedure

for expanding the local weight approximations to the full sequence, and (3) an

iterative procedure to learn the acceptance probability and construct a new

proposal g′ not requiring rejection sampling. First, in our experiments we used
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Figure 5.4: Distribution of log weights. For sample completions of a trajectory
with 10 evidence points in the drug model, the distribution of log weights
using h is much narrower than the distribution of log weights using g (bottom).

logistic regression models; however, we know that there is a correct outcome

for every “situation”, so the function we wish to learn is distribution-free. Non-

parametric learning algorithms are appropriate for such problems, although

their relative lack of scalability to large dimensions could be problematic.

Ones that take into account the form of the normalizing functionals ci[giai]
should also be investigated. Second, the generation of examples with weights

reflecting the expected weight ratio is intractable for the full sequence. In our

experiments we show a good approximation using weights based on a window

of m evidence steps. We believe we can iteratively extend the window size to

decrease the approximation error. Finally, if the initial surrogate distribution gi

is far from f∗
i , the rejection rate r = (α − 1)/α = maxf∗

i (·)/gi(·) must be large

to recover f∗
i from gi. Instead, a closed-form function approximating hi can

be used to learn a new rejection-based proposal h′
i. Akin to works in adaptive

importance sampling, e.g., (Cheng & Druzdzel, 2000), this iterative procedure

would generate an improving sequence of closed-form sampling distributions

while lowering the rate of rejection.
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5.6 Summary

Our work has demonstrated that machine learning can be used to improve

sequential importance sampling via a rejection sampling framework. First, we

showed that the proposal and target distributions are related by an expected

weight ratio. Then, theweight ratio can be estimated by the probabilistic output

of a binary classifier learned from weighted, local importance samples. We

extended the algorithm to CTBNs, where we found experimentally that using

our learning algorithm produces a sampling distribution closer to the target

and generates more effective samples.

Despite this, our algorithm will have trouble with EHR-sized inference

problems, so in the next chapter we consider point processes which sidestep

the CTBN inference problem altogether. Wemaintain that CTBNs richly model

uncertainty and are often preferable in cases where inference is possible. The

next chapter highlights the differences between CTBNs and point processes in

detail.
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6 Learning Multiplicative Forests for

Point Processes and Event Prediction

from Electronic Health Records

Overview

Motivated by the challenges in CTBN inference we turn now to point pro-

cess, an alternative model that models event data arriving at semi-irregular

intervals. We extend our CTBN forest idea to build multiplicative-forest point

processes (MFPPs), which learn the rate of future events based on an event

history. MFPPs join theory in partition-based continuous-time Bayesian net-

works and piecewise-continuous conditional intensity models. We analyze the

advantages of usingMFPPs over previous methods and show that on synthetic

and real EHR forecasting of heart attacks, MFPPs outperform earlier methods

and augment off-the-shelf machine learning algorithms. This work is based

on published work in Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases

(2013).

6.1 Introduction

EHRs record information about individuals who have regular check-ups inter-

spersed with hospitalizations and medical emergencies. These sequences of

semi-irregular events can be considered as timelines. However, the majority

of models incorporating time use a time-series data representation, where

data are assumed to arrive at regular intervals. Irregular arrivals of events

violate this assumption and lead to missing data and/or aggregation, resulting

in a loss of information. Experimentally, such methods have been shown to

underperform analogous continuous-time models (Nodelman et al., 2003).

To address the irregularity of medical event arrivals, we develop a

continuous-time model: multiplicative-forest point processes (MFPPs). Un-

like CTBNs, which model event durations, MFPPs model the rate of event

occurrences. Futhermore, they make the assume that they are dependent on
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an event history in a piecewise-constant manner. For example, the event of

aspirin consumption (or lack thereof) may affect the rate of myocardial infarc-

tion, or heart attack, which in turn affects the rate of thrombolytic therapy

administration. Our goal is to learn a model that identifies such associations

from data.

MFPPs build on previous work in piecewise-constant conditional inten-

sity models (PCIMs) using ideas from multiplicative-forest continuous-time

Bayesian networks (mfCTBNs) (Gunawardana et al., 2011; Weiss et al., 2012c).

MFPPs extends the regression tree structure of PCIMs to regression forests.

Unlike most forest learning algorithms, which minimize a classification loss

through functional gradient ascent or ensembling, MFPPs are based on a

multiplicative-forest technique developed in CTBNs. Here, a multiplicative

assumption for combining regression tree values leads to optimal marginal

log likelihood updates with changes in forest structure. The multiplicative

representation allows MFPPs to concisely represent composite rates, yet also

to have the flexibility to model rates with complicated dependencies. As the

multiplicative forest model leads to representational and computational gains

in mfCTBNs, we show that similar gains can be achieved in the point process

domain. We conduct experiments to test two main hypotheses. First, we test

for improvements in learning MFPPs over PCIMs, validating the usefulness

of the multiplicative-forest concept. Second, we assess the ability of MFPPs

to classify individuals for myocardial infarction from EHR data, compared to

PCIMs and off-the-shelf machine learning algorithms.

Specifically we address two modeling scenarios for forecasting: ex ante

(meaning “from the past”) forecasting and supervised forecasting. An ex ante

forecast is the traditional type of forecasting and occurs if no labels are avail-

able in the forecast region. An example of ex ante forecasting is the prediction

of future disease onset from the present day forwards. Acquiring labels from

the future is not possible, and labels from the past may introduce bias through

a cohort effect. However, in some cases, labels may be used, and we call such

forecasts “supervised”. An example of supervised forecasting is the retro-

spective cohort study to predict the class of unlabeled examples as well as to

identify risk factors leading to disease. The application of continuous-time

models to the forecasting case is straightforward. When labels are available,

however, we choose to apply MFPPs in a cascade learning framework, where

the MFPP predictions contribute as features to supervised learning models.
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In Section 6.2, we discuss point processes and contrast them from

continuous-time Bayesian networks (CTBNs) noting their matching likeli-

hood formulations given somewhat different problem setups. We show that

multiplicative forest methods can be extended to point processes. We also

introduce the problem of predicting myocardial infarction, discuss the various

approaches to answering medical queries, and introduce our method of anal-

ysis. In Section 6.3, we present results on synthetic timelines and real health

records data and show that MFPPs outperform PCIMs on these tasks, and that

the timeline analysis approach outperforms other standard machine learning

approaches to the problem. We conclude in Section 6.4.

6.2 Point Processes

Wenote thatwith this assumption the likelihood formulation becomes identical

to the one used in continuous-time Bayesian networks (CTBNs). The shared

likelihood formula lets us apply a recent advance in learning CTBNs: the use of

multiplicative forests. Multiplicative forests produce intensities by taking the

product of the regression values in active leaves. For example, a multiplicative

forest equivalent to the tree described above is shown in Figure 6.1 (right).

These models were shown to have large empirical gains for parameter and

structure learning similar to those seen in the transition from tree models

to random forests or boosted trees (Weiss et al., 2012c). Our first goal is to

show that a similar learning framework can be applied to point processes. We

describe the model in fuller detail below.

Piecewise-Continuous Conditional Intensity Models (PCIMs)

Recall from Chapter 2 the form of the point process: given a finite set of event

types l ∈ L, an event sequence or trajectory x is an ordered set of {time, event}

pairs (t, l)n
i=1. Given a history h of event, the likelihood of the trajectory given

the CIM θ is:

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)�(l=li)e
∫ t

−∞ λl(τ |x,θ)dτ

PCIMs introduce the assumption that the intensity functions are constant over

intervals. As described in (Gunawardana et al., 2011), let Σl be a set of discrete

states so that we obtain the set of parameters λls for s ∈ Σl. The active state s
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Figure 6.1: A piecewise-constant conditional intensity tree for determining
the rate of event type A (left). An equivalent multiplicative intensity forest
(right). An example of active paths are shown in red. The active path in the
tree corresponds to the intersection of active paths in the forest, and the output
intensity is the same (3 = 1 × 3).

is determined by a mapping σl(t, x) from time and trajectory to s. Let Sl hold

the pair (Σl, σl(t, x)) and let S = {Sl}l∈L. Then the PCIM likelihood simplifies

to:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
Mls(x)
ls e−λlsTls(x), (6.1)

where Mls(x) is the count of events of type l while s is active in trajectory x,

and Tls(x) is the total duration that s, for event type l, is active.

