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Abstract

Standard inductive learning requires that
training and test instances come from the
same distribution. Transfer learning seeks
to remove this restriction. In shallow trans-
fer, test instances are from the same do-
main, but have a different distribution. In
deep transfer, test instances are from a dif-
ferent domain entirely (i.e., described by dif-
ferent predicates). Humans routinely per-
form deep transfer, but few learning sys-
tems, if any, are capable of it. In this pa-
per we propose an approach based on a form
of second-order Markov logic. Our algorithm
discovers structural regularities in the source
domain in the form of Markov logic for-
mulas with predicate variables, and instan-
tiates these formulas with predicates from
the target domain. Using this approach, we
have successfully transferred learned knowl-
edge among molecular biology, social network
and Web domains. The discovered patterns
include broadly useful properties of predi-
cates, like symmetry and transitivity, and
relations among predicates, such as various
forms of homophily.

1. Introduction

Inductive learning has traditionally been defined as
generalizing from training instances to test instances
from the same distribution. Decades of research have
produced many sophisticated techniques for solving
this task. Unfortunately, in real applications, training
and test data often come from different distributions.
Humans are able to cope with this much better than
machines. In fact, humans are even able to take knowl-
edge learned in one domain and apply it to an entirely
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different one. For example, Wall Street firms often
hire physicists to solve finance problems. Even though
these two domains have superficially nothing in com-
mon, training as a physicist provides knowledge and
skills that are highly applicable in finance (e.g., solv-
ing differential equations and performing Monte Carlo
simulations). In contrast, a model learned on physics
data would simply not be applicable to finance data,
because the variables in the two domains are different.
What is missing is the ability to discover structural

regularities that apply to many different domains, ir-
respective of their superficial descriptions. For exam-
ple, two domains may be modeled by the same type
of equation, and solution techniques learned in one
can be applied in the other. The inability to do this
is arguably the biggest gap between current learning
systems and humans.

Transfer learning addresses this by explicitly assum-
ing that the source and target problems are different.
Interest in it has grown rapidly in recent years (e.g.,
Baxter et al., 1995; Silver et al., 2005; Banerjee et al.,
2006; Taylor et al., 2008). Work to date falls mainly
into what may be termed shallow transfer: generaliz-
ing to different distributions over the same variables,
or different variations of the same domain (e.g., differ-
ent numbers of objects). What remains largely unad-
dressed is deep transfer: generalizing across domains
(i.e., between domains where the types of objects and
variables are different).

There is a large body of work in a related field: ana-
logical reasoning (e.g., Falkenhainer et al., 1989). Here
knowledge from one domain is applied in another by
establishing a correspondence between the objects and
relations in them. However, this typically requires hu-
man help in establishing the correspondences and is
carried out in an ad hoc manner. Further, whatever
domain-independent knowledge was used remains im-
plicit. Our goal is to develop a well-founded, fully au-
tomatic approach to deep transfer, that makes domain-
independent knowledge explicit, modular, and an ob-
ject of discourse in its own right.
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An approach that meets this goal must have a number
of properties. It must be relational, since only rela-
tional knowledge can be transferred across domains.
It must be probabilistic, to handle the uncertainty in-
herent in transfer in a principled way. Lastly, it must
be second-order, since expressing domain-independent
knowledge requires predicate variables. These require-
ments rule out standard inductive logic programming
and first-order probabilistic approaches. To our knowl-
edge, the only available representation that satisfies all
the criteria is the second-order extension of Markov
logic introduced by Kok and Domingos (2007). We
use it as the basis for our approach.

Our approach to transfer learning, called DTM (Deep
Transfer via Markov logic), discerns high-level simi-
larities between logical formulas. Given a set of first-
order formulas, DTM lifts the formulas into second-
order logic by replacing all predicate names with pred-
icate variables. It then groups the second-order for-
mulas into cliques. DTM evaluates which second-
order cliques represent regularities whose probability
deviates significantly from independence among sub-
cliques. Finally, it selects the top k highest scor-
ing second-order cliques to transfer, and instantiates
the knowledge with the types of objects and variables
present in the target domain. The transferred knowl-
edge provides a declarative bias for structure learning
in the target domain.

