Humans Learn Using Manifolds, Reluctantly
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Abstract

When the distribution of unlabeled data in feature spacedieag a manifold,
the information it provides may be used by a learner to as$#ssification in

a semi-supervised setting. While manifold learning is vkelbwn in machine
learning, the use of manifolds in human learning is largelgtudied. We perform
a set of experiments which test a human’s ability to use a folanin a semi-

supervised learning task, under varying conditions. Wensti@mt humans may
be encouraged into using the manifold, overcoming the gtymeference for a
simple, axis-parallel linear boundary.

1 Introduction

Consider a classification task where a learner is givenitrgitemsz, . . ., x; € R?, represented by
d-dimensional feature vectors. The learner is also giverctinieesponding class labels, ...,y €

Y. In this paper, we focus on binary labéls€ {—1,1}. In addition, the learner is given some
unlabeled itemss; 1, ..., ;4. € R? without the corresponding labels. Importantly, the latele
and unlabeled items; ...z, are distributed in a peculiar way in the feature space: tieepmh
smooth, lower dimensiomanifolds, such as those schematically shown in Figure 1(a). The ignest
is: given this knowledge of labeled and unlabeled data, hihihve learner classifye; 1, ..., z144?
Will the learner ignore the distribution information of thalabeled data, and simply use the labeled
data to form a decision boundary as in Figure 1(b)? Or willldaner propagate labels along the
nonlinear manifolds as in Figure 1(c)?

. ., c>00000
. -+ o ++
O . . o} % * h @
0....... 0°+ +++
(a) the data (b) supervised learning (c) manifold learning

Figure 1: On a dataset with manifold structure, supervigadning and manifold learning make
dramatically different predictions. Large symbols reprdabeled items, dots unlabeled items.

When the learner is a machine learning algorithm, this qoestias been addressed by semi-
supervised learning [2, 11]. The designer of the algorittan @hoose to make the manifold as-
sumption, also known as graph-based semi-supervisedinganvhich states that the labels vary
slowly along the manifolds or the discrete graph formed byneting nearby items. Consequently,
the learning algorithm will predict Figure 1(c). The mathaios of manifold learning is well-
understood [1, 6, 9, 10]. Alternatively, the designer canase to ignore the unlabeled data and
perform supervised learning, which results in Figure 1(b).



When the learner is a human being, however, the answer is ndean Consider that the human
learner does not directly see how the items are distributeldd feature space (such as Figure 1(a)),
but only a set of items (such as those in Figure 2(a)). Thenlyidg manifold structure of the data
may not be immediately obvious. Thus there are many poggbifor how the human learner will
behave: 1) They may completely ignore the manifold strcaurd perform supervised learning; 2)
They may discover the manifold under some learning conatiand not others; or 3) They may
always learn using the manifold.

For readers not familiar with manifold learning, the sagtinight seem artificial. But in fact, many
natural stimuli we encounter in everyday life are distrdaibn manifolds. An important example
is face recognition, where different poses (viewing angtéthe same face produce different 2D
images. These images can be quite different, as in the framdgprofile views of a person. However,
if we continuously change the viewing angle, these 2D imagkform a one-dimensional manifold
in a very high dimensional image space. This example et the importance of a manifold to
facilitate learning: if we can form and maintain such a faamifold, then with a single label (e.g.,
the name) on one of the face images, we can recognize all ptises of that person by propagating
the label along the manifold. The same is true for visual atjecognition in general. Other more
abstract stimuli form manifolds, or the discrete analogiraphs. For example, text documents in a
corpus occupy a potentially nonlinear manifold in the ot¥ise very high dimensional space used
to represent them, such as the “bag of words” representation

There exists little empirical evidence addressing the tjpre®f whether human beings can learn
using manifolds when classifying objects, and the few &sidve are aware of come to opposing
conclusions. Forinstance, Wallis andiBhoff created artificial image sequences where a froaize f

is morphed into the profile face of a different person. Whetigipants were shown such sequences
during training, their ability to match frontal and profilades during testing was impaired [8]. This
might be evidence that people depend on manifold structerarsing from temporal and spatial
proximity to perform face recognition. On the other handnistet al. conducted a categorization
experiment where the true decision boundary is at 45 degneaD stimulus space (i.e., an in-
formation integration task). They showed that when the tlasses are elongated Gaussian, which
are parallel to, and on opposite sides of, the decision bayndnlabeled data does not help learn-
ing [7]. If we view these two elongated Gaussian as linearifols, this result suggests that people
do not generally learn using manifolds.

