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Abstract

Identity Equivalence or Alias Detection is an im-
portant topic in Intelligence Analysis. Often, ter-
rorists will use multiple different identities to avoid
detection. We apply machine learning to the task of
determining Identity Equivalence. Two challenges
exist in this domain. First, data can be spread across
multiple tables. Second, we need to limit the num-
ber of false positives. We present a two step ap-
proach to combat these issues. First, we use In-
ductive Logic Programming to find a set of rules
that are predictive of aliases. In the second step,
we treat each learned rule as a random variable in
a Bayesian Network. We use the Bayesian Net-
work to assign a probability that two identities are
aliases. We evaluate our technique on several data
sets and find that layering Bayesian Network over
the rules significantly increases the precision of our
system.

1 Introduction
DeterminingIdentity Equivalence, or Alias Detection, is a
common problem in Intelligence Analysis. Two different
identifiers are equivalent oraliasesif both refer to the same
object. One traditional example of aliasing centers around
mistyped or variant author names in documents. For exam-
ple, one might want to determine if a citation for V.S. Costa
and one for Vı́tor S. Costa refer to the same author. In this sit-
uation one evaluates matches based on textual similarity. Fur-
thermore, the central information comes from the surround-
ing text (Pasula et al. 2002). However, Intelligence Analysis
involves more complex situations, and often syntactic similar-
ity is either unavailable or inapplicable. Instead, aliases must
be detected through object attributes and through interaction
patterns.

The Intelligence Analysis domain offers two further chal-
lenges to this problem. First, information is commonly stored
in relational database management systems (RDBMS) and in-
volves multiple relational tables. The format of the data sug-
gests using multi-relational datamining techniques such as In-
ductive Logic Programming (ILP). ILP systems learnrules,
which can contain fields from different tables, in First Order

Logic. Modern ILP systems can handle significant databases,
containing millions of tuples.

A second challenge in Intelligence Analysis arises from
false positives, or false alarms. In our task, a false positive
corresponds to incorrectly hypothesizing that two names re-
fer to the same individual. A false positive might have seri-
ous consequences, such as incorrectly adding individuals to
a no-fly list. False positives will always cause valuable time
to be wasted. False positives reduce trust in the system: if
an expert system frequently gives spurious predictions, an-
alysts will ignore its output. For all of these reasons, it is
essential to limit the false positive rate. Unfortunately,intel-
ligence analysis is particularly susceptible to false positives,
as one is often trying to detect anomalies that occur rarely in
the general population. For example, in a city with 1 million
individuals, there are 499 billion possible alias pairs. Inthis
case, even a false positive rate of only 0.001% will result in
about 5 million false positives, or about five bad aliases per
person.

We propose a two step methodology to address these chal-
lenges. First, we learn a set of rules that can achieve high re-
call, that is, they should be able to recognize most of the true
aliases. Unfortunately, some of these rules may have poor
precision, meaning that they falsely classify identity pairs as
aliases. The second step addresses this problem. Instead of
just considering each rule as an individual classifier, we treat
each rule as a feature of a new classifier. We use machine
learning methods to obtain a classifier that takes advantageof
the characteristics of the individual rules. We use Bayesian
Networks as our model, as they calculate the probability that
a pair of identities are aliases.

We have evaluated our approach on synthetic datasets de-
veloped by Information Extraction & Transport, Inc. within
the EAGLE Project (Schrag 2004). We were provided with
artificial worlds, characterized byindividuals, and relation-
ships between these individuals. Our results show excellent
performance for several of the datasets.

This paper is organized as follows. In Section 2 we discuss
ILP applied to alias detection. In Section 3 we give a brief
overview of Bayesian networks. In Section 4 we present and
discuss our results. We compare our work with related work
in Section 5. Finally, in Section 6 we provide a more in depth
discussion of the datasets and our results.