The most similar approach to ours in the literature is
Mihalkova et al.’s TAMAR algorithm (2007). TAMAR
learns Markov logic clauses in the source domain, and
attempts to transfer each one to the target domain by
replacing its predicates by target-domain predicates in
all possible ways. While simple, this approach is un-
likely to scale to the large, rich domains where trans-
fer learning is most likely to be useful. Like analog-
ical reasoning, it does not explicitly create domain-
independent knowledge.

Using our approach, we have successfully transferred
learned knowledge among social network, molecular bi-
ology and web domains. In addition to improved em-
pirical performance, our approach discovered patterns
including broadly useful properties of predicates, like
symmetry and transitivity, and relations among pred-
icates, such as homophily.

2. Markov Logic

A Markov network is a model for the joint distribu-
tion of a set of variables X = (X1, X2, . . . , Xn) (Della
Pietra et al., 1997). It is composed of an undirected
graph G and a set of potential functions φk. The graph

has a node for each variable, and the model has a
potential function for each clique in the graph. The
joint distribution represented by a Markov network is:
P (X =x) = 1

Z

∏

k φk(x{k}), where x{k} is the state of
the kth clique (i.e., the state of the variables that ap-
pear in that clique), and Z is a normalization constant.
Markov networks are often conveniently represented as
log-linear models, with each clique potential replaced
by an exponentiated weighted sum of features of the

state: P (X = x) = 1
Z

exp
(

∑

j wjfj(x)
)

. A feature

fj(x) may be any real-valued function of the state.

Markov logic is a probabilistic extension of first-order
logic. It combines first-order logic with Markov net-
works. Formally, a Markov logic network (MLN) is
a set of pairs, (Fi, wi), where Fi is a first-order for-
mula and wi ∈ R. MLNs soften logic by associat-
ing a weight with each formula. Worlds that vio-
late formulas become less likely, but not impossible.
MLNs provide a template for constructing Markov net-
works. When given a finite set of constants, the for-
mulas from an MLN define a Markov network with
one node for each ground predicate and one feature
for each ground clause. The weight of a feature is
the weight of the first-order clause that originated it.
An MLN induces the following probability distribu-

tion: P (X = x) = 1
Z

exp
(

∑F

i=1 wini(x)
)

, where F

is the number formulas in the MLN, wi is the weight
of the ith formula, and ni(x) is the number of true
groundings of Fi in possible world x.

Algorithms have been proposed for learning the
weights associated with each formula (e.g., Lowd &
Domingos, 2007), as well as for learning the formu-
las themselves (e.g., Kok & Domingos, 2005). We
will focus on the algorithm of Kok and Domingos,
which we will call MSL. Structure learning consists
of two components: constructing clauses and evaluat-
ing clauses. Clause construction follows an inductive
logic programming-style search (Dzeroski & Lavrac,
2001). When learning a network from scratch, MSL
starts with an empty clause and specializes it by suc-
cessively adding literals to the clause. Additionally,
the algorithm can refine an existing network to correct
errors in the clauses. Here, it considers both removing
and adding literals to a clause as well as flipping the
sign of a literal in the clause. The algorithm uses a
beam search to find the current best clause and add
it to the network. The search ends when no clause
improves the score of the MLN. To evaluate the merit
of each clause, it uses weighted pseudo-log-likelihood
(WPLL). To avoid overfitting, each clause receives a
penalty term proportional to the number of literals
that differ between the current clause and the initial
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clause.

3. Deep Transfer via Markov Logic

The formulas in an MLN capture regularities that hold
in the data for a given domain. However, the knowl-
edge that the formulas encode is specific to the types of
objects and predicates present in that domain. Deep
transfer attempts to generalize learned knowledge
across domains that have different types of objects
and predicates. We call our approach Deep Transfer
via Markov Logic (DTM). In order to abstract away
the superficial domain description, DTM uses second-
order Markov logic, where formulas contain predicate
variables (Kok & Domingos, 2007) to model com-
mon structures among first-order formulas. To illus-
trate the intuition behind DTM, consider the formulas
Complex(z, y)∧ Interacts(x, z) ⇒ Complex(x, y) and
Location(z, y) ∧ Interacts(x, z) ⇒ Location(x, y).
Both are instantiations of: r(z, y) ∧ s(x, z) ⇒ r(x, y),
where r and s are predicate variables. Introducing
predicate variables allows DTM to represent high-level
structural regularities in a domain-independent fash-
ion. This knowledge can be transferred to another
problem, where the formulas are instantiated with the
appropriate predicate names. The key assumption
that DTM makes is that the target domain shares
some second-order structure with the source domain.

