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Abstract

We explore the connections between machine learning
and human learning in one form of semi-supervised
classification. 22 human subjects completed a novel 2-
class categorization task in which they were first taught
to categorize a single labeled example from each cate-
gory, and subsequently were asked to categorize, with-
out feedback, a large set of additional items. Stimuli
were visually complex and unrecognizable shapes. The
unlabeled examples were sampled from a bimodal dis-
tribution with modes appearing either to the left (left-
shift condition) or right (right-shift condition) of the
two labeled examples. Results showed that, although
initial decision boundaries were near the middle of the
two labeled examples, after exposure to the unlabeled
examples, they shifted in different directions in the two
groups. In this respect, the human behavior conformed
well to the predictions of a Gaussian mixture model for
semi-supervised learning. The human behavior differed
from model predictions in other interesting respects,
suggesting some fruitful avenues for future inquiry.

Introduction

Semi-supervised learning—the effort to develop classifiers
that can capitalize on both labeled and unlabeled train-
ing data—has attracted considerable interest in the machine
learning community. New semi-supervised methods have
significantly improved machine learning in various applica-
tions, including text categorization, computer vision, and
bioinformatics, see (Chapelle, Zien, & Scholkopf 2006;
Zhu 2005) for recent reviews. Given these successes, we
ask the fundamental question: Do humans perform semi-
supervised classification? That is, do humans use “un-
labeled data” in addition to “labeled data” to learn cate-
gories? If so, can we explain such behavior with mathemat-
ical models developed for semi-supervised machine learn-
ing? Answers to these questions may shed light on the cog-
nitive process behind human learning, which may in turn
lead to novel machine learning approaches (Mitchell 2006;
Langley 2006).

*We thank Tom Mitchell, Joshua Tenenbaum and Sean Strom-
sten for helpful discussions. Research supported in part by Wis-
consin Alumni Research Foundation.
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Many people would agree that the first answer seems to
be “yes”. After all, a child learns with supervision from
parents and teachers, as well as without supervision by
silently observing the world around her. Despite a signif-
icant amount of research in psychology on supervised and
unsupervised learning (e.g., (Love 2002) and the references
therein), semi-supervised learning is not well studied. Al-
though some prior research indirectly supports the above
intuitions, e.g., (Graf Estes et al. 2006; Tenenbaum & Xu
2000), we are aware of just one previous study that directly
investigates semi-supervised learning in humans. Specifi-
cally, Stromsten (2002, Chapter 3) used drawings of artifi-
cial fish to show that human categorization behavior can be
influenced by the presence of unlabeled examples. Though
certainly suggestive, this experiment had two limitations.
First, Stromsten used a single positive labeled example and
no negative labeled examples, making it a one-class setting
similar to novelty detection or quantile estimation. Recent
semi-supervised machine learning research has, in contrast,
focused primarily on two-class classification with positive
and negative examples. Second, since Stromsten used stim-
uli' that correspond to a familiar real-world concept (i.e.
fish), it is difficult to know whether his results reflect prior
knowledge about the category, or new learning obtained over
the course of the experiment.

The current work describes a new study that clearly
demonstrates one form of semi-supervised classification in
humans. In a two-class learning paradigm, we show that the
learned decision boundary is determined by both labeled and
unlabeled data. In our experiment, participants view a series
of visually complex shapes, and must guess to which of 2
categories each stimulus belongs. “Labeled” examples con-
sist of trials for which the participant gets accurate feedback,
and “unlabeled” examples consist of trials without feed-
back. Given the same labeled data but different unlabeled
data, people form different decision boundaries. To account
for this behavior, we propose that semi-supervised category
learning in humans can be described with a generative mix-
ture model, a traditional machine learning method (Nigam
et al. 2000). Our paper thus takes the first steps toward de-
signing and interpreting human learning experiments based
on semi-supervised machine learning models.

"We use stimulus and example interchangeably.
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Figure 1: The additional knowledge of unlabeled data pro-
duces a better decision boundary.