This study seeks to understand under what conditions, jfisgple are capable of manifold learning
in a semi-supervised setting. The study has important aapétins for cognitive psychology: first,
if people are capable of learning manifolds, this suggédsis ranifold-learning models that have
been developed in machine learning can provide hypothésrg how people categorize objects in
natural domains like face recognition, where manifoldsesgpdo capture the true structure of the
domain. Second, if there are reliable methods for encongagianifold learning in people, these
methods can be employed to aid learning in other domainsatieagtructured along manifolds. For
machine learning, our study will help in the design of altjoris which can decide when to invoke
the manifold learning assumption.

2 Human Manifold Learning Experiments

We designed and conducted a set of experiments to study ofdigfrning in humans, with the
following design considerations. First, the task was acbdéearning” paradigm in which partici-
pants viewed all labeled and unlabeled items at once (irrasino “online” or sequential learning
paradigm where items appear one at a time). Batch learnioggsilis to compare human behavior
against well-established machine learning models that#ylg operate in batch mode. Second, we
avoided using faces or familiar 3D objects as stimuli, desthieir natural manifold structures as
discussed above, because we wished to avoid any bias nesiutim strong prior real-world knowl-
edge. Instead, we used unfamiliar stimuli, from which weld@dd or remove a manifold structure
easily. This design should allow our experiments to shet lagp people’s intrinsic ability to learn
using a manifold.

Participants and Materials. In the first set of experiments, 139 university undergraesigiartici-
pated for partial course credit. A computer interface wasitad to represent a table with three bins,
as shown in Figure 2(a). Unlabeled cards were initially pthih a central white bin, with bins to



either side colored red and blue to indicate the two clagses{—1,1}. Each stimulus is a card.
Participants sorted cards by clicking and dragging with aiseo When a card was clicked, other
similar cards could be “highlighted” in gray (depending andition). Labeled cards were pinned
down in their respective red or blue bins and could not be mpwalicated by a “pin” in the corner
of the card. The layout of the cards was such that all cardsirezd visible at all times. Unlabeled
cards could be re-categorized at any time by dragging froynbémto any other bin. Upon sorting
all cards, participants would click a button to indicatirappletion.

Two sets of stimuli were created. The first, used solely taagg the participants with the interface,
consisted of a set of 20 cards with animal line drawings on #geAfackground. The images were
chosen to approximate a linear continuum between fish andmahnwith shark, dolphin, and
whale at the center. The second set of stimuli used for theabekperiment was composed of 82
“crosshair” cards, each with a pair of perpendicular, gasallel lines, all of equal length, crossing
on a white background. Four examples are shown in Figure 2Hgch card therefore can be
encoded as € [0, 1]?, whose two features representing the positions of theoadréind horizontal
lines, respectively.
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(a) Card sorting interface (B) = (0,0.1), 22 = (1,0.9), z3 = (0.39,0.41), 24 = (0.61,0.59)

Figure 2: Experimental interface (with highlighting showand example crosshair stimuli.

Procedure. Each participant was given two tasks to complete.

Task 1 was a practice task to familiarize the participantvtite interface. The participant was
asked to sort the set of 20 animal cards into two categoriéh, the two ends of the continuum
(a clown fish and a dachshund) labeled. Participants wedethalt when they clicked on a card,
highlighting of similar cards might occur. In reality, higgrhting was always shown for the two
nearest-neighboring cards (on the defined continuum) oickerd card. Importantly, we designed
the dataset so that, near the middle of the continuum, cavds dpposite biological classes would
be highlighted together. For example, when a dolphin waket, both a shark and a whale would
be highlighted. The intention was to indicate to the pagptait that highlighting is not always a clear
give-away for class labels. At the end of task 1 their fish vanmmal classification accuracy was
presented. No time limit was enforced.

Task 2 asked the participant to sort a set of 82 crosshaisdatd two categories. The set of cards,
the number of labeled cards, and the highlighting of cargeedded on condition. The participant
was again told that some cards might be highlighted, whettercondition actually provided for

highlighting or not. The participant was also told that catldat shared highlighting may not all
have the same classification. Again, no time limit was erddrcAfter they completed this task, a
follow up questionnaire was administered.