Given a set of first-order formulas, DTM converts each
formula into second-order logic by replacing all pred-
icate names with predicate variables. It then groups
the second-order formulas into cliques. Two second-
order formulas are assigned to the same clique if and
only if they are over the same set of literals. DTM
evaluates which second-order cliques represent regu-
larities whose probability deviates significantly from
independence among their subcliques. It selects the
top k highest-scoring second-order cliques to transfer
to the target domain. The transferred knowledge pro-
vides a declarative bias for structure learning in the
target domain.

The four key elements of DTM, introduced in the next
subsections, are: (i) how to define cliques, (ii) how to
search for cliques, (iii) how to score the cliques and
(iv) how to apply cliques to a new problem.

3.1. Second-order Cliques

DTM uses second-order cliques to model second-order
structure. It is preferable to use this representation
as opposed to arbitrary second-order formulas because
multiple different formulas over the same predicates
can capture the same regularity. A clique groups

those formulas with similar effects into one struc-
ture. A set of literals with predicate variables, such
as {r(x, y), r(y, x)}, defines each second-order clique
and the states, or features, are conjunctions over the
literals in the clique. It is more convenient to look
at conjunctions than clauses as they do not overlap,
and can be evaluated separately. The features corre-
spond to all possible ways of negating the literals in a
clique. The features for {r(x, y), r(y, x)} are {r(x, y)∧
r(y, x)}, {r(x, y) ∧ ¬r(y, x)}, {¬r(x, y) ∧ r(y, x)} and
{¬r(x, y) ∧ ¬r(y, x)}. Relational Markov networks
(RMNs) (Taskar et al., 2002) are another represen-
tation language that makes use of relational cliques.
However, RMNs only look at first-order relations, and
are a special case of Markov logic, whereas DTM makes
use of second-order logic. Furthermore, RMNs do not
allow uncertainty over relations, only over attributes,
and they scale poorly with clique size.

DTM imposes the following restrictions on cliques:

1. The literals in the clique are connected. That is,
a path of shared variables must connect each pair
of literals in the clique.

2. No cliques are the same modulo variable renam-
ing. For example, {r(x, y), r(z, y), s(x, z)} and
{r(z, y), r(x, y), s(z, x)}, where r and s are predi-
cate variables, are equivalent as the second clique
renames variable x to z and variable z to x.

The states of a clique are all possible ways of negat-
ing the literals in the clique subject to the following
constraints:

1. No two features are the same modulo variable re-
naming.

2. Two distinct variables are not allowed to unify.
For example, r(x, y) ∧ r(y, x), really represents
the following formula: r(x, y) ∧ r(y, x) ∧ x 6= y.
This constraint ensures that a possible grounding
does not appear in two separate cliques. For ex-
ample, without this constraint, all true ground-
ings of r(x, y) ∧ s(x, x) would also be true of
r(x, y) ∧ s(x, z) (which appears as a feature in a
different clique).

3.2. Search

DTM works with any learner than induces formulas
in first-order logic. This paper evaluates two separate
strategies for inducing formulas in the source domain:
exhaustive search and beam search.

Exhaustive search. Given a source domain, the
learner generates all first-order clauses up to a max-
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imum clause length and a maximum number of ob-
ject variables. The entire set of clauses is passed to
DTM for evaluation.

Beam search. Exhaustive search does not scale
well, since the number of clauses it produces is ex-
ponential in the clause length and it becomes com-
putationally infeasible to score long clauses. Beam
search is a common strategy for scaling structure
learning, and is used in MSL (described in Section
2). However, transfer learning and structure learn-
ing have different objectives. In transfer learning,
the goal is to derive a large, diverse set of clauses to
evaluate for potential transfer to the target domain.
Structure learning simply needs to induce a compact
theory that accurately models the predicates in the
source domain. The theories induced by MSL tend
to contain very few clauses and thus are not ideal
for transfer. An alternative approach is to induce
a separate theory to predict each predicate in the
domain. However, the resulting theory may not be
very diverse, since clauses will contain only the tar-
get predicate and predicates in its Markov blanket
(i.e., its neighbors in the network). A better ap-
proach is to construct models that predict sets of
predicates.

