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Abstract

We present a new machine learning approach for
3D-QSAR, the task of predicting binding affini-
ties of molecules to target proteins based on 3D
structure. Our approach predicts binding affin-
ity by using regression on substructures discov-
ered by relational learning. We make two con-
tributions to the state-of-the-art. First, we use
multiple-instance (MI) regression, which repre-
sents a molecule as a set of 3D conformations,
to model activity. Second, the relational learn-
ing component employs the “Score As You Use”
(SAYU) method to select substructures for their
ability to improve the regression model. This
is the first application of SAYU to multiple-
instance, real-valued prediction. We evaluate our
approach on three tasks and demonstrate that (i)
SAYU outperforms standard coverage measures
when selecting features for regression, (ii) the MI
representation improves accuracy over standard
single feature-vector encodings and (iii) combin-
ing SAYU with MI regression is more accurate
for 3D-QSAR than either approach by itself.

1. Introduction

Recent studies in relational learning have shown the effec-
tiveness of combining learned relational rules using a sta-
tistical classifier. The most successful of these approaches
actually score candidate relational rules, during relational
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learning, by their ability to improve the statistical classifier.
In the first such studies—with systems nFOIL (Landwehr
et al., 2005) and “Score As You Use” (SAYU) (Davis et al.,
2005)—the classifier is a form of Bayesian network, the
rules act as binary features in the network, and the class
value acts as a binary class feature. A later system, kFOIL
(Landwehr et al., 2006), used a kernel as the model, which
allows it to handle both classification and regression.

The present paper extends these approaches to multiple-
instance, real-valued prediction. While such prediction is
useful for many applications, our motivating application
is predicting Three-dimensional Quantitative Structure-
Activity Relationships (abbreviated as 3D-QSARs). This
task comes from a well-known family of tasks in the
pharmaceutical industry and in research into drug design.
Each 3D-QSAR task is defined by a target protein, typi-
cally whose 3D structure is not known. Given the struc-
tures of a set of molecules and their known binding affini-
ties to the target, the task is to construct a model that
accurately predicts the real-valued binding affinities of
new small molecules to the target, based on their three-
dimensional structures. Our paper makes two contribu-
tions. First, it demonstrates the feasibility and utility of
extending approaches such as SAYU to multiple-instance,
real-valued prediction, using a significant real-world ap-
plication. Second, the paper shows empirically that us-
ing multiple-instance (MI) regression in this context carries
significant benefit over using ordinary regression.

In prior work, relational learning combined with linear re-
gression has been applied with some success to 3D-QSAR
(Marchand-Geneste et al., 2002). This approach represents
molecules using clauses in first-order logic. From this rep-
resentation, the algorithm learns rules that represent poten-
tial pharmacophores—3D substructures of molecules re-
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sponsible for binding. This approach then treats each rule
as an attribute and constructs one feature vector for each
molecule. Finally, it constructs a regression model for real-
valued activity prediction from the resulting feature vec-
tors. This approach has two shortcomings. First, even
though the goal is to optimize the accuracy of the real-
valued prediction, the relational learning procedure is not
guided by this goal but rather by a different scoring func-
tion that is usually based on the coverage of the rules on the
training set. Second, by operating on one feature vector per
molecule, regression ignores the inherent multiple-instance
nature of 3D molecular data (Dietterich et al., 1997). The
MI nature arises from the fact that each molecule may have
multiple low-energy 3D shapes, or conformers, and any one
(or several) of these conformers may be the one that binds
to the target. Information about the individual conformers
is lost when we construct one feature vector per molecule.

We propose a framework that addresses the above issues.
First, during the search for potential pharmacophores, we
score each potential pharmacophore by how much it im-
proves the generalization ability of the regression model.
We accomplish this by adapting the SAYU approach (Davis
et al., 2005) to this regression task. For each potential phar-
macophore, or rule, that must be scored, we re-compute the
regression model and check whether it generalizes better
than the model that does not use the candidate rule. Thus,
a pharmacophore is included in the regression model only
if it helps to predict the observed activities. Second, we
adapt multiple-instance regression (Ray & Page, 2001) to
the task of 3D-QSAR. MI regression replaces standard re-
gression when predicting activity. Here, when we evaluate
a set of rules, we construct one feature vector per conforma-
tion rather than one feature vector per molecule. MI regres-
sion is able to operate on data of this form. We evaluate our
proposed approach on three tasks, dopamine (D2 receptor)
agonists, thermolysin inhibitors and thrombin inhibitors,
and demonstrate that our approach results in more accu-
rate predictions than state-of-the-art methods that combine
relational learning with regression for 3D-QSAR.