Continuous-Time Bayesian Networks (CTBNs)

For clarity, we restate the CTBN likelihood formulation here. A trajectory, or a

timeline, is broken down into independent intervals of fixed state. For each

interval [t0, tend), the duration t = tend − t0 passes and a variable x transitions

at tend from state xj to xk. All other variables xi �= x rest during this interval

in their active states x′
i. Then, the interval density is given by:

λxj |ue
−λ

xj |ut

︸ ︷︷ ︸
x transitions

Θxjxk|u

︸ ︷︷ ︸
to statexk

∏
x′

i:xi �=x

e
−λx′

i
|ut

︸ ︷︷ ︸
whilexi’s rest
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The trajectory likelihood is given by the product of intervals:

∏
x∈X

∏
xj∈x

∏
u∈Ux

λ
M

xj |u
xj |u e

−λ
xj |uT

xj |u
∏

xk �=xj

Θ
M

xj xk|u
xjxk|u (6.2)

where the Mxj |u (and Mxjxk|u) are the numbers of transitions out of state xj (to

state xk), and where the Txj |u are the amounts of time spent in xj given parents

settings u. Defining rate parameter λxixj |u = λxi|uΘxixj |u and set element

p = xj × u (as in (Weiss et al., 2012c)), Equation 6.2 can be rewritten as:

∏
x∈X

∏
x′∈x

∏
p

λ
Mx′|p
x′|p e−λx′|pTp (6.3)

Note how the form of the likelihood in Equation 6.1 is identical to Equation

6.3.

Contrasting PCIMs and CTBNs

Despite the similarity in form, PCIMs and CTBNs model distinctly different

types of continuous-time processes. Table 6.1 contrasts the two models. The

primary difference is that, unlike point processes, CTBNs model a persis-

tent, joint state over time. That is, a CTBN provides a distribution over the

joint state for any time t. Additionally, CTBN variables must possess a 1-of-

si state representation for si > 1 whereas point processes typically assume

non-complementary event types. Furthermore, in CTBNs, observations are

typically not of changes in state at particular times but instead probes of the

state at a time point or interval. With persistent states, CTBNs can be used

to answer interpolative queries, whereas CIMs are designed specifically for

forecasting. Another notable difference is that CTBNs are Markovian: the in-

tensities are determined entirely by the current state of the system.While more

restrictive, this assumption allows for variational and MCMCmethods to be

applied. On the other hand, PCIMs lend themselves to forecasting because the

potentially prohibitive inference about the persistent state that CTBNs require

is no longer necessary. This is because the rate of event occurrences depends

on the event history instead of the current state.
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Table 6.1: Contrasting piecewise-constant continuous intensitymodels (PCIMs)
and multiplicative-forest continuous-time Bayesian networks (mfCTBNs). Key
similarities are highlighted in blue.

PCIM mfCTBN

Model of: event sequence persistent state

Intensities piecewise-constant network-dependent constant

Dependence event history joint state (Markovian)

Labels event types variables

Emissions events states (x′, 1 of si)

Structure regression tree multiplicative forest

Evidence events (partial) observations of states

Likelihood
∏

l

∏
s λMls

ls e−λlsTls
∏

x′
∏

p λ
Mx′|p

x′|p e−λx′|pTp

Multiplicative-Forest Point Processes (MFPPs)

The similar likelihood forms allow us to extend the multiplicative-forest con-

cept (Weiss et al., 2012c) to PCIMs. Following (Gunawardana et al., 2011), we

define the state Σl andmapping σl(t, x) according to regression trees. Let Bl be

the set of basis state functions f(t, x) that maps to a basis state set Σf , akin to

σ(t, x) that maps to a single element s. As in (Weiss et al., 2012c), we can view

the basis functions as set partitions of the space over Σ = Σl1 × Σl2 × . . . Σl|L| .

Each interior node in the regression tree is associated with a basis function

f . Each leaf holds a non-negative real value: the intensity. Thus one path ρ

through the regression tree for event type l corresponds to a recursive subparti-

tion resulting in a set Σρ, and every (l, s) ∈ Σρ corresponds to leaf intensity λlρ,

i.e., we set λls = λlρ. Figure 6.1 shows an example of the active path providing

the intensity (λls = λlρ = 3).
MFPPs replace these trees with random forests. Given that each tree repre-

sents a partition, the intersection of trees, i.e. a forest, forms a finer partition.

The subpartition corresponding to a single intensity is given by the intersection

Σρ = ⋂k
j=1 Σρ,j of sets corresponding to the active paths through trees 1 . . . k.

The intensity λlρ is given by the product of leaf intensities. Figure 6.1 (right)

shows an example of the active paths in a tree, producing the forest intensity

(λls = λlρ = 1 × 3).
MFPPs use the PCIM generative framework. Forecasting is performed by
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forward sampling or importance sampling to generate an approximation to

the distribution at future times. Learning MFPPs is analogous to learning

mfCTBNs. A tree is learned iteratively by replacing a leaf with a branch with

corresponding leaves. As in forest CTBNs, MFPPs have (1) a closed form

marginal log likelihood update and (2) a simple maximum likelihood calcula-

tion for modification proposals. The intensities for the modification are the

ratios between observed (Mls) divided by expected (λlsTls) number of events

prior to modification and while Σρ is active. These two properties together

provide the best greedy update to the forest model.

The use of multiplicative forest point processes has several advantages

over previous methods.

• Compared to trees, forest models can represent more intensities per

parameter, which is equal to the number of leaves in the model. For

example, if a ground truth model has k stumps, that is, k single-split

binary trees, then the forest can represent the model with 2k parameters.

An equivalent tree would require 2k parameters. This example arises

whenever two risk factors are independent, i.e., their risks multiply.

• While forests can represent these independences when needed, they also

can represent non-linear processes by increasing the depth of the tree

beyond one. This advantagewas established in previouswork comparing

trees to PoissonNetworks (Gunawardana et al., 2011; Rajaram et al., 2005),

and forests possess advantages of both approaches.

• Unlike most forest models, multiplicative-forest trees may be learned in

an order that is neither sequential nor simultaneous. The forest appends

a stump to the end of its tree list when that modification improves the

marginal likelihood the most. Otherwise it increases the depth of one

tree. The data determines which expansion is selected.

• Multiplicative forests in CTBNs are restricted to learning from the current

state (the Markovian assumption), whereas MFPPs learn from a basis set

over some combination of the event history, deterministic, and constant

features.

• Compared to the application of supervised classificationmethods to tem-

poral data, the point process model identifies patterns of event sequences

over time and uses them for forecasting. Figure 6.2 shows an example of
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Figure 6.2: Supervised forecasting. Labels are provided by the binary classifi-
cation outcome: whether at least one event occurs in the forecasted region.

the supervised forecasting setup. In this case, it may be harder to predict

event B without using recurrent patterns of event sequences.

We hypothesize that these advantages will result in improved performance

at forecasting, particularly in domains where risk factors are independent.

As many established risk factors for cardiovascular disease are believed to

contribute to the overall risk independently, we believe that MFPPs should

outperform tree methods at this task. Because of their facility in modeling

irregular series of events, we also believe that MFPPs should also outperform

off-the-shelf machine learning methods.

