Machine Teaching for Bayesian Learners in the Exponential Family

Xiaojin Zhu
Department of Computer Sciences, University of Wisconsin-Madison (jerryzhu@cs.wisc.edu)

Machine Teaching

- World: test items \(x \sim p(x \mid \theta^*) \).
- Learner: hypothesis space \(\Theta \).
- Teacher: knows \(\theta^*, \Theta \), learning algorithm, teaches by creating a training set \(D \).

Optimal Teaching Key Idea

\[
\min_{\theta^*} \text{loss}(f_D, \theta^*) + \text{effort}(D)
\]

- effort() of the teacher/learner to work with \(D \).
- Not regularized estimation: \(\theta^* \) given.
- Hard combinatorial optimization.
- Objective called Teaching Impedance \(T_I(D) \).

Step 1: Sufficient Statistics

- Conjugate prior \(p(\theta \mid \lambda_1, \lambda_2) = h_0(\theta) \exp(\lambda_1^T \theta - \lambda_2^T A(\theta) - A_0(\lambda_1, \lambda_2)) \).
- \(D \) enters the posterior only via \(s \) and \(n \):
 \[
 \exp \left((\lambda_1 + s)^T \theta - (\lambda_2 + n) A(\theta) - A_0(\lambda_1 + s, \lambda_2 + n) \right)
 \]
 - Optimal teaching problem
 \[
 \min_{\theta^*, s, n} -\theta^T (\lambda_1 + s) + A(\theta^T) (\lambda_2 + n) + A_0(\lambda_1 + s, \lambda_2 + n) + \text{effort}(n, s)
 \]
 - Convex relaxation: \(n \in \mathbb{R} \) and \(s \in \mathbb{R}^D \).

Step 2: Unpacking

- Round \(n \leftarrow \max(0, \lfloor n \rfloor) \).
- Find \(D \) teaching examples whose aggregate sufficient statistics is approximately \(s \):
 - Initialize \(x_i \sim p(x \mid \theta') \).
 - Solve \(\min_{x_i \in X} \| s - \sum_{i=1}^n x_i \|^2 \) (non-convex).
- Some unpacking examples:
 - Exponential: \(T(x) = x \).
 - Poisson: \(T(x) = x \) (integers): rounding.
 - Gaussian: \(T(x) = (x, x^2) \).
 - Minimize constraints on \(x \) minimize \(\exp(\theta^T x) \). Example 1

Teaching Bayesian Learners in the Exponential Family

- Exponential family \(p(x \mid \theta) = h(x) \exp(\theta^T T(x) - A(\theta)) \).
- For \(D = \{x_1, \ldots, x_n\} \), the likelihood is
 \[
 p(D \mid \theta) = \prod_{i=1}^n h(x_i) \exp(\theta^T x_i - A(\theta))
 \]
 with aggregate sufficient statistics
 \[
 s = \sum_{i=1}^n T(x_i)
 \]
 - Two-step algorithm:
 - Finding aggregate sufficient statistics
 - Unpacking

Example 1

Teaching a 1D threshold classifier.
- Learner \(p(\theta | e) = 1 \) \(p(y = 1 | x, \theta) = 1_{x \geq \theta} \).
- \(p(\theta \mid D) \) uniform in \([\min_{x_i \in X} x_i, \max_{x_i \in X} x_i]\).
- \(\text{effort}(D) = c |D| \).
- The optimal teaching problem becomes
 \[
 \min_{\theta, n, x_i \in x} -\log \left(\min_{n, x_i \in x} \frac{1}{\max_{x_i \in X} x_i - \min_{x_i \in X} x_i} \right) + cn.
 \]
- One solution: \(D = \{ (\theta^* - \epsilon/2, -1), (\theta^* + \epsilon/2, 1) \} \) as \(\epsilon \to 0 \) with \(T_I = \log(c) + 2c \to -\infty \).

Example 2

Learner can’t tell similar items
\[
\text{effort}(D) = \min_{x_i \in x} \log |x_i - x_j|
\]
- With \(D = \{ (\theta^* - \epsilon/2, -1), (\theta^* + \epsilon/2, 1) \} \).
- \(T_I = \log(c) + c \epsilon \) with minimum at \(\epsilon = c \).
- \(D = \{ (\theta^* - c/2, -1), (\theta^* + c/2, 1) \} \).