2. Background and Related Work

Drugs are small molecules that affect disease by binding
to a target protein in the human body; the target may be
a human protein or a protein belonging to some pathogen
that has entered the body. A key obstacle in the drug de-
sign process is that the structure of a target protein can-
not often be determined. In this scenario, researchers may
use “high-throughput screening” to test a large number of
small molecules to find some that bind to the target. The
molecules that bind usually cannot be used as drugs for
various reasons, typically related to ADMET (absorption,
distribution, metabolism, elimination and toxicity). Nev-

Figure 1. ACE inhibitor with highlighted 4-point pharmacophore.

ertheless, some of these “hits” may be used as a “lead” in
the search for an appropriate drug; this lead then needs to
be “optimized,” or modified in order to have an appropri-
ate binding affinity and the other properties necessary in a
drug, such as low side effects.

To guide the lead optimization process, researchers try to
find similarities between the most active molecules that
are ideally not shared by any of the less active molecules.
We briefly describe the types of similarities that are use-
ful in predicting binding affinity. A small molecule binds
to a protein primarily based on electrostatic and hydropho-
bic interactions. The most common electrostatic interac-
tion is the hydrogen bond, where an atom carrying a slight
negative charge, such as an oxygen (a “hydrogen accep-
tor”), on one molecule is attracted to a hydrogen atom
carrying a slight positive charge (a “hydrogen donor”) on
the other molecule. Hydrophobic interactions typically
occur when hydrophobes from the two molecules shield
each other from the surrounding aqueous environment. Be-
cause both electrostatic and hydrophobic interactions are
weaker than the ordinary covalent bonds formed within
a molecule, several such interactions—typically three to
eight—are required in order for a small molecule to bind
to a protein. Therefore, to bind to a given target protein
at a particular site, a small molecule needs the right com-
bination of charged atoms and/or hydrophobic groups at
the right locations. In other words, the binding sites on
the small molecule and protein need to be complemen-
tary, much as a key is to a lock—a common analogy in
drug design. Given a set of active molecules, a compu-
tational chemist may search for conformers of the active
molecules that share some three-dimensional arrangement
of charged atoms, such as potential hydrogen donors and
acceptors, and hydrophobic groups, such as six-membered
carbon rings. This three-dimensional substructure is some-
times called a pharmacophore. Figure 1 shows an example
molecule with a highlighted pharmacophore that allows it
to inhibit Angiotensin-Converting Enzyme (ACE).

3D-QSAR approaches directly address the multiple 3D
conformers of molecules. These approaches include both
special-purpose algorithms for 3D-QSAR and mechanisms
for applying machine learning algorithms to the multi-
ple 3D conformers of molecules. CoMFA and related
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Table 1. An example of a 4-point pharmacophore learned by ALEPH for the domain of thermolysin inhibitors. The left column shows
the first-order logical clause in Prolog notation, while the right column shows the semantics of each literal.