Related Work

A rich literature exists on point processes focusing predominantly on spatial

forecasting. In spatial domains, the point process is the temporal component

of a model used to predict spatiotemporal patterns in data. The analysis of

multivariate, spatial point processes is related to our work in its attempt to

characterize the joint behavior of variables, for example, using Ripley’s K

function test for spatial homogeneity (Ripley, 1976). However, these methods

do not learn dependency structures among variables; instead they seek to

characterize cross-correlations observed in data. Generalized linear models

for simple point processes are more closely related to our work. Here, a linear

assumption for the intensity function is made, seen for example in Poisson

networks (Rajaram et al., 2005). PCIMs adopt a non-parametric approach and

was shown to substantially improve upon previous methods in terms of model

accuracy and learning time (Gunawardana et al., 2011). Our method builds on

upon the PCIM framework.
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Risk assessment for cardiovascular disease is alsowell studied. The primary

outcome of most studies is the identification of one or a few risk factors and

the quantification of the attributable risk. Our task is slightly different; we seek

to predict from data the onset of future myocardial infarctions. The prediction

task is closely related to risk stratification. For cardiovascular disease, the

Framingham Heart Study is the landmark study for risk assessment (Wilson

et al., 1998). They provide a 10-year risk of cardiovascular disease based on age,

cholesterol (total and HDL), smoking status, and blood pressure. A number of

studies have been since conducted purporting significant improvements over

the Framingham Risk Score using different models or by collecting additional

information (Tzoulaki et al., 2009). In particular, the use of EHR data to predict

heart attacks was previously addressed in Weiss et al. (2012b). However, in

that work the temporal dependence of the outcome and its predictors was

strictly logical and limited the success of their approach. We seek to show that,

compared to standard approaches learning from features segmented in time,

a point process naturally models timeline data and results in improved risk

prediction.

6.3 Experiments

We evaluate MFPPs in two experiments. The first uses a model of myocardial

infarction and stroke, and the goal is to learn MFPPs to recover the ground

truth model from sampled data. The second is an evaluation of MFPPs in

predicting myocardial infarction diagnoses from real EHR data.

Model Experiment: Myocardial Infarction and Stroke

We introduce a ground truth PCIM model of myocardial infarction and

stroke. The dependency structure of the model is shown in Figure 6.3. To

compare MFPPs with PCIMs, we sample k trajectories from time 0 to 80 for

k = {50, 100, 500, 1000, 5000, 10000}. We train each model with these samples

and calculate the average log likelihood on a testing set of 1000 sampled tra-

jectories. Each model used a BIC penalty to determine when to terminate

learning. For features, we constructed a feature generator that uniformly

at random selects an event type trigger and an active duration of one of

{t − 1, t − 5, t − 10, t − 20, t − 50} to t. Note that the feature durations do

not have a direct overlap with the dependency intervals shown in Figure 6.3.
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Figure 6.3: Ground truth dependency structure of heart attack and stroke
model. Labels on the edges determine the active duration of the dependency.
Omitted in the graph is the age dependency for all non-deterministic nodes if
the subject is older than 18.

Our goal was to show that, evenwithout being able to recover the exact ground

truth model, we could get close with surrogate features. MFPPs were allowed

to learn up to 10 trees each with 10 splitting features; PCIMs were allowed 1

tree with 100 splitting features. We also performed a two-tailed paired t-test

to test for significant differences in MFPP and PCIM log likelihood. We ran

each algorithm 250 times for each value of k.

Figure 6.4 shows the average log likelihood results. BothMFPPs and PCIMs

appear to converge to close to the ground truth model with increasing training

set sizes. The lack of complete convergence is likely due to the mismatch in

ground truth dependencies and the features available for learning. Error bars

indicating the empirical 95 percent confidence intervals are also shown for

MFPP. Similar error bars were observed for the ground truth and PCIMmodels

but were omitted for clarity. The width of the interval is due to the variance in

testing set log likelihoods. If we look at level average log likelihood lines in

Figure 6.4, we observe that we only need a fraction of the data to learn a MFPP
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Figure 6.4: Average log likelihoods for the {ground truth, MFPP, PCIM} model
by the number of training set trajectories. Error bars in gray indicate the 95
percent confidence interval (omitted for the ground truth and PCIM models).
Paired t-tests comparing MFPPs and PCIMs were significant at a p-value of
1-e20. Dotted lines show the likelihoods when ground truth features were
made available to the models.

model equally good as the PCIM model. Both models completed all runs in

under 15 minutes each.

We used a two-sided paired t-test to test for significant differences in the

average log likelihood. For all numbers of trajectories k, the p-valuewas smaller

than 1e-20. We conclude that the MFPP algorithm significantly outperformed

the PCIM algorithm at recovering the ground truth model from data of this

size.

EHR Prediction: Myocardial Infarction

In this section we describe the experiment on real EHR data. We define the

task to be forecasting future onset of myocardial infarction between the years

2005 and 2010 given event data prior to 2005. We propose two forms of this

experiment: ex ante and supervised forecasting. First, we test the ability of

MFPP to forecast events between 2005 and 2010 in all patients given the data

leading up to 2005. Figure 6.5 depicts the ex ante forecasting setup.
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Figure 6.5: Ex ante (traditional) forecasting. No labels for any example are
available in the forecast region. The goal is to recover the events (B and C)
from observations in the past.

Second, we split our data into training and testing sets to test MFPP in

its ability to perform supervised forecasting. In this setup, we provide data

between 2005 and 2010 for the training set in addition to all data prior to

2005 for both training and testing sets. We choose to focus on the outcome

of whether a subject has at least one myocardial infarction event between the

2005 and 2010. Figure 6.2 shows the supervised forecasting setup.

We use EHR data from the PersonalizedMedicine Research Project (PMRP)

cohort study run at the Marshfield Clinic Research Foundation (McCarty et al.,

2005). The Marshfield Clinic has followed a patient population residing in

northern Wisconsin and the outlying areas starting in the early 1960s up to

the present. From this cohort, we include all subjects with at least one event

between 1970 and 2005, and with at least one event after 2010 or a death record

after 2005. Filtering with these inclusion criteria resulted in a study population

of 15,446, with 428 identified individuals with a myocardial infarction event

between 2005 and 2010.

Tomake learning and inference tractable,we selected additional event types

from the EHR corresponding to risk factors identified in the FraminghamHeart

Study(Wilson et al., 1998): age, date, gender, LDL (critical low, low, normal,

high, critical high, abnormal), blood pressure (normal, high), obesity, statin

use, diabetes, stroke, angina, and bypass surgery. Because the level of detail

specified in EHR event codes is fine, we use the above terms that represent

aggregates over the terms in our database, i.e., we map the event codes to one

of the coarse terms. For example, an embolism lodged in the basilar artery is

one type of stroke, and we code it simply as “stroke”. The features we selected

produced an event list with over 1.8 million events. AsMFPPs require selecting
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active durationwindows to learn, we used durations of size {0.25, 1, 2, 5, 10, 100

(ever)}, with more features focused on the recent past. Our intuition suggests

that events occurring in the recent past are more informative than more distant

events.

We compare MFPP against two sets of machine learning algorithms based

on the experimental setup. For ex ante forecasting, we test against PCIMs (Gu-

nawardana et al., 2011) and homogeneous Poisson point processes, which

assume independent and constant event rates. We assess their performance

using the average log likelihood of the true events in the forecast region and

precision-recall curves for our target event of interest: myocardial infarction.

For supervised forecasting, we test against random forests and logistic regres-

sion (Gunawardana et al., 2011; Breiman, 2001). As MFPP is not an inherently

supervised learning algorithm, we also include a random forest learner using

features corresponding to the intensity estimates based on the ex ante forecast-

ing setup. We call this method MFPP-RF. We use modified bootstrapping to

generate non-overlapping training and testing sets, and we train on 80 per-

cent of the entire data. We compare the supervised forecasting methods only

in terms of precision-recall due to the non-correspondence of the methods’

likelihoods.

We also make a small modification to the MFPP and PCIM learning proce-

dure when learning for modeling myocardial infarction, i.e., rare, events. On

each iteration we expand one node in the forest of every event type instead

of the forest of a single event type. The reason for this is that low intensity

variables contribute less to the likelihood, so choosing the largest change in

marginal log likelihood will tend to ignore modeling low intensity variables.

By selecting an expansion for every event type each iteration, we ensure a

rich modeling of myocardial infarction in the face of high frequency events

such as blood pressure measurements and prescription refills. We note that

because of the independence of likelihood components for each event type,

this type of round-robin expansion is still guaranteed to increase the model

likelihood. This statement would not hold, for example, in CTBNs, where a

change in a variable intensity may change its latent state distribution, affecting

the likelihood of another variable. Finally, for ease of implementation and

sampling, we learn trees sequentially and limit the forest size to 40 total splits.
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Figure 6.6: Precision-recall curves for ex ante forecasting. MFPPs are compared
against PCIMs and homogeneous Poisson point processes.