2 ILP For Alias Detection
Inductive Logic Programming (ILP) is a framework for
learning relational descriptions (Lavrac and Dzeroski 2001).
Given sets of positive and negative examples and background
knowledge, an ILP system learns a set of rules to discriminate
between the positive and negative instances. ILP is appro-
priate for learning in multi-relational domains as the learned
rules are not restricted to contain fields or attributes for asin-
gle table in a database.

We use Srinivasan’s Aleph ILP System (Srinivasan 2001).
Aleph uses the Progol algorithm (Muggleton 1995) to learn
rules described as Prolog programs. Aleph induces rules in
two steps. Initially, it selects an example and searches the
databases for the facts known to be true about that specific
example. The Progol algorithm is based on the insight that
some of these facts should explain this example. If so, it
should be possible to generalize those facts so that they would
also explain the other examples. The algorithm thus generates
generalized combinations of the facts, searching for the com-
binations with best performance.

One major advantage of using ILP is that it produces un-
derstandable results. We show a sample rule generated by
Aleph:

alias(Id1,Id2) 
suspect(Id2),
suspect(Id3),
phonecall(Id2,Id3),
phonecall(Id3,Id1).

The rule says that two individualsId1 andId2 may be aliases
if (i) they both made phone calls to the same intermediate in-
dividual Id3; and(ii) individualsId2 andId3 have the same
attribute (suspect). The rule reflects that in this world model
suspects are more likely to have aliases. Moreover, an indi-
vidual and its aliases tend to talk to the same people.

The next rule uses different information:

alias(Id1,Id2) 
hascapability(Id1,Cap),
hascapability(Id2,Cap),
groupmember(Id1,G),
groupmember(Id2,G),
isa(G,nonthreatgroup).

Two individuals may be aliases because they have a common
capability, and because they both belong to the same non-
threat group.

Clearly, these two rules are not precise as the patterns these
rules represent could easily be applied to ordinary individu-
als. One observation is that we are only using the original
database schema. An analyst might define views, or inferred
relations, that highlight interesting properties of individuals.
For instance, the first rule indicates that an individual and
its aliases tend to communicate with the same people. We
thus might want to compare sets of people an individual and
its aliases talk to. In the spirit of aggregate constructionfor
multi-relational learning (Knobbe et al. 2001; Neville et al.
2003; Perlich and Provost 2003), we have experimented with

hand-crafting rules that use aggregates over properties com-
monly found in the ILP learned rules.

Even inventing new attributes, it is impossible to find a sin-
gle rule that correctly identifies all aliases. In the next section,
we discuss our approach for combining rules to form a better
classifier.

3 Bayesian Networks

One of the drawbacks of applying ILP to this problem is
that each database for a world is extremely large. The con-
sequence is that it is intractable to use all the negative ex-
amples when learning the rules, which makes the final set
of rules more susceptible to false positives. First, by sam-
pling the negative examples, we have changed the propor-
tion of the population that has aliases. Second, in ILP the
final classifier traditionally consists of forming a disjunction
over the learned clauses, resulting in a decision list. An un-
seen example is applied to each clause in succession until it
matches one of them. If the example does not match any rule,
then it receives the negative classification. Unfortunately, the
disjunction of clauses maximizes the number of false posi-
tives. These issues suggest a simple approach where we rep-
resent each learned rule as an attribute in a classifier. We
used Bayesian networks to combine the rules for two reasons.
First, they allow us to set prior probabilities to reflect thetrue
proportion of the population that has aliases. Second, each
prediction has a probability attached to it. We can view the
probability as a measure of confidence in the prediction. We
experiment with several different Bayes net models for com-
bining the rules. Naı̈ve Bayes (Pompe and Kononenko 1995)
is straightforward approach that is easy to understand and fast
to train.

Rule 1 Rule 2 Rule 3 Rule n-2 Rule n-1 Rule n

Figure 1: A TAN Bayes Net.