active(M):- Molecule M is active if
conf(M, C), M has a conformation C

hacc(M, C, P1), C has a hydrogen acceptor at location P1

hacc(M, C, P2), C has a hydrogen acceptor at location P2

hacc(M, C, P3), C has a hydrogen acceptor at location P3

pos charge(M, C, P4), C has a positively charged group at location P4

dist(M, C, P1, P2, 4.60, 1.0), the distance between P1 and P2 is 4.60 ± 1.0Å

dist(M, C, P1, P3, 7.75, 1.0), the distance between P1 and P3 is 7.75 ± 1.0Å

dist(M, C, P2, P3, 8.77, 1.0), the distance between P2 and P3 is 8.77 ± 1.0Å

dist(M, C, P1, P4, 6.85, 1.0), the distance between P1 and P4 is 6.85 ± 1.0Å

dist(M, C, P2, P4, 7.56, 1.0), the distance between P2 and P4 is 7.56 ± 1.0Å

dist(M, C, P3, P4, 1.24, 1.0). the distance between P3 and P4 is 1.24 ± 1.0Å

approaches rely on careful feature construction based
on structural properties at grid points defined on the
molecule’s surface (for example, see Cramer et al. (1988)).
DISCO (Martin et al., 1993) uses a clique detection algo-
rithm (Brint & Willett, 1987) to predict pharmacophores
from the conformers of active molecules. The COMPASS
algorithm (Jain et al., 1994a; Jain et al., 1994b) selects
and aligns conformers—one per active molecule—and gen-
erates a feature vector for each molecule, where the fea-
tures are the lengths of rays passing through the molecule
at specified orientations. COMPASS then uses a neural
network to learn either a classifier or real-valued predictor
of affinities; once the model has been learned, COMPASS
tries to improve the fit by revisiting the selection and align-
ment of conformers, and iterates until convergence.

Another approach to predicting binding affinities is based
on relational learning (Finn et al., 1998; Marchand-Geneste
et al., 2002), in particular inductive logic programming
(ILP). This ILP-based framework starts with a first-order
logical description of each molecule. This description de-
tails the locations of each atom and bond in the molecule.
Additionally, the background knowledge contains rela-
tional descriptions of common groups of atoms. For exam-
ple, the background knowledge can specify that a methyl
group consists of a carbon atom bound to three hydrogen
atoms with single bonds. A k-point pharmacophore in this
representation is a first-order clause that has k literals, each
describing a distinct chemical group (such as methyl), and(
k
2

)
“distance” literals. Each distance literal stores the Eu-

clidean distance between two chemical groups. Since the
distances in any two given molecules are unlikely to be ex-
actly the same, the literal includes a tolerance that specifies
how much each distance is allowed to vary. Given this rep-
resentation, the approach uses an ILP system to hypothe-
size pharmacophores that cause the desired interaction be-
tween known active molecules and the target. The ILP sys-
tem searches over the space of clauses (pharmacophores)
using an objective function such as the following: any k-
point pharmacophore that appears significantly more of-
ten in active molecules than in inactive ones is hypothe-

sized to be an interaction-causing pharmacophore. Table 1
shows an example pharmacophore learned by an ILP sys-
tem, ALEPH1, for the domain of thermolysin inhibitors.

In order to predict real-valued activities, the ILP-based ap-
proach treats learned clauses as binary-valued features and
generates a binary (0/1) value depending on whether that
molecule satisfies the given clause (i.e., has the specified
pharmacophore in any conformation). Of course, using this
representation, the inactive (or “less active”) molecules will
have features that are mostly zero, which will likely lead to
poor activity estimates. Thus, the ILP-based approach also
learns a set of features that are more frequent in the inactive
molecules than in the active molecules, and generate the
corresponding feature vectors. This procedure generates a
single feature vector for each molecule. This representation
can then be used to learn a regression model using standard
linear regression (Marchand-Geneste et al., 2002), which
can predict activity levels for novel molecules.

3. The MIR-SAYU Algorithm

Our algorithm follows the ILP-based approach just de-
scribed, but with two significant changes. First, it uses the
“Score As You Use” method to learn rules directly judged
as helpful to regression. Second, it constructs one feature
vector per conformer rather than one per molecule, and it
then employs multiple-instance regression to predict bind-
ing affinity. In the following sections, we describe each
component of this approach in detail.

3.1. Scoring Candidate Rules with SAYU

In relational approaches to 3D-QSAR, as described above,
an ILP system generates rules describing pharmacophores.
In prior work (Finn et al., 1998; Marchand-Geneste et al.,
2002), this system runs to completion, and a subset of the
rules found are used to build the model. This approach re-
lies on the ILP system’s score metric to evaluate rule qual-
ity. The most common metric is coverage, which is defined

1ALEPH is an ILP system written by Ashwin Srinivasan.
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as the difference between the number of active and inactive
molecules that satisfy a rule. The final model is built from
the rules which have the highest coverages. This approach
has several drawbacks. First, running to completion may
take a long time. Second, the rules may not be indepen-
dent, leading to a model with dependent attributes. Third,
choosing how many rules to include in the final model is a
difficult tradeoff between completeness and overfitting. Fi-
nally, the best rules according to coverage may not give us
the most accurate activity model.