Table 6.2: Log likelihood of {MFPP, PCIM, independent homogeneous Poisson
processes} for forecasting patient medical events between 2005 and 2010.

Method Log likelihood

MFPP 12.1
PCIM 10.3
Poisson -54.8

Ex Ante Forecasting Results

Table 6.2 shows the average log likelihood results for ex ante forecasting for

the MFPP, PCIM and homogeneous Poisson point process models. Both MF-

PPs and PCIMs perform much better than the baseline homogeneous model.

MFPPs outperform PCIMs by a similar margin observed in the synthetic data

set.

Figure 6.6 shows the precision-recall curve for predicting a myocardial

infarction event between 2005 and 2010 given data on subjects prior to 2005.

MFPPs and PCIMs perform similarly at this task. The high-recall region is of
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Figure 6.7: Precision-recall curves for supervised forecasting. MFPPs are com-
pared against random forests, logistic regression, and random forests aug-
mented with MFPP intensity features.

particular interest in the medical domain because it is more costly to miss a

false negative (e.g. undiagnosed heart attack) than a false positive (false alarm).

Simply put, clinical practice follows the “better safe than sorry” paradigm, so

performance high-recall region is of highest concern. We plot the precision-

recall curves between recalls of 0.5 and 1.0 for this reason. The absolute preci-

sion for all methods remains low and might exhibit the challenging nature of

ex ante forecasting. Alternatively, the low precision results could be a result

of potential incompatibility of the exponential waiting time assumption and

medical event data. Since forecasting can be considered a type of extrapolative

prediction, a violation of the model assumptions could lead to suboptimal

predictions. Despite these limitations, compared to the baseline precision of

428/15,446= 0.028, the trainedmethods do provide utility in forecasting future

MI events nonetheless.
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Figure 6.8: First two trees in the MFPP forest. The model shows the rate predic-
tions for myocardial infarction (MI) based on cholesterol (LDL), blood pressure
(BP), previous MI, and bypass surgery. Time is in years; for example, [t-1,t)
means “within the last year”, and (-Inf, t) means “ever before”.

Supervised Forecasting Results

Figure 6.7 provides the precision-recall curve for the supervised forecasting

experiment predicting at least one myocardial infarction event between 2005

and 2010. Aswe see,MFPPunderperforms compared to all supervised learning

methods. However, the MFPP predicted intensities features boosts the MFPP-

RF performance compared to the other classifiers. This suggests that while

MFPP is a valuable model but may not be optimized for classification.

MFPPs also provide insight into the temporal progression of events.

Figure 6.8 shows the first two trees of the forest learned for the rate of

myocardial infarction. We observe the effects on increased risk: history

of heart attack, elevated LDL cholesterol levels, abnormal blood pressure,

and history of bypass surgery. While the whole forest is not shown (see

http://cs.wisc.edu/~jcweiss/ecml2013/), the first two trees provide the

main effects on the rate. As you progress through the forest, the range over

intensity factors narrows towards 1. The tapering effect of relative tree “impor-

tance” is a consequence of experimental decision to learn the forest sequentially,

and it provides for nice interpretation: the first few trees identify the main

effects, and subsequent trees make fine adjustments for the contribution of

additional risk factors.

As Figure 6.8 shows, the dominating factor of the rate is whether a recent
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myocardial infarction event was observed. In part, this may be due to an

increased risk of recurrent disease, but also because some EHR events are

“treated for” events, meaning that the diagnosis is documented because care is

provided. Care for incident heart attacks occurs over the following weeks, and

so-called myocardial infarction events may recur over that time frame.

Despite the recurrence effect, the MFPP model provides an interpretable

representation of risk factors and their interactions with other events. For

example, Tree 1 shows that elevated cholesterol levels increase the rate of heart

attack recurrence while normotensive blood pressure measurements decrease

it. The findings corroborate established risk factors and their trends.

6.4 Summary

In this chapter we introduced an efficient multiplicative forest learning al-

gorithm to the point process community. We developed this algorithm by

combining elements of two continuous-time models taking advantage of their

similar likelihood forms.We contrasted the differences between the twomodels

and observed that the multiplicative forest extension of the CTBN framework

would integrate cleanly into the PCIM framework. We showed that unlike

CTBNs, MFPP forests can be learned independently because of the PCIM like-

lihood decomposition and intensity dependence on event history. We applied

this model to two data sets: a synthetic model, where we showed significant

improvements over the original PCIM model, and a cohort study, where we

observed that MFPP-RFs outperformed standard machine learning algorithms

at predicting future onset of myocardial infarctions. We provide multiplicative-

forest point process code at http://cs.wisc.edu/~jcweiss/ecml2013/.
While our work has shown improved performance in two different com-

parisons, it would also be worthwhile to consider extensions of this framework

to marked point processes. Marked point processes are ones where events

contain additional information. The learning framework could leverage the

information about the events to make better predictions. For example, this

could mean the difference between reporting that a lab test was ordered and

knowing the value of the lab test. The drawback of immediate extension to

marked point processes is that the learning algorithm needs to be paired with

a generative model of events in order to conduct accurate forecasting. Without

the generative ability, sampled events would lack the information required for
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continued sampling. The integration of these methods with continuous-state

representations would also help allow modeling of clinical events such as

blood pressure to be more precise.

Finally, we would like to be able to scale our methods and apply MFPPs to

any disease. Because EHR systems are constantly updated, we can acquire new

up-to-date information on both phenotype and risk factors. To fully automate

the process in the present framework, we need to develop a way to address the

scope of the EHR, selecting and aggregating the pertinent features for each

disease of interest and identifying the meaningful time frames of interest.

Next we turn to the task of risk attribution. Inspection of learned models,

e.g., Figure 6.8, allows us to identify potential risk factors for disease. The next

chapter investigates how to quantify the attributable risk specific to individual

patients and provides a comparison with the existing clinical paradigm, which

applies average results to each study participant.
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7 Individualized Risk Attribution from

Electronic Health Records

Overview

This chapter focuses on the task of risk attribution from EHR data. Given a

disease and a risk factor of interest, e.g., MI and statin use, we seek to quantify

how much risk can be attached to the possession of the risk factor. Clinical

study paradigms seek to model the average treatment effect (ATE), but tend to

apply this population-level effect to future individuals. We argue for the use

of the individualized treatment effect (ITE), which has better applicability to

new patients, but is harder to reliably estimate. We compare ATE-estimation

using randomized and observational analysis methods against ITE-estimation

using conditional probability modeling and describe how the ITE theoretically

generalizes to new population distributions whereas the ATE may not. On a

synthetic data set of statin use andMI, we show that, without access to ground

truth, the ITE outperforms the ATE using randomization methodology from

Vickers et al. (2007), and, given access to ground truth, improves ITE recovery.

We suggest that the conditional probability model should be learned with a

consistent, non-parametric algorithm from unweighted examples and show

experiments in favor of our argument. Thework in this chapter is in preparation

for submission.

7.1 Introduction

Randomized controlled trials (RCTs) are the gold standard for determining the

risk of a disease attributable to an exposure or treatment. They isolate the effect

of a specific treatment on a population by randomization, so that systematic

differences in population outcomes can be attributed to the treatment. The

primary outcome of an RCT is the average treatment effect (ATE), i.e., the

average difference between treatment arms in the probability of the outcome.

Because of randomization, the ATE is indicative of effect of treatment even

in the presence of other risk factors. The reliability of an RCT conclusion has

led to the development of randomization mimics from non-randomized data.
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These methods manipulate the treatment-outcome frequency estimates of

ATE to account for the possibility that the treatment is associated with one (or

many) factors causing the outcome but is not the cause itself.