The major drawback with Naı̈ve Bayes is that it assumes
that the clauses are independent of each other given the class
value. Often, we expect the learned rules to be strongly
related. We used Tree Augmented Naı̈ve Bayes networks
(TAN) (Friedman et al. 1997), which allows for a slightly
more expressive model. Figure 1 shows an example of a TAN
network. Friedman, Geiger and Goldszmidt evaluated the
algorithm for its viability on classification tasks. The TAN
model, retains the basic structure of Naı̈ve Bayes, but also
permits each attribute to have at most one other parent, al-
lowing the model to capture dependencies between attributes.
To decide which arcs to include in the augmented network,



the algorithm makes a complete graph between all the non-
class attributes, where the weight of each edge is given as the
conditional mutual information between those two attributes.
A maximum weight spanning tree is constructed over this
graph, and the edges that appear in the spanning tree are
added to the network. Geiger proved that the TAN model can
be constructed in polynomial time with a guarantee that the
model maximizes the Log Likelihood of the network struc-
ture given the dataset (Friedman et al. 1997).

We have also experimented with other structure learning
approaches, such as the Sparse Candidate algorithm (Fried-
man et al. 1999), but did not obtain significant improvements,
as discussed by Davis et al. (2004).

4 Experiments
This section presents our results and analysis of the perfor-
mance of our system on EAGLE datasets (Schrag 2004). The
datasets are generated by simulating an artificial world with
large numbers of relationships between agents. The data fo-
cuses onindividualswhich have a set of attributes, such as
the capability to perform some actions. Individuals may also
obtain resources, which might be necessary to perform ac-
tions. Individuals belong to groups, and groups participate in
a wide range ofevents. In our case, given that some individu-
als may be known through different identifiers (e.g., through
two different phone numbers), we were interested in recog-
nizing whether two identifiers refer to the same individual.

The EAGLE datasets have evolved toward more complex
and realistic worlds. We evaluate our system for datasets gen-
erated by two versions of the simulator. The results from the
first version of the simulator are indexed with numbers while
the newer datasets are indexed by roman numerals. Datasets
vary with size, both in the number of individuals and in the ac-
tivity level of each individual. Datasets also differ on observ-
ability, the amount of information available as evidence; on
corruption, the number of errors; and on clutter, the amountof
irrelevant information. Each dataset includes pre-processed
data, calledprimary data, with group information, and on
secondarydata. The primary data contains a number of pre-
sumed aliases, which may or may not be true.

Each experiment was performed in two rounds. In the
first round, thedry-run, we received a number of datasets
plus their corresponding ground truth. This allowed us to ex-
periment with our system and validate our methodology. In
the second round, thewet-run, we received datasets without
ground truth and were asked to present a hypothesis. We had
a limited amount of time to do so. Later, we received the
ground truth so that we could perform our own evaluation.

We adopted the following methodology. Rule learning is
quite expensive in these large datasets. Moreover, we have
found that most rules are relevant across the datasets, as
we believe they capture aspects common to each simulated
world. Consequently, we only performed rule learning during
the dry-run. We used Srinivasan’s Aleph ILP system (Srini-
vasan 2001) running on the YAP Prolog system. Ground-truth
was used for training examples (and not used otherwise). The
best rules from all datasets were passed forward to the wet-
run.

We present results on the wet-run data in this paper. For the
first set of data we used the wet-run datasets plus group infor-
mation derived by the Kojak system (Adibi et al. 2004) (we
did not have access to this information for the second batch
of data). Using the rules learned from the training data, we
converted each of the evaluation datasets into a set of proposi-
tional feature vectors, where each rule appears as an attribute
in the feature vector. Each rule served as a binary attribute,
which received a value of one if the rule matched the example
and a zero otherwise.

We first report results from an earlier version of the EA-
GLE simulator, where only a single alias was allowed per
entity. For space reasons, we only show results for three out
of six of the datasets. Results for the other three are similar.
We used five fold cross validation in these experiments.