Many of these drawbacks can be overcome by interleav-
ing the rule learning and model building processes. In our
work, we accomplish this interleaving by extending the
SAYU approach (Davis et al., 2005) to the MI regression
setting. In the SAYU approach, we start from an empty
model (or a prior model). Next, an ILP system generates
rules, each of which represents a new feature to be added
to the current model. We then evaluate the generalization
ability of the model extended with the new feature. We
retain the new model if the addition of the new feature im-
proves the model’s generalization ability; otherwise we re-
main with the original model. This results in a tight cou-
pling between feature construction and model building.

To apply SAYU to our task, we need an ILP system to pro-
pose rules. In our work, we use ALEPH, which implements
the Progol algorithm (Muggleton, 1995) to learn rules. This
algorithm induces rules in two steps. Initially, it selects a
positive instance to serve as the “seed” example. It then
identifies all the facts known to be true about the seed ex-
ample. The combination of these facts forms the example’s
most specific or saturated clause. The key insight of the
Progol algorithm is that some of these facts explain this ex-
ample’s classification. Thus, generalizations of those facts
could apply to other examples. ALEPH therefore performs a
general to specific search over the set of rules that general-
ize a seed example’s saturated clause. Thus, in our applica-
tion, ALEPH picks an “active” molecule, and generates po-
tential k-point pharmacophores from it. It continues until
either finding a potential pharmacophore that has high cov-
erage or the search space is exhausted. In the latter case,
the search restarts with a different seed.

SAYU modifies the standard ALEPH search as follows. In
contrast to ALEPH, SAYU allows any example, positive or
negative, to be selected as a seed, because it is possible
for the generalization of any example to improve the fi-
nal regression model. Instead of using coverage, ALEPH
passes each clause it constructs to SAYU, which converts
the clause to a binary feature and adds it to the current train-
ing set. Next, SAYU learns a model incorporating the new
feature, and evaluates the model (described below). If the
model does not improve, the rule is not accepted, and con-
trol returns to ALEPH to construct the next clause. If a rule

is accepted, or the search space is exhausted, SAYU ran-
domly selects a new seed and re-initializes ALEPH’s search.
Thus, we are not searching for the best rule, but the first
rule that improves the model. However, SAYU allows the
same seed to be selected multiple times during the search.
Since the search space is extremely large, it is impractical
to search it exhaustively. Further, this may lead to overfit-
ting. Therefore, as in prior work (Davis et al., 2005), we
terminate the search after a certain amount of time.

In order to decide whether to retain a candidate feature f ,
we need to estimate the generalization ability of the model
with and without the new feature. In our work, we do this
by estimating the test-set r2 of each model, defined as:

Test-set r2 = 1 −

∑
i(Yi − pi)

2

∑
i(Yi − ai)2

, (1)

where i ranges over test examples, Yi denotes the true re-
sponse of the ith test example, pi denotes the predicted
response of the ith test example using our model, and ai

denotes the average response on the training set. Thus, r2

measures the improvement in squared error obtained by us-
ing our model over a baseline constant prediction. Observe
that if pi = ai, r2 = 0, and if pi = Yi, r2 = 1. Thus, a
higher test-set r2 indicates a model with better generaliza-
tion ability. Note though that unlike ordinary r2, it is possi-
ble for test-set r2 to be negative, since predictions are made
on novel data points. To estimate test-set r2 for our mod-
els, we use internal n-fold cross validation on our training
set. In turn, we hold out one fold and learn a model using
the remaining folds. We use the model to make predictions
on the held-out data. At the end of this procedure, we have
a set of predictions for each held-out fold. We then pool
these predictions across all folds and calculate the test-set
r2 metric for the model containing f over the full set of
predictions. To decide whether to retain the candidate fea-
ture, we stipulate that the test-set r2 of the model with f