However, when treatments are recommended to future patients, the ATE

is not the primary statistic of interest. We do not expect the same treatment

effect in every person, and the diversity of effects goes beyond a population’s

nonuniform prior risk. The belief that treatment effects are individual suggests

that we model the individualized treatment effect (ITE), which is the effect of

administering the treatment to a person specified in data by a set of recorded

features.

Access to the ITE in addition to the ATE is useful in many applications. As

discussed in Rothwell (1995), suppose we are considering outcomes of carotid

endarterectomy, where our treatment options for carotid stenosis are surgical

intervention or watchful waiting. For severe cases of stenosis, the surgery is

almost always preferable, while for mild cases, waiting is preferred because of

the risks of surgical intervention. Treatment decisions should be individualized

because the risk-benefit trade-off will differ according to patient characteristics.

Another example is the treatment of borderline-elevated blood pressure, where

polypharmacy can become a problem in many individuals with risk factors

for type II diabetes and cardiovascular disease (Kent & Hayward, 2007).

Additionally, recommendations and approvals of drugs change over time.

For example, hormone replacement therapy treatment effect findings in RCTs

and observational studies were of opposite sign, and advocacy of their use was

rescindedwhen the RCT findings were released (Manson et al., 2013). Similarly,

many drugs are taken off the market due to excess harm from adverse drug

effects. However, many of these drugs are more effective than alternatives for

select populations. ITE modeling can help determine which patients are likely

to receive benefit from such drugs and potentially bring drugs back to market

safely.

In this chapter, we show the ability to recover the true ITE and the value of

the ITE over ATE in synthetic data where we know ground truth. Recovery

of the true ITE is theoretically possible provided sufficient data because of

algorithmic consistency. We also emphasize another problem of the ATE: its

calculation is inherently dependent on the underlying population distribution,

when what is desired is a prediction for any new patient independent of the

study population. We argue that a non-parametric learning algorithm will
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recover the conditional probability distribution and do so independently of

the population distribution with sufficient data. On synthetic data we show

the generalizability of the conditional probability model to alternative popula-

tion distributions of increasing KL-divergences. We also show that the use of

unweighted examples, instead of propensity-score matched examples or stable

inverse probability of treatment weighted examples, produces a conditional

probability model with a lower MSE for the ITE.

7.2 Background

Randomized controlled trials are the gold standard for estimating the average

treatment effect (ATE). The technique randomizes confounders, measured

and unmeasured, so that factors important to the disease process are approxi-

mately balanced among treatment groups. If measured baseline factors are

imbalanced empirically after randomization, propensity scoring can be used

obtain covariate balance.

Because RCTs are impractical or infeasible for many exposure-outcome

pairs, observational studies were developed to estimate attributable risk. These

include studies that use known-confounder modeling, propensity scoring,

inverse probability of treatment weighting, and doubly robust estimators

(Prentice, 1976; Austin, 2011; Rosenbaum & Rubin, 1983; Robins et al., 2000;

Bang & Robins, 2005). The twomain ideas in these methods are to (1) adjust for

confounders by modeling them, and (2) change the population distribution so

that the treatment is independent of confounders given the outcome. One key

assumption in all of these models is that there are no unobserved confounders,

which is difficult to determine in practice.

Also, in most of these approaches (and their variants), a model is assumed

for the conditional probability distribution (CPD) of the outcome given the

exposure and covariate. In these cases, the counterfactual outcomes, which

are never observed, are assumed to follow the model CPD.

Unlike in ATE estimation, achieving sufficient counts to estimate the coun-

terfactual ITE outcome is infeasible for any moderate-sized feature vector

because the number of possible feature states is exponentially large. There-

fore, a modeling approach to estimate the counterfactual outcome becomes

necessary. These can be the same CPD models used in pseudo-randomized

ATE estimation, e.g. logistic regression, but in Section 7.3 we will discuss
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two reasons to adopt other machine learning models: non-uniform treatment

recommendations and non-parametric consistency.

Related Work

The call for adoption of the ITE is not new, and the limitations of applying

population-average effects on individuals has been noted, e.g., in Kent & Hay-

ward (2007) and Rothwell (1995). The ATE or relative risk is stated as the

primary outcome, usually followed by a secondary analysis of the heterogene-

ity of treatment effect. As mentioned in Hayward et al. (2006), performing

subgroup treatment effects is usuallymore effective in risk-stratified subgroups

derived from multivariate analyses than in subgroups defined by individual

covariates, and these methods have been adopted for approximating individ-

ualized treatment effects (Dorresteijn et al., 2011). While these methods do

provide finer-grained treatment effect estimates, factors beyond the outcome

risk may influence the treatment effect and can be utilized when modeling the

ITE.

Modeling of the ITE has been implemented in several studies. Qian &

Murphy (2011) develop the framework of conditional probability modeling

and use the predictions to estimate individualized treatment rules (ITRs).

Our work builds on this approach, making statements about the utility of the

ITE, the generalizability of the ITE, and the preference for using unweighted

observational data for ITE estimation, all with simulations to illustrate these

advantages. Our simulations based on synthetic data have access to a ground

truth ITE, which we use to assess our ITE estimations.

However, it is possible to assess the benefit of ITE without access to ground

truth. Vickers et al. (2007) provides an unbiased method to estimate the ad-

vantages of using the ITE recommendation over the ATE recommendation

using existing RCT data. They show that by counting outcomes in the subset

of patients where ITE- and ATE- treatment recommendations disagree, the

expected difference in treatment recommendations is estimated. Our exper-

iments include such analyses to show that the ITE-recommendation can be

estimated without access to the counterfactual outcomes. Unfortunately, this

method can be severely underpowered in the case that the ITE- and ATE- treat-

ment recommendations are highly similar, and a power calculation analysis to

determine recruitment size would be helpful. Alternatively, a new RCT study

could be implemented randomizing to ITE- and ATE- treatment arms.
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Neither the methods we adopt nor the methods presented in Qian & Mur-

phy (2011) directly optimize the ITE. Instead, they model the conditional

probability distribution, and then the differences in probability are estimated

using the estimates for the treatment effect using true and counterfactual treat-

ments. Zhao et al. (2012) develops a method to directly optimize for the ITE

under a surrogate loss function from RCT data. While this method produces

ITE recommendations, we believe a model should also provide treatment

effect estimates under each treatment arm, because the treatment effect itself

is critical information clinically. Also our methods do not require RCT data

and scale easily to multiple treatment arms and factorial treatment designs,

which are not considered in Zhao et al. (2012).

7.3 Methods

We describe ITE modeling below. Let the ITE for an outcome y ∈ {0, 1}
of a patient with features v given treatment u ∈ {0, 1} be the difference

in estimates: p(y = 1|u = 1, v) − p(y = 1|u = 0, v). The key assumption

made in these modeling approaches is that both the observed outcomes

ytrue and the counterfactual outcomes ycf come from the CPD model, that

is, p(ycf|u, v) = p(ytrue|u, v) = p(y|u, v) for all u and v. The interpretation of

the ITE is only causal if the no unmeasured confounders assumption (NUCA)

is made; otherwise, it is just a statement about the difference in outcome

probability given a new patient described by (u, v).
If we have a correctly specifiedmodel andNUCAholds, for any newpatient

with features v and treatment u, we have their ITE that guides our treatment

choice. This statement is notably population-distribution free and thus can

generalize to arbitrary population distributions of (u, v). The ATE does not

have this characteristic; its calculation is dependent on the distribution of

(u, v) so its application should be limited to populations with similar covariate

distributions unless the treatment effect is believed to be uniform.

Recalling that the application of the RCT-recommended treatment suggests

that every patient should receive that treatment, a logistic-regression-based

model similarly provides a uniform decision. Its decision will be in agreement

with the sign of the treatment parameter. However, in many cases, and par-

ticularly in those where the treatment effect has small magnitude but high

variance, the optimal treatment decision is nonuniform. Thus, we adopt ma-
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chine learning methods which can estimate the CPD while also providing

nonuniform treatment choices. In particular, we use AdaBoost because it has

consistency results and is a non-parametric learning algorithm (Freund &

Schapire, 1996; Culp et al., 2006). In other words, consistency means AdaBoost

will recover the correct CPD given enough examples, and will do so regardless

of the train (u, v) distribution provided proper support. Non-parametricity

allows it to recover any CPD over (u, v), not just ones in a parametric family.