Example 3

Teaching to pick a Gaussian out of two.
- \(\Theta = \{ \theta_A = N(-\frac{1}{2}, \frac{1}{2}), \theta_B = N(\frac{1}{2}, \frac{1}{2}) \} \).
- \(\text{effort}(\theta_A) = p(\theta_A) = \frac{1}{2} \).
- \(\text{effort}(D) = \log(1 + \frac{1}{\sqrt{n}} \exp(x_i)) \) minimized by \(x_i \to -\infty \), weird items.
- Box constraints \(x_i \in [-d, d] \):
 \[
 \min_{x_i \in [-d, d]} \log \left(1 + \frac{1}{\sqrt{n}} \exp(x_i) \right) + cn + \frac{1}{n} \sum_{i=1}^n |x_i| \leq d
 \]
- Solution: \(n = \max \left(0, \left(2 \log \left(\frac{2}{d} \right) \right) \right) \), \(x_i = -d \).
- Note \(n = 0 \) when \(c > \frac{2}{d} \), the effort of teaching outweighs the benefit. The teacher will choose not to teach, leaving learner with its prior \(p(\theta) \).

Example 4

Teaching the mean of a univariate Gaussian.
- The world is \(N(x, \mu^*, \sigma^2) \).
- Learner’s prior \(p(\mu) = N(\mu | \mu_0, \sigma_0^2) \), knows \(\sigma^2 \).
- \(T(x) = x \).
- Aggregate sufficient statistics solution
 \[
 \begin{align*}
 s &= \frac{\sigma^2}{\sigma_0^2} (\mu^* - \mu_0) + \mu^* n \\
 \text{Note} \quad \frac{n}{\sigma_0^2} &\mu^* \quad \text{compensating for the learner’s (wrong) prior belief.}
 \end{align*}
 \]
- \(n \) is the solution to
 \[
 n = \frac{1}{2} \text{effort}(n) + \frac{\sigma^2}{\sigma_0^2} = 0
 \]
 \[
 \text{When effort}(n) = cn, n = \frac{c}{2} - \frac{\sigma^2}{\sigma_0^2}
 \]
- Unpacking \(s \) is trivial, e.g. \(x_1 = \ldots = x_n = s/n \).
- Teacher will choose not to teach if the learner initially had a “narrow mind”: \(\sigma_0^2 < 2c^2 \).

Example 5

Teaching a multinomial distribution.
\[
\min_{\beta} \log \left(\sum_{k=1}^K (\beta_k + s_k) \right) + \frac{1}{K} \log |\text{effort}(s)|
\]
- Example: world \(n^* = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}) \).
- Learner “wrong” Dirichlet prior \(\beta = (6, 3, 1) \).
- If \(\text{effort}(s) = 0 \), “brute-force teaching” \(\text{effort}(s) = (317, 965, 1933) \).
- If \(\text{effort}(s) = 0.3 \gamma^N_0 \), \(\gamma = (0.2, 8) \). \(T_I = 2.65 \).
- Not \(s = (1, 3, 0) \), \(T_I = 4.51 \), doesn’t correct prior.
- Not \(s = (317, 965, 1933) \), \(T_I = 956.25 \).

Example 6

Teaching a multivariate Gaussian.
- World \(N(\mu^* = (0, 0, 0), \Sigma = I) \).
- Learner Normal-Inverse-Wishart prior \(p(\mu) = N(1, 1), \alpha_0 = 1, \nu_0 = 2 + 10^{-3}, \lambda_0 = 10^{-3} I \).
- “Expensive” effort \(D = n \).
- Optimal \(D \) with \(n = 4 \), unpacked into a tetrahedron.

Teaching Dimension is a Special Case

- Given concept class \(C = \{ c \} \), define \(P(y = 1 | x, \theta) = c(x) = 1 \) and \(P(x) \) uniform.
- The world has \(\theta^* = \theta_c \).
- The learner has \(\Theta = \{ \theta_c | c \in C \} \).
- \(p(\theta_c \mid D) = \frac{1}{|C|} \) except consistent with \(\theta_c \).
- Teaching dimension (Goldman & Kearns’95) \(T_D(c^*) \) is the minimum cardinality of \(D \) that uniquely identifies the target concept.
\[
\min_{\theta} \min_{p(\theta \mid D)} T(\theta, D)
\]
where \(\gamma \leq \frac{\mu^*}{10} \).
- The solution \(D \) is a minimum teaching set for \(c^* \) and \(|D| = T_D(c^*) \).