Given the final set of learned models, DTM groups
the clauses into second-order cliques and evaluates
each clique that appears more than twice.

3.3. Second-Order Clique Evaluation

Each clique can be decomposed into pairs of sub-
cliques, and it should capture a regularity beyond what
its subcliques represent. For example, the second-
order clique {r(x, y), r(z, y), s(x, z)} can be decom-
posed into the following three pairs of subcliques: (i)
{r(x, y), r(z, y)} and {s(x, z)}, (ii) {r(x, y), s(x, z)}
and {r(z, y)}, and (iii) {r(z, y), s(x, z)} and {r(x, y)}.

To score a second-order clique, each of its first-order in-
stantiations is evaluated. To score a first-order clique,
DTM checks if its probability distribution is signifi-
cantly different from the product of the probabilities
of each possible pair of subcliques that it can be de-
composed into.

The natural way to compare these two distributions is

to use the K-L divergence, D(p||q) =
∑

x p(x) log p(x)
q(x) ,

where p is the clique’s probability distribution, and q
is the distribution it would have if the two subcliques
were independent. We use Bayesian estimates of the
probabilities with Dirichlet priors with all αi = 1.

For each first-order instantiation of a second-order
clique, DTM computes its K-L divergence versus all its

decompositions. Each instantiation receives the min-
imum K-L score over the set of its decompositions,
because any single one could explain the clique’s distri-
bution. Each second-order clique receives the average
score of its top m first-order instantiations, in order
to favor second-order cliques that have multiple useful
instantiations.

3.4. Transfer Mechanism

The next question is how to make use of the trans-
ferred knowledge in the target domain. A key compo-
nent of an inductive logic programming (ILP) (Dze-
roski & Lavrac, 2001) system is the declarative bias.
Due to the large search space of possible first-order
clauses, devising a good declarative bias is crucial for
achieving good results with an ILP system. In ILP,
two primary methods exist for expressing a declara-
tive bias, and both forms of bias are often used in the
same system. The first method restricts the search
space. Common strategies include having type con-
straints, forcing certain predicate arguments to con-
tain bound variables, and setting a maximum clause
length. The second method involves incorporating
background knowledge. Background knowledge comes
in the form of hand-crafted clauses that define addi-
tional predicates which can be added to a clause un-
der construction. Effectively, background knowledge
allows the learner to add multiple literals to a clause
at once and overcome the myopia of greedy search. It
is important to note that these common strategies can
easily be expressed in second-order logic, and this is
part of what motivates our approach. DTM can be
viewed as a way to learn the declarative bias in one
domain and apply it in another, as opposed to having
a user hand-craft the bias for each domain.

When applying a second-order clique in a target do-
main, DTM decomposes the clique into a set of clauses,
and transfers each clause. It uses clauses instead of
conjunctions since most structure learning approaches,
both in Markov logic and ILP, construct clauses. In
Markov logic, a conjunction can be converted into an
equivalent clause by negating each literal in it and flip-
ping the sign of its weight.

We investigate three different ways to reapply the
knowledge in the target domain:

Transfer by Seeding the Beam. In the first ap-
proach, the second-order cliques provide a declar-
ative bias for the standard MLN structure search.
DTM selects the top k cliques that have at least one
true grounding in the target domain. At the be-
ginning of each iteration of the beam search, DTM
seeds the beam with the clauses obtained from each
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legal instantiation of a clique in the target domain
(i.e., only instantiations that conform with the type
constraints of the domain are considered). This
strategy forces certain clauses to be evaluated in the
search process that would not be scored otherwise
and helps overcome some of the limitations of greedy
search.

Greedy Transfer without Refinement. The sec-
ond approach again picks the top k second-order
cliques that have at least one true grounding in the
target domain and creates all legal instantiations
in the target domain. This algorithm imposes a
very stringent bias by performing a structure search
where it only considers including the transferred
clauses. The algorithm evaluates all clauses and
greedily picks the one that leads to the biggest im-
provement in WPLL. The search terminates when
no clause addition improves the WPLL.