With the adoption of a non-parametric learning algorithm comes the

parametric/non-parametric learning trade-off. Parametric models may require

smaller sample sizes to learn effectively but are not consistent if misspecified;

non-parametric models may require larger sample sizes to achieve good CPD

estimates but have consistency results for arbitrary joint distributions.

Recall that propensity-score matching and inverse probability-of-treatment

weighting (IPT-W) are methods to produce pseudo-randomized data for the

estimation of the ATE. With ITE as the target statistic, these methods become

less desirable. In modeling the CPD, propensity score matching and IPT-W

weighting reduce the effective sample size, reducing our numbers for estima-

tion. Thus, under the modeling assumption, and, with the goal of modeling

ITE, we argue for unweighted CPD estimation.

Experimental Approach

In this section, we restate the claims and reasoning in support of the individ-

ualized risk framework and then provide experimental designs to confirm

them, using synthetic data with access to ground truth, or observational or

RCT data.

As already noted, there is a strong argument for the calculation of the

individualized treatment effect (ITE) over the average treatment effect (ATE)

because the the ITE can be used in patient-specific recommendations in lieu

of ATE-based, population-average recommendations. The value of the ITE

recommendation can be estimated, compared against an alternative–for ex-

ample, the ATE recommendation–using the subsets of randomized patients

where treatment recommendation differs (Vickers et al., 2007). We use existing

methods to test the hypothesis of ITE superiority and illustrate the benefits of

ITE estimation on synthetic data.

We suggest that, in preference for generalizability of study outcome, the

conditional probability distribution p(y|u, v) should be modeled with non-
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parametric learning algorithms. That is, our goal should be to learn the correct

p(y|u, v) irrespective of the distribution p(u, v) because future data distribu-

tions p′(u, v) may be different. Non-parametric learning algorithms achieve

independence from p(u, v) in the limit of increasing data. We empirically char-

acterize the recovery of the ITE varying the train set data size and compare the

performance of parametric and non-parametric learners varying the similarity

of train and test set population distributions.

Note the relationship to propensity scoring methods, where examples are

weighted or matched by a function of p(u|v). Propensity score weighting and

matching schemes reduce the effective sample size, mimicking the indepen-

dence of treatment from observed confounders but not assisting in the recovery

of the conditional probability distribution p(y|u, v). We show experimentally

that estimating p(y|u, v) directly from the original data distribution outper-

forms analogous estimators from propensity-score-weighted and stabilized

inverse probability-of-treatment weighting methods.

Finally, we discuss applications of the conditional probability distribution

modeling approach. Numerous concerns have been voiced about the appro-

priateness of observational data as a data source for the effect of treatments

because confounding can bias the statistical interpretation. With free reign

on the covariate definitions in observational studies, we may have access to

highly-correlated or even logically-related covariates, such as “ever smoked”

and “current smoker.” We opt to include such covariates for richness of rep-

resentation that can lead to better estimates of p(y|u, v), but must adapt our

interpretation of “intervention” to specified multivariate changes instead of a

(univariate) change of treatment state. We discuss several desired conditions

when defining the set of “treatment” states and propose methods to provide

interpretable recommendations when the space of “treatment” states is large.

7.4 Experiments

We define two synthetic models of myocardial infarction (MI) with thirteen

total variables: age, gender, smoking status, HDL level, LDL level, diabetes

status, family history of cardiovascular disease, blood pressure, history of

angina, history of stroke, history of depression, statin use, andMI. The network

is shown in Figure 7.1. For simplicity, we define each variable to have binary

values. The first model–an observational study mimic–uses a Markov Random
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Figure 7.1: Risk attribution model of statin use for MI

Field and feature functions corresponding to the edge skeleton of the graph.

The second model–an RCT mimic–uses the same graph, and allows us to

“intervene” on a variable in the causal network by simply removing the arcs

who have the variable as a terminal node and sampling from the new joint

distribution. From these models, we can sample synthetic observational and

RCT data from the joint distribution over variables to generate samples, or

“patients”.

The question we seek to answer is the effect of statin use on heart attack or

MI. We test the recommendation from boosted trees against the ATE recom-

mendation on our synthetic, randomized data set, both using the RCT method

in Vickers et al. (2007) and comparing against our ground truth knowledge.

We use the AdaBoost package in R and default parameter settings to learn the

forest (Freund & Schapire, 1996; Culp et al., 2006).

We also compare boosted trees to logistic regression in the observational

study setup. We seek to characterize estimation of the ITE under each method

by looking at error modes of eachmodel and producing learning curves for the

models as a function of training set size. To test for applicability to an arbitrary

test population distribution, we alter the distributions on variables with no

parents in the causal DAG: age and gender. Finally, we compare ITE and ATE

estimation using the unweighted training set with estimation using altered

data sets via propensity-score matching and (stabilized) inverse probability-
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of-treatment weighting.

7.5 Results

Figure 7.2 shows the utility of adopting the ITE recommendation over the

ATE recommendation. The upper graph shows that the adoption of the ITE

recommendation lowers the probability of MI by 0.0006 on average. Thus, the

number-needed-to-treat (NNT) is about 2000, i.e., treating 2000 patients with

the ITE-recommended treatment given that the recommendation differs results

in one less MI on average. This is a small effect–small due to the fact that there

are few patients whose probability of MI would go up with administration of

a statin.

The lower graph in Figure 7.2 shows the estimated expected difference in

probability of MI between ITE- and ATE- recommended treatments among

patients where they disagree on treatment choice. We see that the ITE recom-

mendation lowers the probability of MI in this subset by 0.06, or a NNT of

20.

The learning curves for logistic regression and AdaBoost are shown in

Figure 7.3. As we expect, the parametric logistic regression performs well for

small train set sizes, but the error cannot approach 0 because the model is

misspecified (because the ground truth model is not log-linear in the exposure

and covariates). The error of AdaBoost decreases similarly until about 2000

train set examples, where it continues to reduce the MSE towards 0. The

approach toward 0 error is in line with the non-parametric consistency results

that exist for AdaBoost (Bartlett & Traskin, 2007).

Figure 7.4 shows the error modes for ITE estimations using logistic regres-

sion and AdaBoost; the errors are smaller using AdaBoost. The plots show the

estimated ITE versus the ground truth ITE for the test set examples in black

with the ATE applied to all examples overlaid in red. Having all points on the

line y = x is optimal. For logistic regression (top), all ITE estimates will be

either above or below 0 because the model assumes that a single coefficient

determines the direction of the effect. AdaBoost does not have this restriction

and can provide individualized recommendations, though, as is shown, the

errors are still non-zero.

The effect of different data-weighting and matching schemes is shown in

Figure 7.5. The recovery of the CPDmodel and thus the ITE requires the fewest
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Figure 7.2: Average difference in treatment effect using the ITE recommenda-
tion in place of the ATE recommendation as a function of train set size. The
estimated difference in the population is shown at top; the estimated difference
in the subpopulation where treatment recommendations differ is shown at
bottom. The red dotted line indicates the least square fit. The difference in
treatment effect is estimated by the Vickers et al. (2007) method with a test set
of 50000 examples.
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Figure 7.3: Learning curves for logistic regression (black) and AdaBoost (red);
test set ITE mean-squared error as a function of training set size.

examples by leaving the examples unweighted, more using stabilized inverse

weighting, and the most using 1:1 propensity score matching. One important

consideration is that our data set includes some patients without elevated LDL

who take statins, motivated by the suggestion that there could be therapeutic

benefit of statins even in borderline hypercholesterolemia. However, in a data

set with few normal-LDL statin users, propensity-score matching and particu-

larly stabilized inverse weighting will impair the CPD model, because it will

attach large excess weight to few examples.