For each application we show precision versus recall
curves for the three methods: Naı̈ve Bayes, TAN and voting.
We used our own software for Naı̈ve Bayes and TAN.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
r
e
c
i
s
i
o
n

Recall

Dataset 1

TAN
Naive Bayes

Voting

Figure 2: Precision Recall for Dataset 1
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Figure 3: Precision Recall for Dataset 2

The Precision Recall curves for the different datasets are
seen in Figures 2 through 4. We compare TAN and Naı̈ve



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
r
e
c
i
s
i
o
n

Recall

Dataset 3

TAN
Naive Bayes

Voting

Figure 4: Precision Recall for Dataset 3

Bayes with unweighted voting, an ensemble method (Davis
et al. 2004). On each curve, we included 95% confidence
intervals on the precision score for selected levels of recall.
The curves were obtained by averaging the precision and re-
call values for fixed thresholds. We achieved the best results
for datasets 2 and 3, and did the worst on dataset 1, where
precision levels did not achieve 0.5.

The second set of results comes from a more recent version
of the simulator. Dataset sizes were at least as large, or bigger
than before. The new simulator supported social network at-
tributes, which could be used for the aliasing task. The error
levels were increased and each individual could have up to six
aliases. We used the same methodology as before, with two
differences. First, we used ten fold cross validation in order
to be able to perform significance tests. Second, we pooled
the results across all ten folds to generate the precision recall
curves. Due to space constraints, we only present results for
3 datasets: Datasets I, II, and III. The Precision/Recall curves
are shown in Figures 5, 6, and 7.
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Figure 5: Precision Recall for Dataset I

Our results show much better performance for Datasets I
and II. This is due to better rule quality. In this case we were
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Figure 6: Precision Recall for Dataset II

able to find rules which have excellent recall, and the Bayes
nets perform quite well at also achieving good precision. The
results are particularly satisfactory using TAN on datasetI,
as shown in Figure 5, where we can achieve precision over
60% for very high level recall. Dataset III was the hardest
of all datasets for us. It shows a case where it is difficult to
achieve both high precision and recall. This is because there
is little information on individuals. In this case, improving
recall requires trusting in only one or two rules, resultingin
low precision.
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Figure 7: Precision Recall for Dataset III

The precision recall curve for the TAN algorithm domi-
nates the curves for Naı̈ve Bayes and ensemble voting on all
six datasets. We have calculated the areas under the Preci-
sion/Recall curve for each fold in datasets I, II, III and the
differences are statistically significant with 99% confidence.
For each dataset, there are several places where TAN yields
at least a 20 percentage point increase in precision, for the
same level of recall over both Naı̈ve Bayes and voting. On
two of the six datasets, Naı̈ve Bayes beats voting, while on
the remaining four they have comparable performance. One
reason for TAN’s dominance compared to Naı̈ve Bayes is the



presence of rules which are simply refinements of other rules.
The TAN model is able to capture some of these interdepen-
dencies, whereas Naı̈ve Bayes explicitly assumes that these
dependencies do not exist. The Naı̈ve Bayes independence
assumption accounts for the similar performance compared
to voting on several of the datasets.

In situations with imprecise rules and a preponderance of
negative examples, such as link discovery domains, Bayesian
models and especially TAN provide an advantage. One area
where both TAN and Naı̈ve Bayes excel is in handling im-
precise rules. The Bayes nets effectively weight the precision
of each rule either individually or based on the outcome of
another rule in the case of TAN. The Bayesian nets further
combine these probabilities to make a prediction of the final
classification allowing them to discount the influence of spu-
rious rules in the classification process. Ensemble voting does
not have this flexibility and consequently lacks robustnessto
imprecise rules. Another area where TAN provides an ad-
vantage is when multiple imprecise rules provide significant
overlapping coverage on positive examples and a low level of
overlapping coverage on negative examples. The TAN net-
work can model this scenario and weed out the false positives.
One potential disadvantage to the Bayesian approach is that
it could be overly cautious about classifying something as a
positive. The high number of negative examples relative to
the number of positive examples, and the corresponding con-
cern of a high false positive rate, helps mitigate this potential
problem. In fact, at similar levels of recall, TAN has a lower
false positive rate than voting.