Greedy Transfer with Refinement. The final
approach adds a refinement step to the previous
algorithm. In this case, the MLN generated by the
greedy procedure serves as seed network during
standard structure learning. The MLN search
can now refine the clauses picked by the greedy
procedure to better match the target domain.
Additionally, it can induce new clauses to add to
the theory.

DTM differs from previous approaches to declarative
bias in two main ways: it is probabilistic, and it
provides the bias entirely automatically. For exam-
ple, relational clichés (Silverstein & Pazzani, 1991)
are second-order formulas that define potential refine-
ments for a candidate clause. However, the clichés
are all hand-coded. DTM is also more fully auto-
mated than the Clint/Cia approach (De Raedt &
Bruynooghe, 1992), which uses an oracle to determine
which background knowledge predicates to construct.

A more automated approach is that of Bridewell and
Todorovski (2007), which uses ILP to learn the declar-
ative bias for process modeling domains. Their algo-
rithm analyzes a series of models in order to discern the
components that are common among accurate models,
which then become the bias for new domains. This
approach requires a set of previously learned models
in order to derive the bias, while DTM only needs
data from one source domain. Additionally, this ap-
proach would require further hand-crafting of back-
ground knowledge in order to extend it beyond process
modeling problems.

4. Empirical Evaluation

In this section, we evaluate our approach on three real-
world data sets. We compare the DTM algorithm to
the Markov logic structure learning (MSL) algorithm
described in Section 2 and to TAMAR. MSL is im-
plemented in the publicly available Alchemy package
(Kok et al., 2009). We made two modifications to
MSL. First, when counting the number of true ground-
ings of a clause, we do not permit two distinct variables
to unify to the same constant. We did this to ensure
that we evaluate clauses in the same manner that we
evaluate cliques. Second, we modify MSL to allow
learning clauses that contain constants. We made this
modification since we are interested in predicting spe-
cific values of attributes, such as the class label of a
Web page, for each object in a domain. We first de-
scribe the domains and characteristics of the data sets
we use and then present and discuss our experimental
results.

4.1. Domains

The data for the Yeast Protein task come from the
MIPS (Munich Information Center for Protein Se-
quence) Comprehensive Yeast Genome Database as
of February 2005 (Mewes et al., 2000; Davis et al.,
2005). The data set includes information on protein
location, function, phenotype, class, and enzymes. It
also includes information about protein-protein inter-
action and protein complex data. The data contain
information about approximately 4500 proteins that
are involved in some interaction. We created four dis-
joint subsamples of this data that each contain around
450 proteins. To create each subsample, we randomly
selected a seed set of proteins. We included all pre-
viously unselected proteins that appeared within two
links (via the Interaction predicate) of the seed set.
For this data set, we attempt to predict the truth
value of all groundings of two predicates: Function

and Interaction.

The WebKB data set consists of labeled Web pages
from the computer science departments of four univer-
sities. We used the relational version of the data set
from Craven and Slattery (2001), which features 4140
Web pages and 10,009 web links, and neighborhoods
around each link. Each Web page is marked with
some subset of the following categories: person, stu-
dent, faculty, professor, department, research project,
and course. For this data set, we again try two tasks.
First, we perform the “collective classification” task,
and predict the class label for each Web page. Second,
we perform the “link prediction” task by predicting
whether a hyperlink exists between each pair of Web
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pages.

The Social Network data set consists of pages col-
lected from the Facebook social networking Web site.
The data consist of information about friendships
among individuals and properties of individuals, such
as hobbies, interests and network memberships. It has
information about approximately 600 individuals, thir-
teen different properties of each and 24,000 friendship
pairs.

4.2. High-Scoring Second-order Cliques

An important evaluation measure for transfer learn-
ing is whether it discovers and transfers relevant
knowledge. In fact, DTM discovers multiple broadly
useful properties. For example, among cliques of
length three with up to three object variables,
{r(x, y), r(z, y), s(x, z)} is ranked first in all three do-
mains. This represents the concept of homophily,
which is present when related objects (x and z)
tend to have similar properties (y). The clique
{r(x, y), r(y, z), r(z, x)} is ranked second in Yeast and
fourth in WebKB and Facebook and represents the
concept of transitivity. Both homophily and transi-
tivity are important concepts that appear in a variety
of domains. Therefore it is quite significant that DTM
discovers and assigns a high ranking to these concepts.