must improve over the model without f by a certain frac-
tion, p. We call p the improvement threshold2. While such
cross-validation is computationally expensive, we have ob-
served that it significantly improves the quality of the fea-
tures added to our models and reduces overfitting to the
training set. Further, since we impose an external time con-
straint on SAYU as described in the previous paragraph,
this procedure does not slow down our empirical evalua-
tion. After a set of features have been selected using the
cross-validation procedure, we learn the final model, which
incorporates all selected features, using the entire training
set. We use this model to make predictions on unseen ex-
amples. This procedure prevents features that do not help

2A more principled solution might be to use a statistical hy-
pothesis test between estimates of the test-set r

2 measures of the
two models. We have tried this; however, since we generally have
very small samples in our experiments, we did not obtain consis-
tent results with this approach.
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predict activity from being added to the regression model.
However, note that it may add features which help explain
low activity. Such features will be associated with negative
coefficients in the regression model.

3.2. Predicting Activity with MI Regression

In this section, we present our multiple-instance regres-
sion model that we use to predict the activity of molecules.
These are the models that the SAYU procedure constructs
when evaluating candidate features.

The relational learning procedure described in Section 2 re-
sults in a single feature vector describing each molecule. In
prior work (Marchand-Geneste et al., 2002), these features
have been used as inputs to a linear regression procedure
to predict activity. Linear regression on these features will
be effective in predicting activity if the following assump-
tion holds: the activity of a molecule is a linear function
of the pharmacophores it has in at least one of its confor-
mations. This assumption is somewhat unsatisfactory, as
we treat molecules where all pharmacophores match the
same conformation(s) and molecules where each pharma-
cophores matches a different conformation in exactly the
same way. Chemically, activity is likely to be a function
of specific conformation(s) of the molecule, and this infor-
mation has been lost. To capture this knowledge, we use
a multiple-instance representation (Dietterich et al., 1997).
In MI learning, examples are represented using multisets
of feature vectors instead of single feature vectors. In MI
terminology, each example is a bag of instances. Each bag
is associated with a class label in a classification setting
or a real-valued response in a regression setting. Given this
representation, MI algorithms can learn models that predict
the class label or response of novel bags.

To generate an MI representation for the drug activity pre-
diction problem, we apply the proposed clauses (pharma-
cophores) to each conformation of each molecule sepa-
rately. In this case, a 0/1 value represents whether a specific
conformation has the given pharmacophore (clause). This
creates an MI representation, where each molecule is rep-
resented by a bag of feature vectors, one per conformation,
and the bag is labeled with the activity of the molecule.
Given this representation, we use a multiple-instance re-
gression algorithm to learn linear models. The task under
consideration is defined as follows. We are given a set of
n bags. The ith bag consists of mi instances and a real-
valued response yi. Instance j of bag i is described by
a real-valued attribute vector ~Xij of dimension d. In the
drug design example, each bag is a molecule, and each in-
stance a conformation of the molecule represented by a fea-
ture vector. An iterative algorithm was presented in prior
work (Ray & Page, 2001) to learn a linear model b̂ under
the assumption that there is some primary instance in each

bag which is responsible for the real-valued label:

b̂ = arg min
b

n∑

i=1

(yi − ~Xip · b)2, (2)

where ~Xip is the feature vector describing the primary in-
stance of bag i, and yi is the response of bag i. The algo-
rithm presented in prior work iterates between estimating
the primary instance in each bag and solving the result-
ing linear regression problem until convergence. Recent
work (Srinivasan et al., 2006) has used this approach to
model drug activity, but has had limited empirical success.