The Semi-Supervised Learning Task

We start by introducing a classic classification task in semi-
supervised machine learning. For simplicity, let us assume
each example is represented by a one-dimensional feature
x € R. There are two classes y € {1,2}. Consider the fol-
lowing two scenarios:

1. We are given only two labeled training examples
(z1,y1) = (—1,1) and (z2,y2) = (1,2). The best esti-
mate of the decision boundary is x = 0: everything to the
left should be classified as y = 1, while others as y = 2.

2. In addition to the two labeled examples above, we are
also given a large number of unlabeled examples z3, . . ., T,.
The correct class labels for these unlabeled examples are un-
known. However we observe that they form two groups as in
Figure 1. Under the assumption that examples in each class
form a coherent group (e.g., follow a Gaussian distribution),
our estimate of the decision boundary should be between the
two groups instead (solid line in Figure 1).

Comparing the two scenarios in Figure 1, we expect to
see a shift A in the decision boundaries. The amount of
shift depends on the particular distributions of labeled and
unlabeled data. Intuitively, the decision boundary estimated
from only labeled data may be unreliable, since the number
of labeled examples is small. One can show that if the “co-
herent group” assumption is correct, unlabeled data will lead
to a better estimate of the decision boundary?. This is a well-
studied semi-supervised machine learning method (Castelli
& Cover 1996; Ratsaby & Venkatesh 1995), and has shown
empirical successes (Nigam et al. 2000; Baluja 1998).

A Behavioral Experiment

Our study of human semi-supervised learning closely fol-
lows the above setting. We compare two scenarios: 1) the
participant receives only labeled examples, which happen to
be off the true class centers, versus 2) the participant also
receives unlabeled examples sampled from the true class
conditional feature distributions. Our goal is to determine
whether the participant’s category decision boundary shifts
between the two scenarios. An appropriate shift would indi-
cate that the participant’s mental representations of the two
categories take into account distributional information from
the unlabeled data.

2Some cautionary notes are provided in (Cozman, Cohen, &
Cirelo 2003) when the assumption is wrong.
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Figure 3: Data used in our behavioral experiment.

Participants and Materials

Participants were 22 students from University of Wisconsin,
participating for partial course credit.

In our experiment, each example is a 3D shape displayed
to the subject on a computer screen. To keep later analysis
simple, the examples are parameterized by a single param-
eter x. A similar setting was described by Mozer, Jones,
& Shettel (2006), who used circles of different sizes as the
examples. Size, however, is a less than ideal parameter,
first because people may bring relevant prior knowledge to
the task (for instance, the knowledge that size varies con-
tinuously along an infinite range), and second because size
is limited by what can be displayed on a computer screen.
To avoid these difficulties, we generated novel, artificial 3D
stimuli based on “supershapes” introduced in (Gielis 2003).
The shapes change with x smoothly in several aspects si-
multaneously. Figure 2 shows a few shapes and their x val-
ues. In our experiment the examples are organized into six
sequential blocks. We refer to Figure 3 in the following de-
scription.

Block 1 (labeled) consists of 2 labeled examples (x =
—1,y = 1land z = 1,y = 2) each appearing 10 times, with
the total of 20 trials appearing in a different random order
for each participant. The repetition of 2 items in this block
ensures quick learning of the 2 distinct labeled examples.

Block 2 (test-1) consists of 21 evenly spaced unlabeled
examples x = —1,—-0.9, —0.8, ..., 1, appearing in a differ-
ent random order for each participant. We use them to test
the learned decision boundary after Block 1.

Block 3 (unlabeled-1) is one of the three unlabeled
data blocks. We sample 230 unlabeled examples from an
equal mixture of two Gaussian distributions, representing
the “true” concepts to be learned. Importantly, the means
are shifted away from the labeled examples at x = —1 and
x = 1: for 12 participants the two Gaussian distributions
are shifted to the left, and for the other 10 participants they
are shifted to the right, so that in both groups the labeled ex-
amples from Block 1 are not prototypical examples of each
class. For the left-shifted mixture, we use

1 1
T ~ 5N(—l —1.280,0%) + 5N(l —1.280,0%), (1)

where N(y, 0%) is a Gaussian distribution with mean x and
variance o2, We set the standard deviation o = 1/3. We



Xxareedssoco

—2.5 -2 —-1.5 -1 —0.5

Figure 2: Our experiment uses a large number of 3D shape visual stimuli, parameterized by a continuous scalar . A few

examples are shown above with the corresponding x values.