In all three domains, the top three cliques of length
two are: {r(x, y), r(z, y)}, {r(x, y), r(x, z)}, and
{r(x, y), r(y, x)}. The first clique captures the fact
that particular feature values are more common across
objects in a domain than others. For example, a com-
puter science department most likely has more student
Web pages than faculty Web pages. The second clique
captures the fact that pairs of values for the same fea-
ture, such as words in the WebKB domain, commonly
co-occur in the same object. The final clique captures
symmetry, another important general property of re-
lations.

4.3. Methodology

The central question our experiments aimed to address
was whether DTM improved performance in the tar-
get domain compared to learning from scratch with
MSL. We tried four source-target pairs: Facebook to
Yeast Protein, WebKB to Yeast Protein, Facebook to
WebKB and Yeast Protein to WebKB. Each target
domain was divided into four disjoint subsets, which
we called mega-examples. We selected a subset of the
mega-examples to train the learner on and then tested
it on the remaining mega-examples. We repeated this
train-test cycle for all possible subsets of the mega-
examples.

Within each domain, all algorithms had the same pa-
rameter settings. Each algorithm was allotted 100
hours per database to run. In each domain, we op-
timized the WPLL for the two predicates we were in-
terested in predicting. For DTM we tried two settings,
k = 5 and k = 10 for the number k of second-order
cliques transferred to the target domain. We tried two
settings for exhaustive search. The first evaluated all
clauses containing at most three literals and three ob-
ject variables and the second evaluated all clauses con-
taining up to four literals and four object variables.
When running beam search in the source domain, we
constructed theories for predicting pairs of predicates
(a tradeoff between diversity and tractability).

In Yeast, we permitted only function constants to ap-
pear in learned clauses. We wanted to know exactly
which functions (e.g. metabolism, DNA processing,
etc.) each protein performed, not just that the pro-
tein had some function. In WebKB, we permitted page
class to appear in clauses. Here we wanted to predict
which labels (e.g. student, person, etc.) applied to
each Web page, not just whether the Web page has
a label. For each train-test split, we used the infor-
mation gain (on the training set) to pick the top fifty
words most predictive of page class. For tractability,
we restricted the algorithm to only learn with these
constants.

To evaluate each system, we measured the test set
conditional log-likelihood (CLL) and area under the
precision-recall curve (AUC) for each predicate. The
advantage of the CLL is that it directly measures the
quality of the probability estimates produced. The ad-
vantage of the AUC is that it is insensitive to the large
number of true negatives.

4.4. Results

Figure 1 shows representative learning curves for pre-
dicting protein function when transferring cliques of up
to length four from the WebKB domain into the Yeast
domain. DTM consistently outperforms MSL. As ex-
pected, DTM performs better relative to MSL with
less data. Table 1 compares the performance, mea-
sured by average relative difference (e.g., (AUCDTM −
AUCMSL)/AUCMSL) of DTM using greedy transfer
with refinement to MSL when transferring cliques of
up to length three. In this domain, transfer greatly
improves the models’ ability to predict both the AUC
and CLL for the Function predicate. For this pred-
icate, in the length three setting, DTM outperforms
MSL on 73% (82 out of 112) of the various different
conditions. In the length four setting, it wins 75% of
the cases (42 out of 56) when using WebKB as the
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Figure 1. Learning curves for the Function predicate when
transferring second-order cliques of length four from the
WebKB domain.
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Figure 2. Learning curves for the Linked predicate when
transferring second-order cliques of length four from the
Facebook domain.

source domain. Using Facebook in this setting did not
provide a benefit. The cliques transferred here tend
to capture more information about link structure and
the various properties of a single entity, whereas in the
Yeast domain it is important to model similarities and
differences in the properties of related entities. Neither
approach does well at the difficult task of predicting
the Interaction predicate; MSL outperforms DTM.

Figure 2 shows representative learning curves for pre-
dicting whether two Web pages are linked when trans-
ferring cliques of up to length four from Facebook
into WebKB. As in Figure 1, DTM consistently out-
performs MSL. Table 2 compares the performance of
DTM using greedy transfer with refinement to MSL
for WebKB when transferring cliques of up to length
three. Across both predicates, transfer outperforms
MSL on 68% (152 out of 224) of the various different
test conditions when considering cliques of up to length
three. When using Facebook as the source task, trans-
ferring cliques of up to length four provides a large
benefit, winning 71% (79 out of 112) of time. When
using Yeast as the source domain, transfer only posts
modest gains, winning only 51% (58 out of 112) of the
various test conditions. On the Linked predicate, the
benefit of transfer is greater for small amounts of data.
Transfer also provides a slight improvement over MSL
when predicting the label of a Web page.