5 Related Work

Identity Uncertainty is a difficult problem that arises in ar-
eas such as Citation Matching, Record Linkage and De-
Duplication in Databases, Natural Language Processing, in
addition to Intelligence Analysis. A seminal work in this area
is the theory of Record Linkage (Fellegi and Sunter 1969),
based on scoring the distances between two feature vectors
(using Naı̈ve Bayes in the original work) and merging records
below some threshold. Systems such as Citeseer (Lawrence
et al. 1999) apply similar ideas by using text similarity. The
field of record matching has received significant contribu-
tions (Monge and Elkan 1996; Cohen and Richman 2002;
Buechi et al. 2003; Bilenko and Mooney 2003; Zelenko et al.
2003; Hsiung et al. 2004). On the other hand, it has been
observed that interactions between identifiers can be crucial
in identifying them (Morton 2000). Pasula et al. (2002) use
relational probabilistic models to establish a probabilistic net-
work of individuals, and then use Markov Chain Monte Carlo
to do inference on the citation domain. McCallum and Well-
ner (2003) use discriminative models, Conditional Random
Fields, for the same task. These approaches rely on prior
understanding of the features of interest, usually text based.
Such knowledge may not be available for Intelligence Analy-
sis tasks.

Detecting features of interest was therefore our first step,
and the present work fits into the popular category of us-
ing ILP for feature construction. Such work treats ILP-
constructed rules as Boolean features, re-represents eachex-

ample as a feature vector, and then uses a feature-vector
learner to produce a final classifier. To our knowledge, the
work closest to ours is the one by Pompe and Kononenko
(1995), who were the first to apply Naı̈ve Bayes to combine
clauses. Other work in this category was by Srinivasan and
King (1997), for the task of predicting biological activities of
molecules from their atom-and-bond structures. Some other
work, especially on propositionalization of First Order Logic
(FOL) (Alphonse and Rouveirol 2000), has been developed
that converts the training sets to propositions and then ap-
plies feature vector techniques to the converted data. Thisis
similar to what we do, however we first learn from FOL and,
then learn the network structure and parameters using the fea-
ture vectors obtained with the FOL training, resulting in much
smaller feature vectors than in other work.

Our paper contributes two novel points to this category of
work. First, it highlights the relationship between this cate-
gory of work and ensembles in ILP, because when the feature-
vector learner is Naı̈ve Bayes the learned model can be con-
sidered a weighted vote of the rules. Second, it shows that
when the features are ILP-learned rules, the independence as-
sumption in Naı̈ve Bayes may be violated badly enough to
yield a high false positive rate. This false positive rate can
be reduced by permitting strong dependencies to be explic-
itly noted, through learning a Tree Augmented Naı̈ve Bayes
network (TAN).

6 Conclusions and Future Work

Identity Equivalence is an important problem in Intelligence
Analysis. Quite often, individuals want to hide their iden-
tities, and therefore we cannot rely on textual information.
Instead, we need to use attributes and contextual information.
We show that good results can be achieved by using multi-
relational learning to learn rules, whose output is then com-
bined to lower the false positive rate. We were particularlyin-
terested in Bayesian methods for the latter because they asso-
ciate a probability with each prediction, which can be thought
of as the classifier’s confidence in the final classification. We
compare how three different approaches for combining rules
learned by an ILP system perform on an application where
data is subject to corruption and unobservability. We demon-
strate experimentally that we can significantly lower the false
positive rate through rule combination schemes.

We obtained the best precision recall results in our appli-
cation using a TAN network to combine rules. Precision was
a major concern to us due to the high ratio of negative ex-
amples to positive examples. TAN had better precision than
Naı̈ve Bayes or unweighted voting, because it is more robust
at handling redundancy between rules.

In future work we plan to experiment with different appli-
cations and Bayesian network structures. We are interested
in learning rules with aggregates. We plan to further con-
tinue work based on the observation that we learn a single
CLP(BN ) network (Santos Costa et al. 2003). This obser-
vation suggests that a stronger coupling between the learning
phases could be useful.
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