Shifting the test set distribution by adjusting the prevalence of the young-

and-female to old-and-male subgroups had no substantial effect on the differ-

ence in AdaBoost and logistic regression MSE of the ITE. This is surprising

because the nonparametric AdaBoost would be expected to generalize to alter-

native distributions better than the parametric logistic regression. It is possible

that age and gender do not influence the ITE of subgroups differently, suggest-

ing that looking for heterogeneity of treatment effect in risk-based strata (age

and gender are risk factors for MI) may not detect underlying treatment effect

differences.
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Figure 7.4: Estimated ITE (black) and ATE (red) versus the ground truth ITE
for logistic regression (top) and AdaBoost (bottom) for a train set size of 50000.
Optimal estimation is given by the line y = x. Empirical smoothed density of
the ground truth ITE is shown at bottom.
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Figure 7.5: Learning curves for AdaBoost using unweighted examples (red
circles), propensity-score matched samples with a 1:1 ratio (blue squares), and
stabilized inverse weighted examples (green diamonds): test set ITE mean-
squared error as a function of training set size.

7.6 Discussion

The work presented in this chapter is in preparation and will require empirical

justification in several directions.

• We seek to apply our framework to real clinical data: both to RCT and

observational data. We intend to use International Stroke Trial (RCT) and

Marshfield Clinic Personalized Medicine Research Project (EHR cohort)

data (Sandercock et al., 2011; McCarty et al., 2005). In these settings, we

will not have access to the ground truth. Nevertheless, we can adopt the

approach in Vickers et al. (2007) to compare ITE and ATE outcomes. For

evaluation, we must resort to the average outcome over some population,

preferably several populationswith covariate distributions different from

each other and the training population. A characterization of which (u, v)
provide reliable ITE recommendations is critical as well. There may be

more uncertainty in patients underrepresented in the train distribution,

especially for limited train set sizes.

• We want to characterize what train set size is needed for non-parametric

learning algorithms to outperform the parametric algorithms and specif-

ically logistic regression. A characterization of the number of examples

needed to move past the mean squared error of the logistic regression
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outcome for a given task is important as a factor in determining when

we should recommend the model ITE outcome or stick with the ATE.

• Using the Vickers et al. (2007) method, we would like to characterize

our uncertainty in our point estimates–ITEs for patients–as well as per-

form power calculations to determine sample sizes needed to detect ITE

superiority.

Another crucial issue preventing the automatic use of EHR data for risk

attribution is the presence of unobserved confounders, observed confounders,

and intermediate variables. For a pure prediction problem, it makes sense to

use all features that carry information useful in prediction of the outcome,

provided a large enough training population. For risk attribution however,

the exclusion of a confounder or the inclusion of an intermediate variable

can result in biased estimation of both the ITE and ATE. However, we should

not simply accept a regime that excludes intermediate variables, because the

inclusion of intermediate variables may enhance our modeling of the condi-

tional probability distribution. At test time, we may simply not have access

to the intermediate variables and could instead have to infer their values and

produce a Bayesian estimate for the resulting ITE.

Issues with intermediate variables and confounders arise in EHR data also

because of the multitude and specificity of variable definitions. For example,

suppose we have two logically related features: “history of smoking” and “cur-

rent smoker”. Clearly these variables are intertwined and potentially useful for

outcomes, e.g., lung cancer. When we ask what the risk attributable to smoking

is, we need to be more specific as to which variable we mean. Suppose we

choose “history of smoking”. Most clinical analyses would then omit “current

smoker” from the analysis, despite its importance as a lung cancer predictor.

The support for its removal is that it is an intermediate variable, or alternatively

the study design might look at the effect of “history of smoking” among the

subpopulations of current and former smokers.

For confounders, e.g., when the exposure of interest is “alcohol consump-

tion,” clinical analyses will typically include one but not both features in the

model. The inclusion of one feature allows the model to control for smok-

ing, i.e., that smoking behavior is associated with alcoholism and causes lung

cancer. Both features are not included to limit the degrees of freedom in the

covariates to explain away the effect of exposure. In either case, study design
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opts for the removals of features that improve the conditional probability

model.

Because of these challenges, we suggest several approaches to explore:

• For interventions, we can define the scope of their feature influence,

potentially probabilistically, and potentially including multiple features.

For example, a diabetes intervention could be represented in the replace-

ment of feature values for “rosaglitazone”, “fasting blood sugar” and

“HbA1c”. Then we can model the effect of intervention by comparing

probability of outcomes under intervention or no intervention while

richly modeling the conditional probability distribution.

• A timeline-based analysis where the effect of the intervention on appar-

ent intermediate variables as well as the outcome of interest could be

modeled and hence improve outcome prediction.

Finally, though modeling of the ITE is enticing, robustness guarantees

and validation of its performance should be established before large-scale

clinical deployment. A few sources of validation include replication studies

and heterogeneity of treatment effect analyses using ITE model strata.

7.7 Summary

In this chapter, we illustrated the parallels between the standard clinical study

framework designed to determine the ATE and the burgeoning clinical study

framework designed to determine the ITE. We first argued that the ATE is

favorable in its ability to leverage the RCT study design. Then, we highlighted

shortcomings of the ATE, first, that the ATE is an average outcome, when in

practice we usually care about the ITE for future patients, and second, that the

ATE is population-distribution dependent. Then we discussed modeling of the

ITE. Notably the logistic regression can only recommend one treatment arm

if we exclude non-linear and exposure-covariate interaction terms because

the coefficient for exposure is either negative or non-negative. Furthermore,

unless correctly-specified, the logistic regression is not a consistent learning

algorithm, so we cannot hope to recover the true conditional probability dis-

tribution even from large populations. Instead, we adopted another popular

framework, boosted trees, and showed that the forest-based ITE outperformed

the ATE on a synthetic problem of MI prediction. Finally, we showed that
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the use of propensity-score matching and inverse-probability-of-treatment

weighting impaired the learning of the conditional probability distribution, so

we recommend against the use of PSM and IPT-W unless you are interested in

an estimate for the ATE in a pseudo-randomized population.
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8 Conclusions

In this thesis we presented foundations for statistical timeline analysis (STA):

the applications of temporal and relational modeling to answer predictive

and risk attribution questions from Electronic Health Records. The need for

STA comes from the limitations of existing methods at modeling the nascent

framework of the EHR as a data source for clinical modeling. These limitations

come from the difficulty in addressing the challenges of EHR data: relational,

temporal, noisy, and incomplete not at random. We argued that patient data

could be effectively represented as timelines, and we developed methods to

address aspects of timeline data.

8.1 Contributions

In Chapter 3 we tackled the difficult problem of predicting primary MI from

EHR data at the Marshfield Clinic using a subset of known risk factors. We

found that two SRL algorithms outperformed their propositional analogues

suggesting the utility of relational learning algorithms for EHR timeline analy-

sis. The RFGB forest learning method performed the best of any algorithm,

particularly in the high recall region of the precision-recall curve. Contrary

to most clinical studies, important predictive features outside of the “patient-

disease” framework are also found, such as implicit physician awareness of

disease observed in testing, and relational information tying patients, physician

and providers that hints at a patient’s medical condition but is not measured

in specified covariates.

We also stated several limitations to our RFGB experimentation. We did

not use additional relational information available to us, such as hierarchical

diagnosis relationships, prescription relationships, and family relationships.

Decisions about the data representation would be necessary because the rep-

resentation affects the RFGB search behavior over relational features. Also,

the use of timeline information in RFGB is limited to logical, temporal com-

parison features, such as “did a hypertensive event within the last year also

precede a prescription of a beta blocker”? That the features switch from on to

off in an instant seems medically unreasonable, and the approaches modeling
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the instantaneous rate of events like CTBNs and point processes move the

discontinuities into the rates of events instead.

In Chapter 4, we turned to continuous-time Bayesian networks (CTBNs) for

timeline modeling. We reviewed the CTBN, an elegant mathematical model for

describing a distribution of a set of discrete variables over continuous time. We

noted that it compactly represents the exponential-size joint state by modeling

the rate of state changes individually for each variable, where the rates are

dependent on the state of parent variables, which themselves are specified by a

graphical model over the variables. Unfortunately, while a CTBN is a compact

representation of the joint state, the size of the model still scales exponentially

in the number of parents of a variable. This means, at learning time, that an

exponential number of parameters must be estimated.