Due to space limitations, we omit the tables and
graphs of the results for beam search1. When transfer-
ring from the WebKB domain into the Yeast domain,
the results are almost identical to exhaustive search.
For the Facebook into Yeast pair, the results are worse
than exhaustive search. When transferring from the
Yeast domain into the WebKB domain, the results
are comparable to exhaustive search. For the Face-
book into WebKB pair, the PageClass results were
slightly better than exhaustive search, but worse for
the Linked predicate. In general, exhaustive search

1Full results are available in an online appendix:
http://alchemy.cs.washington.edu/papers/davis09.

seems to yield better and more stable results than
beam search. One possible explanation is that despite
tweaking the beam search algorithm to make it more
appropriate for transfer, it still focuses too heavily on
finding a good theory as opposed to finding the best
clauses for transfer.

We also compared our approach to TAMAR (Mi-
halkova et al., 2007). In order to have a fair compari-
son, we extended the system to map clauses that con-
tain constants in them. When transferring from Yeast
to WebKB, TAMAR does significantly worse than all
other approaches. TAMAR was unable to map theo-
ries from WebKB into the Yeast domain in the allotted
time. Introducing constants into the clauses greatly
increases the number of possible mappings between
clauses, making it infeasible to perform an exhaus-
tive search to map clauses between different domains.
This problem is particularly acute when mapping into
the Yeast domain, due to the number of function con-
stants.

5. Conclusion

This paper proposes an approach to deep transfer, the
problem of generalizing across domains. Our DTM al-
gorithm identifies domain-independent regularities in
the form of second-order Markov logic clauses, and
uses them to guide discovery of new structure in the
target domain. Initial experiments in bioinformatics,
Web and social network domains show that DTM out-
performs standard structure learning, and discovers
significant regularities like homophily and transitivity.

Directions for future work include: theoretical analy-
sis of DTM; improved structure learning algorithms for
transfer; transferring formulas instead of whole cliques;
experiments in richer domains; transferring from mul-
tiple domains at once; etc.
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Table 1. Experimental results comparing DTM (greedy transfer with refinement) to MSL on the Yeast domain. Each entry
in the table is the average relative difference in AUC or CLL between transfer and MSL when considering second-order
cliques that contain up to three predicate and object variables.

Source Num. AUC CLL
Cli- Function Interaction Function Interaction
ques 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB

WebKB 5 0.48 0.70 0.30 -0.31 -0.33 -0.21 0.12 0.17 0.03 0.01 0.03 -0.02
FB 5 0.29 0.13 -0.22 0.00 0.56 -0.26 0.02 -0.10 -0.23 0.00 0.06 -0.14
WebKB 10 0.47 0.52 0.21 -0.18 -0.32 -0.07 0.12 0.10 0.05 0.04 0.02 0.01
FB 10 0.63 0.51 0.10 -0.35 -0.03 -0.42 0.18 0.01 -0.16 0.01 0.07 -0.01

Table 2. Experimental results comparing DTM (greedy transfer with refinement) to MSL on the WebKB domain. Each
entry in the table is the average relative difference in AUC or CLL between transfer and MSL when considering second-
order cliques that contain up to three predicate and object variables.

Source Num. AUC CLL
Cli- Page Class Linked Page Class Linked
ques 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB 1 DB 2 DB 3 DB

Yeast 5 -0.01 0.02 0.00 42.79 9.77 11.03 -0.12 0.04 0.03 0.12 0.04 0.19
FB 5 0.00 0.01 0.01 40.79 4.64 6.15 -0.06 0.02 0.07 0.12 0.04 0.19
Yeast 10 -0.01 0.02 -0.01 42.79 10.36 10.94 -0.12 0.03 0.00 0.12 0.04 0.19
FB 10 0.00 0.01 0.01 40.79 4.64 6.15 -0.06 0.02 0.07 0.12 0.04 0.19
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