Conditions. Each of the 139 participants was randomly assigned to onecoh@itions, shown in
Figure 3, which varied according to three manipulations:

The number of labeled items] can be 2 or 4 @' vs. 4%). For conditions with two labeled items,
the labeled items are always,,y; = —1), (z2,y2 = 1); with four labeled items, they are always
(1,11 = —1), (x2,y2 = 1), (z3,y3 = 1), (x4,ys = —1). The features of; ...z, are those given
in Figure 2(b). We chose these four labeled points by maximgithe prediction differences made
by seven machine learning models, as discussed in the ridrse



Unlabeled items are distributed on a uniform grid or manifolds (grid” vs. moons”). The items
x5 . . . xgo Were either on a uniform grid in the 2D feature space, or aterg‘half-moons”, which is

a well-studied dataset in the semi-supervised learninghzenity. No linear boundary can separate
the two moons in feature space; andxy, if unlabeled, are the same as in Figure 2(b).

Highlighting similar items or not (the suffix h). For themoond’ conditions, the neighboring cards
of any clicked card may be highlighted. The neighborhooceifingd as within a radius ef= 0.07

in the Euclidean feature space. This value was chosen adiitlies at least two neighbors for each
point in themoon¥’dataset. To form the unweighted graph shown in Figure 3, a@e ésl placed
between all neighboring points.

The rationale for comparing these different conditiond Wwécome apparent as we consider how
different machine-learning models perform on these dédase
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..........

2! grigV 2'moond’ 2! moond’h 4 grigV 4'moond’ 4'moond’h
8 participants 8 participants 8 participants 22 participants 24 participants  r2Gents

Figure 3: The six experimental conditions. Large symbotidate labeled items, dots unlabeled
items. Highlighting is represented as graph edges.

3 Model Predictions

We hypothesize that human participants consider a set oelmadnging from simple to sophis-
ticated, and that they will perform model selection basedhentraining data given to them. We
start by considering seven typical machine learning motbetaotivate our choice, and present the
models we actually use later on. The seven models agraph) Graph-based semi-supervised
learning [1, 10], which propagates labels along the graphieverts to supervised learning when
there is no graph (i.e., no highlighting1NN,/;) 1-nearest-neighbor classifier with (Euclidean)
distance. (1NN,/;) 1-nearest-neighbor classifier with (Manhattan) distance. These two mod-
els are similar to exemplar models in psychology [3]multi-v) multiple vertical linear bound-
aries. (multi-h) multiple horizontal linear boundariegsingle-v)a single vertical linear boundary.
(single-h) a single horizontal linear boundary. We plot the label prgdins by these 7 models on
four of the six conditions in Figure 4. Their predictions Pmoond are identical t®'moond’n, and on
4'moond’ are identical tot’moond’n, except that “(graph)” is not available.

For conceptual simplicity and elegance, instead of usiegéltdisparate models we adopt a single
model capable of making all these predictions. In particule use a Gaussian Process (GP) with
different kernels (i.e., covariance functions)o simulate the seven models. For details on GPs
see standard textbooks such as [4]. In particular, we findrselfferent kernelg: to match GP
classification to each of the seven model predictions on edir@litions. This is somewhat unusual
in that our GPs are not learned from data, but by matchingratteelel predictions. Nonetheless, it
is a valid procedure to create seven different GPs whichlatélr be compared against human data.

For models (INN}), (multi-v), (multi-h), (single-v), and (single-h), we eisliagonal RBF kernels
diag(c?,03) and tuneoy, o, ON a coarse parameter grid to minimize classification desagent
w.r.t. the corresponding model prediction on all 6 conditioFor model (NN, ) we use a Laplace
kernel and tune its bandwidth. For model (graph), we produagaph kernek following the
Reproducing Kernel Hilbert Space trick in [6]. That is, weend a base RBF kernglwith a graph
component:

k(x,z) = k(z,2) — k] (I + cLK) 'eLk, (1)
wherexr, z are two arbitrary items (not necessarily on the gragh)= (k(z, 1), ..., k(z, 211,)) "
is the kernel vector betweenand alll + u pointszy . . . 2,4, in the graph K is the(l+u) x (I +u)
Gram matrix withK;; = k(z;,z;), L is the unnormalized graph Laplacian matrix derived from
unweighted edges on th&IN graph defined earlier for highlighting, ards the parameter that we
tune. We take the base RBF kerieb be the tuned kernel for model (LNfY). It can be shown that



k is a valid kernel formed by warping the base kerhelong the graph, see [6] for technical details.
We used the GP classification implementation with Expemtafiropagation approximation [5].