choose the shift A = 1.280 because 80% of the area un-
der the Normal curve is within 1.28 standard deviation of
the mean, which puts the labeled examples off the center,
but not so extreme as to be outliers. Similarly, for the right-
shifted mixture, we use # ~ N(—1+1.280,0%) + $N(1+
1.280, 02). In addition, we add 21 “range examples” evenly
spaced in the interval € [—2.5,2.5]. The range exam-
ples ensure that the unlabeled examples for both groups span
the same range, so that any measured shift in the decision
boundary cannot be explained by differences in the range of
examples viewed.

Block 4,5 (unlabeled-2,3) are identical to Block 3, each
with the same 21 range examples, but with a different 230
random samples from the Gaussian mixture in Block 3.
Blocks 3.,4,5 are always all left-shifted or all right-shifted.

Block 6 (test-2) is identical to Block 2, consisting of
21 unlabeled examples evenly spaced in [—1,1]. They are
used to test whether the participant’s decision boundary has
changed after seeing the unlabeled blocks.

Procedure

Participants were told that they would see microscopic im-
ages of pollen particles from one of two fictitious flowers
(“Belianthus” or “Nortulaca”), and were asked to classify
each image by pressing the B or N key, respectively. They
were instructed that they would receive audio feedback for
the first 20 trials, after which they must make their best guess
for a large set of items without any feedback. To ensure use-
ful measurements of both speed and accuracy, participants
were asked to respond as quickly as possible without mak-
ing too many mistakes.

All participants saw the 815 stimuli in blocks 1 through
6 presented in order, but order within each block was ran-
domized separately for each subject. In addition, 12 of
the participants received Blocks 3,4,5 with left-shifted unla-
beled stimuli (L-subjects), while the other 10 received right-
shifted stimuli (R-subjects)?.

Stimuli were displayed on a 15-inch CRT monitor in a
darkened room at a normal viewing distance. The stimu-
lus remained on-screen until a response was detected, after
which the screen went blank for a duration of 1 second. De-
cisions and response times (time from onset of the stimulus
to the detection of a key-press measured in milliseconds)
were recorded for each trial. For each of the 20 stimuli in
Block 1, the participants received an affirmative sound if
they made the correct classification, or a warning sound if

3Data from 2 additional participants in the right-shift condition
were lost when the computer crashed halfway through the experi-
ment.

they were wrong. There was no audio feedback for the re-
maining stimuli.

The experiment manipulates one within-subjects factor
(the category boundary is assessed either before or after ex-
posure to the unlabeled data) and one between-subjects fac-
tor (unlabeled data distributions are shifted to the left or right
of the labeled examples).

Results and discussion

Data from 1 subject in the left-shift condition were dis-
carded, as the participant appeared to “give up” halfway
through the experiment, making the same “N” response for
virtually every stimulus. From the remaining subjects (11 in
left-shift condition and 10 in right-shift condition), we make
the following observations:

Unlabeled data helps determine the decision bound-
ary. We compared the participants’ classification on blocks
test-1 vs. test-2. In test-1, we expect the decision bound-
ary to be around x = 0 for all participants, because they
have just seen the same 20 labeled examples at z = —1
and x = 1 (Figure 3). If unlabeled data helps learning,
the decision boundary in test-2 should shift towards left for
L-subjects (Figure 3), or right for R-subjects. To quantify
the decision boundary, we fit logistic regression functions
ply = 2|x) = 1/(1 + exp(—(Bx + Bo))) to the data.
For all participants on the test-1 block, the data consists of
(x, ) pairs, where § € {1,2} is each participant’s classi-
fication on x within test-1. Figure 4(a) shows the best fit
(B = 4.99,6, = —0.54, the dotted curve). The decision
boundary is x = —fy/8 = 0.11 where p(y|z) = 0.5. This
decision boundary is close to zero as expected*. The curve is
also relatively steep, showing that the participants are highly
consistent on their classifications.