Our work in Chapter 4 introduced a generalization of CTBNs: partition-

based CTBNs. For each variable, the rate is determined by one part of the par-

tition, and the number of parts can be specified arbitrarily. Our work showed

that trees and forests could be used to represent the partitions, and that the

number of parameters for such a model would be linear (not exponential) in

the number of splits in the forest. Then, we showed that the forests could be

learned efficiently using a maximum likelihood approach and a multiplicative

rate assumption. By addressing the limitation of scalability in parameter size,

we showed experimentally that CTBN models on the order of hundreds of

variables could be learned effectively.

Chapter 5 addressed the problem of CTBN inference. Despite the efficient

learning algorithm provided in Chapter 4, when the input data is missing the

state of any variable for any interval duration, inference must be performed to

probabilistically complete the interval. EHR data serves as point event data so

it tends to missingness in the extreme because at any given time t, the number

of events observed is zero with near certainty. Thus CTBN inference is needed

to “fill in” the timeline. A variety of CTBN inference algorithms have been

proposed, but none scale to EHR-sized data. Chapter 5 followed the sampling

and particle filtering approach presented in Fan & Shelton (2008). In particular,

it introduced a general method of improvement to sequential importance

sampling and applied the solution to CTBN inference. The improvement is

that, given a target distribution f and surrogate distribution g from which

we can sample, we selectively reject a portion of the sample steps so that the

weight distribution of samples from g has lower variance, which means that
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we can approximate f equally well with fewer samples. We showed that the

decision of sample rejection can be learnt using weighted samples and a binary

classifier that encodes the model and the evidence. Experimentally, we showed

that learning a logistic regression model for sample rejection improved CTBN

inference by an order of magnitude, assuming a willingness to pay the up front

cost to train the classifier. Extensions of this line of reasoning to achieve greater

speed-ups should be investigated because more than an order of magnitude

scale-up will be necessary to apply CTBNs and CTBN inference on problems

with thousands or millions of variables seen in EHR data.

Given existing challenges in CTBN inference, in Chapter 6 we investigated

an alternative model for timelines: point processes. We sought to translate

our learning contributions in CTBNs to the point process framework and

showed that it was possible if we used the piecewise-constant intensity model

(PCIM) framework. We connected CTBN and PCIM frameworks by noting

their similarity in likelihood formulations and extended PCIMs (Gunawardana

et al., 2011) to forest models. We showed experimentally that learning forests

improved the model likelihood and that features derived from the forests

improved prediction in a variety of forecasting tasks for myocardial infarction.

A few key differences between CTBN and point processes were identified, such

as the ability to learn models for each point process variable separately, due to

the lack of inference required and to the likelihood decomposition. Thus, in

practice, one could learn a rate dependence for individual outcomes of interest,

instead of for every variable in the model. At the same time, point processes

are restricted in their ability to model clinical processes because of their strong

assumptions that the observation of an event equates to the occurrence of said

event, and that the lack of observation of an events means the event did not

occur (i.e., the closed-world assumption).

Chapter 7 transitioned focus to the task of risk attribution. While mature

methods are widely adopted for determining the average treatment effect

(ATE) using randomized controlled trials, cohort studies and case-control anal-

yses, methods focusing on individualized treatment effect (ITE) are just now

being utilized. Estimation of the ITE requires a modeling approach, which

lends itself perfectly as a machine learning task. Furthermore, because of the

impracticality of performing a trial for exposure-outcome pair of interest, mod-

eling using EHR data becomes especially attractive. With these motivations,

we investigated the use of EHR data to determine a patient’s personalized
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risk attributable to an exposure or treatment of choice. To motivate use of the

ITE, we discussed the severe limitation of the applicability of the ATE. We

suggested that the ITE, unlike the ATE, could generalize to arbitrary popu-

lation distributions. We showed that a choice of binary classifiers different

than logistic regression or a modeling of exposure-interaction terms would

be necessary for modeling the ITE in cases where there exists heterogeneity

of treatment recommendation. On a synthetic data set of statin treatment for

MI prevention, we found that the personalized ITE recommendation outper-

formed the uniform ATE recommendation. We also described learning curves

and error modes for logistic regression and boosted trees, and showed that

boosted trees outperformed logistic regression in ITE recovery. Finally we

showed that learning from unweighted data instead of from propensity-score

matched or inverse-probability-of-treatment weighted data results improves

our ability to model the conditional probability distribution.

8.2 Future Work

Discussions of futurework specific to each chapter are contained in the chapters

themselves; here we discuss future directions for statistical timeline analysis

as a whole.

Chapters 4, 5, and 6 hold the core temporal components of our work. We

showed that the forest learning algorithms can effectively recover temporal

dependencies in data, which can lead to improved prediction. However, as

illustrated in Chapter 6 learning temporal dependency models does not opti-

mize for predictions of future outcomes. If the network we learn is not causal,

or there are unobserved confounders or effect modifiers, we should not hope

that forward sampling from our models should make accurate predictions

beyond the near future. Future work in learning temporal, causal models

could be difficult particularly because of the need to address unobserved con-

founders and effect modifiers. However, a characterization of the causal effect

of variables in the system could determine a bound on the certainty of the

forecast as a function of time into the future.

The simpler approach is tomake the assumption that the future will behave

like the past, so we can perform supervised learning on training examples from

the past and apply them to examples in the future.While this is straightforward

and has immediate application, fields like medicine are always undergoing
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rapid shifts in the practice of care and the definitions of disease, so infer-

ring about the future using the past will require constant relearning and will

never get away from some small temporal bias. Regardless of the methodology

chosen, our temporal analysis does show improvement in performance over

existing models, suggesting that capturing the temporal dependencies is im-

portant both for forecasting and for characterization of underlying processes.

This thesis presented a wide range of algorithms, which were developed to

address key shortcomings of existing methods when applied to the analysis of

EHR data. Future work should investigate the combination or hybridization of

these models. Relational temporal models such as marked point processes or

relational CTBNs is worth exploring to better capture the relational nature of

EHR data while maintaining an appropriate continuous-time representation.

A straightforward extension to learning comes to mind, though inference in

both models could be challenging. CTBN inference will undoubtedly have

scaling challenges when applied to relational data, though the use of, e.g., lifted

particle filters Nitti et al. (2013) could mitigate it. Sampling of marked point

processes will require a relational generator in order to forecast, so its use to

undercover interesting relational dependencies may provide more immediate

utility.

Hybrid forest CTBNs and point processes is a natural extension of our

work. The limitation of forest point processes is that inferencemust be based on

forward sampling, i.e., sequential importance sampling, filtering and smooth-

ing. However, strong potential for scaling up such inference methods was

presented in Chapter 5.

The combination of ITE estimation presented in Chapter 7 with temporal

modeling is important and one of the most challenging combination of themes.

The ITE by definition is a difference in the individualized probability of an

outcome, and in many cases, the outcome value is defined by the presence or

absence of a disease over a time duration. A temporal ITE might then take a

functional form, i.e., the instantaneous difference in rate of the outcome occur-

ring under the treatment and non-treatment arms. A temporal ITE defined this

way is similar to tracking the difference in intensities in a CTBN or point pro-

cess over time. Establishing theoretical guarantees about a temporal ITE and

how it could affect treatment choice would be important next steps. The tem-

poral ITE also bears some resemblance to the Cox proportional-hazards model

(Cox et al., 1972), which calculates the average attributable rate difference over
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time series data using a semi-parametric model, though again, the modeling of

individualized effects has distinct advantages over population-average effects

as described in Chapter 7.

Finally, returning to the medical utility of statistical timeline analysis for

EHR data, the methods described here could be the precursors to an auto-

mated system that provides clinical assessments of patients based on data that

is already collected for medical record-keeping and billing services. Additional

pertinent information can be introduced when clinical suspicion is high to

update the clinical assessments, but the ability of the EHR to provide clinical,

statistical, and individualized guidance can improve patient care. A system de-

ployed nowwould not be perfect by any means, but observing its performance

with the existing methodology would highlight the improvements necessary

to produce changes in clinical practice with statistically minded improvements

in outcome.
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