Our approach extends this formulation to be more specific
to activity prediction in the following way. Instead of as-
suming that a single, primary conformer is responsible for
the activity of the molecule, we assume that the molecule’s
activity is a nonlinear weighted average of the activities
of its conformers. Biologically, each conformer can con-
tribute to activity, but the contribution of a conformer dies
off exponentially with goodness of fit between conformer
and target. Thus, typically, the activity of a molecule will
be dominated by its most active conformers. To model this
scenario, we use a softmax function, denoted by S below:

Sα(x1, . . . , xn) =

∑
1≤i≤n xie

αxi

∑
1≤i≤n eαxi

. (3)

The input to this function is the predicted activities of the
conformation of any molecule. The output is a weighted
average of the predicted activities, with the average being
dominated by the most active conformation(s). As the pa-
rameter α is increased, the output approximates the highest
activity more closely. The softmax function has been used
in prior work on MI classification as well (Maron, 1998).
Thus, it is a suitable choice both from the biological and
the MI perspectives. Further, note that the function is dif-
ferentiable with respect to its inputs. This lets us use a
gradient-based optimization procedure to solve for the best
linear model b̂ as follows:

b̂ = arg minb

∑n

i=1
(yi − Sα( ~Xi1 · b, · · · , ~Ximi

· b))2

+λ||b||2.
(4)

Here, yi represents the activity of the ith molecule, and the
predicted activity of conformation j of molecule i is de-
fined by the linear function ~Xij · b. Thus, the first part of
this objective specifies that we are searching for the linear
model such that the total error between the weighted aver-
ages of the predicted conformation activities and the known
molecular activities is minimized. The second part of the
objective is a regularization factor proportional to ||b||2.
Incorporating such a factor is known to reduce overfitting
to the training data, and thus improve generalization abil-
ity (Vapnik, 1999). We expect our approach to be more
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accurate than standard regression if (i) the activity of any
conformation is a linear function of the pharmacophores it
has, and (ii) the activity of any molecule is (approximately)
an exponentially weighted average of the activities of its
individual conformers.

The objective function in Equation 4 is nonlinear and non-
convex; hence, standard gradient-based optimization algo-
rithms are susceptible to local minima. To reduce the pos-
sibility of being misled by local minima, we employ the
technique of random restarts: when learning a model, the
optimization algorithm is restarted several times from dif-
ferent, randomly chosen starting points and allowed to run
to completion. The final solution returned is the one result-
ing in the lowest objective function value.

We call our approach, which combines the SAYU pro-
cedure with MI regression models, Multiple Instance
Regression-SAYU, abbreviated as MIR-SAYU.

4. Empirical Evaluation

In this section, we evaluate our approach on three real-
world activity prediction tasks: thermolysin inhibitors,
dopamine agonists and thrombin inhibitors. We first de-
scribe the domains and characteristics of the datasets we
use and then present and discuss our experimental results.

Tasks. The thermolysin inhibitors dataset we use is de-
scribed in previous work (Marchand-Geneste et al., 2002).
Thermolysin belongs to the family of metalloproteases and
plays roles in physiological processes such as digestion and
blood pressure regulation. The molecules in our dataset
are known inhibitors of thermolysin. Activity for these
molecules is measured in pKi = − logKi, where Ki is a
dissociation constant measuring the ratio of the concentra-
tions of bound product to unbound constituents. A higher
value indicates a stronger affinity for binding. The dataset
we use has the 10 lowest energy conformations (as com-
puted by the SYBYL software package (www.tripos.com))
for each of 31 thermolysin inhibitors along with their activ-
ity levels. The relational background knowledge we have
for this data was obtained from David Enot and Ross King
and is similar (but not identical) to the background knowl-
edge used in previous work (Marchand-Geneste et al.,
2002). This background knowledge defines 26 chemical
groups that can be used to define a pharmacophore.

The second dataset we use consists of dopamine agonists
(Martin et al., 1993). Dopamine works as a neurotrans-
mitter in the brain, where it plays a major role in move-
ment control. Dopamine agonists are molecules that func-
tion like dopamine and produce dopamine-like effects and
can potentially be used to treat diseases such as Parkin-
son’s disease. The dataset we use has 23 dopamine agonists
along with their activity levels. For this dataset, the num-

ber of conformations for each molecule ranges from 5 to
50. The background knowledge we have for this dataset
is more limited than in the previous dataset – we know
about four groups: hydrogen donors, hydrogen acceptors,
hydrophobes and basic nitrogen groups.