The best fit for R-subjects after seeing the unlabeled data
is shown by the dashed curve (G = 3.00, 3y = —1.44). The
decision boundary is at x = 0.48. This represents a shift to
the right of Ar = 0.37 on average, compared to the test-1
decision boundary. This shift represents the effect of unla-
beled data on the R-subjects, and fits the expectation of semi-
supervised classification. For L-subjects on test-2, the best
fit is the solid curve (6 = 2.37, By = 0.23). The decision
boundary is at z = —0.10, which represents a shift to the
left by A, = —0.21, also consistent with semi-supervised
learning. For visual inspection, we also show the empiri-
cal percentage of class 2 responses with different symbols
in Figure 4(a).

“It is not exactly zero because of small sample size, and poten-
tially because the perceptual distance along the x-axis is not com-
pletely uniform. This, however, does not affect our conclusions.
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Figure 4: (a) Unlabeled data helps classification. The curves are fitted logistic regression functions p(y = 2|z). Clearly the
test-2 decision boundaries shift toward the expected directions. Symbols represent empirical fraction of participants classifying
a particular x as class 2, within: L-subjects in test-1 (A), R-subjects in test-1 (o), L-subjects in test-2 (A), and R-subjects in
test-2 (). (b) Seeing unlabeled data shifts the perception of ‘difficult stimuli’, as revealed by reaction time. The difficult stimuli

in each case correspond well with the decision boundaries.

To test the statistical reliability of these observations, we
fit a separate logistic function to each individual partici-
pant’s decision data for blocks test-1 and test-2, and from
these curves computed the decision boundary for each sub-
ject on each test. Thus for each subject we obtained an esti-
mate of the decision boundary before and after exposure to
the unlabeled data. These data were subject to a repeated-
measures analysis of variance assessing the influence of test
block (1 versus 2, within-sj factor) and group (left-shift ver-
sus right-shift, between-sjs factor) on the location of the de-
cision boundary. The results showed a significant interaction
between the two factors (F(1,18) = 7.82, p < 0.02), indicat-
ing that after exposure to the unlabeled data, the decision
boundary shifted in significantly different directions for the
two groups.

Reaction time reflects decision boundary shift. Reac-
tion time is the time elapsed between the appearance of the
stimulus and the detection of a response—a long reaction time
implies that the stimulus is relatively difficult to classify. It
follows that stimuli near the decision boundary will be as-
sociated with longer reaction times. If the unlabeled data
shift the participant’s mental representation of the decision
boundary, this shift should be reflected by a shift in the peak
reaction time. Figure 4(b) verifies this hypothesis. The Fig-
ure shows mean reaction times (excluding outliers more than
+3 beyond log reaction time) for each stimulus in the first
test block, computed over all participants (squares in Fig-
ure 4(b)). The dotted curve shows the same data smoothed
with a Gaussian kernel smoother. After seeing just the la-
beled examples at -1 and 1, people react quickly to exam-
ples near these points (rt ~ 600ms), but are much slower
(=~800ms) for examples ‘in the middle’, that is, near the de-
cision boundary. The peak is slightly to the right of the nom-
inal decision boundary « = 0 for an unknown reason, which
is consistent with Figure 4(a).

We then compute the average reaction time on block test-
2 separately for L-subjects (black triangles and solid curve

in the Figure) and R-subjects (black dots and dashed curve
in the Figure). The overall reaction time on test-2 is faster
than on test-1, reflecting the participants’ greater familiarity
with the experiment. More importantly, L-subjects have a
reaction time plateau around z = —0.1, which is left-shifted
compared to test-1, whereas R-subjects have a reaction time
peak around z = 0.6, which is right-shifted. In line with
the accuracy data, the reaction times suggest that exposure
to the unlabeled data has shifted the decision boundary in
different directions in the two groups.

A Semi-Supervised Model

In this section we consider whether the boundary-shifts re-
flected in the behavioral data are consistent with those pre-
dicted by a model developed for semi-supervised machine
learning. We assume humans represent each category with
a central prototype and a spread around the prototype. This
allows us to model each category using a Gaussian distribu-
tion, whose mean and variance characterizes the prototype
and the spread, respectively. Therefore our binary classi-
fication experiment can be modeled with a Gaussian mix-
ture model (GMM) with two components®, parameterized
by 0 = {wy, p1,0%, wa, 2,03 }. The w’s are non-negative
component weights that sum to 1.