In the end, our seven GPs were ablestactly match the predictions made by the seven models in
Figure 4. We will use these GPs in the rest of the paper.

(graph) (INN/2) (INN,¢4) (multi-v) (multi-h) (single-v) (single-h)
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Figure 4: Predictions made by the seven models on 4 of the @itomms.

4 Behavioral Experiment Results

We now compare human categorization behaviors to modeiqtieas. We first consider the ag-
gregate behavior for all participants within each conditi©ne way to characterize this aggregate
behavior is the “majority vote” of the participants on eatdm. That is, if more than half of the
participants classified an item gs= 1, the majority vote classification for that itemygs= 1, and

so on. The first row in Figure 5 shows the majority vote for eaghdition. In these and all further
plots, blue circles indicatg = —1, red plusegy = 1, and green stars ambiguous, meaning the
classification into positive or negative is half-half. We@atompute how well the seven GPs predict
human majority votes. The accuracies of these GP model$avensin Table 1.

’ i 2 moond’ 2l moond’h Algrigv A'moond L ‘

Figure 5: Human categorization results. (First row) thearigj vote of participants within each
condition. (Bottom three rows) a sample of responses froriff@ent participants.

Of course, a majority vote only reveals average behavior. H&ke observed that there are wide
participant variabilities. Participants appeared to find tasks difficult, as their self-reported con-
fidence scores were fairly low in all conditions. It was alsted that strategies for completing the

The conditiord' moond’n™ will be explained later in Section 5.



(graph)  (INN{2)  (INN,;)  (multi-v)  (multi-h)  (single-v)  (single-h)

2lgridV 0.81 0.94 0.84 0.86 0.58 0.85 0.61
2'moond’ 0.47 0.84 0.62 0.74 0.42 0.79 0.45
2'moon&’h 0.50 0.78 0.56 0.76 0.36 0.76 0.39
4 grigV 0.54 0.61 0.64 0.64 0.50 0.60 0.51

4'moond’ 0.64 0.62 0.60 0.69 0.47 0.38 0.45

4'moon&’h 0.97 0.76 0.54 0.64 0.31 0.65 0.26
4'moond’n® | 0.68 0.63 0.44 0.56 0.40 0.59 0.42

Table 1: GP model accuracy in predicting human majority ¥oteeach condition.

task varied widely, with some participant simply categimdgzcards in the order they appeared on the
screen, while others took a much longer, studied approadst Mterestingly, different participants
seem to use different models, as the individual participéots in the bottom three rows of Figure 5
suggest. We would like to be able to make a claim about whaem&dm our set of models, each
participant used for classification. In order to do this, veenputeper participant accuracies of
the seven models on that participant’s classification. Veéa tind the model/ with the highest
accuracy for the participant, out of the seven models. B thighest accuracy is above 0.75, we
declare that the participant is potentially using modi&l otherwise no model is deemed a good fit
and we say the participant is using some “other” model. Wavshe proportion of participants in
each condition attributed to each of our seven models, @treet”, in Table 2.

(graph)  (INN¢2)  (INN,/1) (multi-v)  (multi-h)  (single-v) (single-h)| other
2 gridV 0.12 0.00 0.12 0.25 0.25 0.12 0.00 0.12
2'moond’ 0.00 0.12 0.00 0.25 0.25 0.25 0.00 0.12
2'moon&’h 0.12 0.00 0.00 0.38 0.25 0.00 0.00 0.25
4'grigV 0.00 0.05 0.09 0.00 0.00 0.18 0.09 0.59
4'moond’ 0.25 0.25 0.12 0.12 0.00 0.04 0.08 0.38
4'moond’h 0.39 0.09 0.09 0.04 0.04 0.00 0.13 0.22
4'moond’n® | 0.13 0.03 0.07 0 0 0.07 0.03 0.67

Table 2: Percentage of participants potentially using eactiel

Based on Figure 5, Table 1, and Table 2, we make some obs#rvati

1. When there are only two labeled points, the unlabeled digigh does not encourage humans to
perform manifold learning (comparirjgrid’ vs. 2'moond’). That is, they do not follow the possible
implicit graph structureX'moond’). Instead, in both conditions they prefer a simple singktical or
horizontal decision boundary, as Table 2 shtws

2. With two labeled points, even if they are explicitly giveretigraph structure in the form of
highlighting, participants still do not perform manifoledrning (comparing’moond’ vs. 2! moond’).