The final dataset we use consists of thrombin inhibitors
(Cheng et al., 2002). Thrombin works as a blood coagu-
lant and thus its inhibitors can be used as anti-coagulants.
The dataset consists of 41 thrombin inhibitors and their ac-
tivity levels. Each molecule has between 3 and 334 confor-
mations. The background knowledge for this task includes
information about six different types of chemical groups.

Experiments. In our experiments, we test three hypothe-
ses. First, we hypothesize that the SAYU procedure re-
sults in features that are better suited to regression than a
feature construction criterion based on coverage, as stan-
dard ALEPH uses. Second, we hypothesize that the MI
regression procedure results in more accurate activity pre-
dictions than standard linear regression. Third, we hypoth-
esize that the combined MIR-SAYU procedure will yield
more accurate predictions than either extension by itself.

To test our hypotheses, we use four baselines along with
our algorithm. These are as follows:

1. Constant: This algorithm simply predicts the average
activity of all molecules in the training set as the ac-
tivity for every novel molecule.

2. LR-ALEPH: This algorithm is the relational ap-
proach described in Section 2 and is similar to the
framework of Marchand-Geneste et al. (2002). It uses
ALEPH to construct a set of clauses based on coverage.
A single feature vector is generated for each molecule
from these clauses. A model is learned using linear
regression on these features. For novel molecules, fea-
ture vectors are generated using the same clauses and
the learned linear model is used to predict activity.

3. MIR-ALEPH: This algorithm learns a MI regression
model and uses it to predict activity, but uses the stan-
dard ALEPH to construct features based on coverage.

4. LR-SAYU: This algorithm learns a linear regression
model and uses it to predict activity, but uses the
SAYU procedure to select features for the model.

5. MIR-SAYU: This is our proposed approach, as de-
scribed in Section 3.

In prior work (Marchand-Geneste et al., 2002), relational
approaches have been compared to other activity predic-
tion methods, such as CoMFA (outlined in Section 2), and
found to be competitive. Therefore, we restrict our current
evaluation to the algorithms mentioned above.
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Table 2. Root mean squared errors for different methods on drug activity datasets. Values in bold indicate best results on each dataset.
LR refers to linear regression, MIR to multiple-instance regression, and SAYU to the “Score As You Use” rule selection procedure.

Dataset Constant LR-ALEPH MIR-ALEPH LR-SAYU MIR-SAYU
Dopamine Agonists 1.38 1.53 1.57 1.25 0.87
Thermolysin Inhibitors 1.93 1.47 1.31 1.37 1.27
Thrombin Inhibitors 1.56 3.27 1.95 1.36 1.28

In our experiments, ALEPH searches over 4-point pharma-
cophores, as in prior work (Marchand-Geneste et al., 2002).
For SAYU, we set the number of internal cross validation
folds, n, to be 5 and the r2 improvement threshold, p, to be
0.2. As a stopping criterion for SAYU, we used a time
threshold, allowing each fold one hour of runtime. For
MI regression, the softmax parameter α is set to 3 and
the regularization factor λ to 1. These parameter values
seemed reasonable after some initial exploration; they have
not been tuned to these tasks. To optimize our objective
functions, we use the L-BFGS algorithm (Fletcher, 1980).
To evaluate the algorithms, we use leave-one-molecule-
out cross validation. For each dataset, we hold out one
molecule in turn as the test molecule and learn a model us-
ing the remaining molecules. We then predict the activity
of the held-out molecule using the learned model. We re-
port the root-mean-squared (RMS) errors averaged across
the held-out molecules in Table 2.

From the table, we observe that for all three tasks, the
methods using SAYU outperform the methods that do not
use SAYU by a wide margin. In fact, we observe that for
both the dopamine and thrombin datasets, LR-ALEPH and
MIR-ALEPH both exhibit worse RMSE than the Constant
model. This indicates that the coverage measure used by
ALEPH to induce features in these domains does not result
in features which are able to generalize well to predicting
the real-valued activity that we are ultimately interested in.
From these results, we conclude that interleaving feature
construction and model building using the SAYU proce-
dure results in features that are better able to generalize
to predicting activity than features generated by coverage-
based measures, such as used by standard ALEPH.