Before seeing any examples, we assume a prior distri-
bution over . Learning involves updating the GMM pa-
rameters to best explain the observed labeled and unla-
beled examples. One approach is to perform Bayesian anal-
ysis and compute the posterior distribution of 6 (Tenen-
baum 1999). However, to keep the model comparable with
the existing semi-supervised learning literature (Nigam et
al. 2000), we instead compute the maximum a posteriori
(MAP) point estimate of §. We assume exchangeability and
let D = {(x1,v1),---, (1, y1), X141, - - - , T } be the set of |

>This GMM is a cognitive model, not to be confused with the
unlabeled-data-generating GMM in Blocks 3,4,5.



labeled and n — [ unlabeled examples seen so far. The MAP
estimate argmax,p(6| D), which represents the updated in-
ternal model, can be found (up to local maxima) with the
standard EM algorithm (Dempster, Laird, & Rubin 1977).
We use a factored, semi-conjugate prior distribution (Gel-

man et al. 2004) on 0: p(0) = Hizlp(wk)p(uk)p(o,%),
with wy, ~ Uniform[0,1], pr ~ N(0,00), and o7 ~
Inv—x?(v, s%),k = 1, 2. Our priors are fairly benign: wy, is
uniform over its range, and p; has a non-informative prior,
making no assumption on what it might be. o7 has a scaled
inverse-x? distribution with scale s? and v degrees of free-
dom, which is equivalent to v pseudo observations with av-
erage squared deviation s2. This prevents degeneracy in
Gaussian variances. In our experiment we set v = 1, and
5?2 = % which is the variance of the uniform distribution
over the range [—2.5, 2.5].

We want to find 6 that maximizes the posterior, which is

equivalent to maximizing log p(6)p(D|6). The latter equals

l n
logp(6) + > _logp(i, yil6) + A > logp(wi|0). (2)
i=1 i=l+1

This objective is ‘semi-supervised’ because unlabeled data
helps learning through the last term. To account for the
possibility that an unlabeled example is perceptually ‘worth
less’ than a labeled example, we introduced a weight A
above that can down-scale the contribution of unlabeled
data. Such weight is common in prior work (Corduneanu
& Jaakkola 2001; Nigam et al. 2000).

The objective (2) is difficult to optimize directly because
the parameters are coupled in the logp(z;|0) term. It is,
however, not hard to derive the EM updates for our spe-
cific model. The derivation is standard and omitted for
space considerations. We introduce hidden label distribu-
tions for each unlabeled example: ¢;(k) = p(y; = k|, 0)
fori =1+ 1,...,nand k = 1,2. EM consists of iter-
ating between the E-step and the M-step until convergence,
which is guaranteed since our prior is log-concave. The E-
step finds the expected distribution on hidden labels, given
current model parameters 6:

qi (k) oc wpN (245 pg, 02), i=1+1,...,n;k=1,2. 3)

The M-step updates the model parameters, given g;(k)
above:

22:1 O(yi, k)i + A E?:Prl qi(k)z;

Zi’:l 0(yis k) + A0y ai(k)
9 vs? + S0 8(yi ke + A i @i(k)eir
v 24 Y 6y k) F AT @)

I 22:1 oy, k) + )‘Z?:l+1 qi(k) @)

g I+ An—1) ’

where 0(y;, k) = 1if y; = k, and O otherwise; e;, =

(v; — pk)®.  Once the MAP @ is found through EM,

prediction can be made with the Bayes rule, p(y|z) =
wyN(x;uy,Ui)

> k1,2 WeN(@;pk,02) "

ary x can be found through the equation w1 N(x; i1, 0%) —

waN(z; 2, 03) = 0.