Comparing the two approaches using MI regression to the
the ones using linear regression, we observe that in gen-
eral, the MI approaches outperform their counterparts. The
only exception is in the case of dopamine, where MIR-
ALEPH is slightly worse than LR-ALEPH. However, we
believe this is likely because the features generated by
ALEPH are not useful in predicting activity for this case,
making any comparison between the linear regression and
MI regression difficult. Apart from this case, we observe
that MIR-ALEPH is more accurate than LR-ALEPH, and
MIR-SAYU is more accurate than LR-SAYU. From these
results, we conclude that incorporating knowledge about
individual conformations using MI regression generally re-

sults in more accurate prediction models than using linear
regression on a single feature vector for each molecule.

Finally, we observe that the combined approach we have
presented in this work, MIR-SAYU, is the most accurate on
all of our 3D-QSAR tasks. It is more accurate than either
MIR-ALEPH, which uses MI regression models but does
not use SAYU, or LR-SAYU, which uses SAYU, but not
MI regression models. From these results, we conclude that
combining the two extensions we have presented results in
more accurate models than either extension by itself.

SAYU has been shown to consistently produce simpler
models than ALEPH (Davis et al., 2005). An interesting
question to ask is whether MI regression yields more com-
plex models than linear regression, that is, whether MIR-
SAYU learns more complex models than LR-SAYU (the
question makes sense only in the context of SAYU, be-
cause LR-ALEPH and MIR-ALEPH use the same set of
features by design). While we did not enforce any con-
straint on the total number of features added to each model,
we observed that these approaches used approximately the
same numbers of features in our experiments. This indi-
cates MIR-SAYU obtains its improvement over LR-SAYU
by selecting more informative features (pharmacophores),
rather than simply by using more features.

Another interesting question to ask is if the pharma-
cophores used by our MIR-SAYU models to predict activ-
ity have any biological interpretation. In fact, we observed
that for dopamine, the rules used by MIR-SAYU on most
of the folds agree with the general pharmacophore model
in the literature (McGaughey & Mewshaw, 1999). They
each have the key basic nitrogen, hydrogen acceptor and
hydrophobic group of the model. Since we specified that
all rules must encode four-point pharmacophores, the rules
all contained either an additional hydrophobic group or hy-
drogen acceptor; most contained the added hydrophobe.
The one exception is a learned pharmacophore that had
an extra hydrophobe in the position where the basic ni-
trogen should be; this feature had a substantial negative
coefficient in the regression model. For thermolysin, the
known pharmacophore model has seven interaction points,
although all seven points are not required for binding. As a
result, on every fold of cross-validation multiple rules were
learned, capturing different four-point subsets of the seven-
point pharmacophore. A combination of such four-point
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pharmacophores actually makes it possible to achieve bet-
ter prediction of activity than would be done with a single
seven-point pharmacophore, because different coefficients
can be attached to each of the four-point pharmacophores.
Finally, thrombin is a particularly interesting challenge be-
cause no pharmacophore model has been widely agreed
upon or validated. Our models are less consistent across
folds than for the other tasks, but again our approach shows
improved predictive performance. Thus, we conclude that
our approach is able to learn models that predict drug ac-
tivity in terms of biologically meaningful pharmacophores.
We expect that this property will prove helpful in analyzing
the produced activity models.

5. Conclusion

We have presented MIR-SAYU, a novel machine learning
approach for 3D-QSAR. Our approach extends prior work
in two ways. First, we use SAYU to construct and select
rules that define features, resulting in a tight coupling be-
tween feature construction and model building. This per-
mits us to, at any time, learn the rule that most improves
our prediction of real-valued activity. Second, we use MI
regression for model building. This allows us to sepa-
rate out the features that are true of each 3D conformer
of a molecule. In our experiments on three real-world 3D-
QSAR tasks, we observed that each extension by itself im-
proved the accuracy of our predictions. Further, our pro-
posed approach, which uses both extensions, resulted in
the most accurate predictions. We also observed that our
approach is able to discover biologically relevant pharma-
cophores when predicting activity. In future work, we plan
to explore more complex models of activity prediction, as
well as feature construction procedures that search over
more complex rule spaces.
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