1223

The corresponding decision bound-

Model Fitting Results

The model predicts decision boundary shift. To model
the participants’ behavior on block test-1, we fit a GMM
with EM on labeled and unlabeled data in blocks 1,2 (with
initial parameters wy = 0.5, yp = 0, o7 = 1, and
unlabeled data weight A = 0.06, see below). This cor-
responds to a hypothetical subject who just saw blocks
1,25, The GMM is 0.5N(—0.97,0.17) + 0.5N(0.97,0.17),
whose classification is shown as the dotted curve in Fig-
ure 5(a), which corresponds to the empirical data (also
dotted curve) in Figure 4(a). Then for the behavior on
block test-2, we fit two GMMSs on blocks 1-6 (results
on blocks 1-5 are similar): For L-subjects who saw left-
shifted unlabeled data in blocks 3,4,5, the fitted GMM is
0.49N(—1.26,0.20)+0.51N(0.71, 0.21). For R-subjects the
GMM is 0.51N(—0.74,0.20) + 0.49N(1.26,0.18). These
two GMMss thus predict shifts of the decision boundary after
seeing unlabeled data. We show their classification curves
(solid and dashed) in Figure 5(a), which qualitatively ex-
plains the empirical behavior in Figure 4(a).

Unlabeled example weight )\ controls the amount of de-
cision boundary shift. The predicted amount of decision
boundary shift is controlled by A, the unlabeled example
weight. By assigning an unlabeled example a small weight
(A < 1in (2)), the shift is reduced as in Figure 5(b). This
makes intuitive sense: As A\ — 0, the effect of unlabeled
blocks diminishes, and both GMMs converge to the GMM
trained on block 1 only. To account for the observed distance
of 0.58 between L, R decision boundaries in Figure 4(a),
A = 0.06. This seems to indicate that people treat unlabeled
examples less importantly than labeled examples.

The model explains reaction time. We model the reaction
time with a sum of two parts: The first part is a base reaction
time which decreases with experience. Let it be b; at block
test-1, and a smaller by later at test-2. The second part is
proportional to the difficulty of each particular example. We
assume if p(y|z) is close to 0 or 1, the example x is easy
because the classification is clear; z is difficult if p(y|x) is
close to 0.5. A natural measure of difficulty is the entropy of
the prediction h(z) = — Zi:l p(y = k|z) logp(y = k|x),
which is zero for p(y|z) = 0 or 1, and one for p(y|z) = 0.5.
Our reaction time model is thus ah(x) + b; for block test-i.
We find the parameters a = 168, b; = 688, by = 540 with
least squares from the empirical data in Figure 4(b). Our
reaction time model is plotted in Figure 5(c), which explains
the empirical peaks before and after seeing unlabeled data
in Figure 4(b).

Conclusions and Discussion

We have designed and conducted a behavioral experiment
that clearly demonstrates a form of semi-supervised learn-
ing in humans. Participants quickly learned from labeled
data and set a stable category boundary midway between

8 Alternatively, we can fit a GMM on block 1 only, the result is
similar and not reported here. We can also fit a sequence of GMMs
per subject one example at a time, following the exact randomized
data stream in the blocks. Such detailed modeling gives very simi-
lar results here and below, and is not reported.
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Figure 5: Our semi-supervised Gaussian mixture models (GMMs) explain experimental data.

the labeled items. After exposure to a set of unlabeled ex-
amples, however, the category boundaries shifted to reflect
the distributions from which the unlabeled examples were
drawn. The boundary-shifts were reflected both in the cate-
gorization decisions and in the mean reaction times.

We have also suggested that the boundary-shifts are
well accounted for by a Gaussian mixture model of semi-
supervised learning that has been successfully applied in
machine learning. The GMM suggests that mental repre-
sentations of categories consist of both the central tendency
and the spread, and that these parameters are estimated from
both labeled and unlabeled data.

One aspect of the behavioral data is not well explained by
the GMM: decision curves after exposure to the unlabeled
data were noticeably flatter than predicted. This apparent
flattening is not an artifact of averaging across subjects—the
slope of the logistic function estimated separately for each
subject was significantly steeper before exposure to the un-
labeled data than afterward (F(1,18) = 5.3, p < 0.04). In
fact this flattening effect would be expected if participants
systematically over-estimated the variance associated with
each category. This interesting discrepancy in model and hu-
man behavior may therefore indicate important differences
in human and machine memory. For instance, the current
model retains a faithful representation of all past examples,
and uses this perfect record to generate optimal estimates of
the corresponding distributions. In human memory, traces of
individual examples may degrade with time or may be sub-
ject to interference, so that decisions in the moment strongly
weight more recent experiences. Future work will investi-
gate these possibilities.
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