It seems they are “blocked” by the simpler vertical or honitad hypothesis, which perfectly explains
the labeled data.

3. When there are four labeled points but no highlighting, thetridtiution of unlabeled data still does
not encourage people to perform manifold learning (conmapdigridV vs. 4'moond’). This further
suggests that people can not easily extract manifold stre¢tom unlabeled data in order to learn,
when there is no hint to do so. However, most participant fygwven up the simple single vertical
or horizontal decision boundary, because it contradictk thie four labeled points.

4. Finally, when we provide the graph structure, there is a markwitch to manifold learning
(comparingd/moond’ vs. 4'moond’h). This suggests that a combination of the elimination ofered,
simpler hypotheses, together with a stronger graph hirglfirgives the originally less preferred
manifold learning model a chance of being used. It is undsrabndition that we observed human
manifold learning behavior.

2The two rows in Table 1 for these two conditions are therefore misleadirigaeerages classification made
with vertical and horizontal decision boundaries. Also note that ir2thenditions (multi-v) and (multi-h) are
effectively single linear boundary models (see Figure 4) and diftenf¢single-v) and (single-h) only slightly
due to the training method used.



5 Humans do not Blindly Follow the Highlighting

Do humans really learn using manifolds? Could they have tdbp “follow-the-highlighting”
procedure to label the manifolds 100% correctly: in the bejig, click on a labeled card to
highlight its neighboring unlabeled cards; pick one sudgimeorz’ and classify it with the label of
2; now click on (the now labeled)’ to find one of its unlabeled neighbar§, and repeat? Because
our graph has disconnected components with consistehiydd seeds, this procedure will succeed.
The procedure is known as propagating-1NN in semi-supeivisarning (Algorithm 2.7, [11]). In
this section we present three arguments that humans ardimdiy/lfollowing the highlighting.

First, participants ir2‘moond’h did not learn the manifold while those #imoon&’n did, even though
the two conditions have the saraéN highlighting.

Second, a necessary condition for follow-the-highlightis to always classify an unlabeled

according to a labeled highlighted neighbar Conversely, if a participant classifie$ as class
y', while all neighbors oft’ are either still unlabeled or have labels other thgnshe could not
have been using follow-the-highlighting ari. We say she has taken a leap-of-faith.én The

4'moond’h participants had an average of 17 leaps-of-faith among tab®classifications while

strict follow-the-highlighting procedure would yield zeleaps-of-faith.

Third, the basic challenge of follow-the-highlighting st the underlying manifold structure of the
stimuli may have been irrelevant. Would participants havans the same behavior, following the
highlighting, regardless of the actual stimuli? We therefdesigned the following experiment. Take
the 4'moond’n graph which has 4 labeled nodes, 78 unlabeled nodes, andaoeady matrix (i.e.,
edges) defined byNN, as shown in Figure 3. Take a random permutatioa (1, ..., m7s). Map
the feature vector of thé&h unlabeled point ta:,, while keeping the adjacency matrix the same.
This creates the random-looking graph in Figure 6(a) whiehcal 4'moond’n® condition (the suffix

R stands for random), which is equivalent to #&cond’h graph in structure. In particular, there are
two connected components with consistent labeled seedseWo, now the highlighted neighbors
may look very different than the clicked card.

If we assume humans blindly follow the highlighting (perbamisily), then we predict that they
are more likely to classify those unlabeled points nearesfiortest path length on the graph, not
Euclidean distance) a labeled point with the latter’s lahet that this correlation should be the same
under4!moond’n® and4'moond’n. This prediction turns out to be false. 30 additional undadgates
participated in the newmoon&n® condition. Figure 6(b) shows the above behavioral evaduati
which does not exhibit the predicted correlation, and iaitiedifferent from the same evaluation for
4'moon&’h in Figure 6(c). Again, this is evidence that humans are r&itfjpillowing the highlighting.

In fact, human behavior id'moond’n™ is similar to4'moond’. That is, having random highlighting is
similar to having no highlighting in how it affects humanegorization. This can be seen from the
last rows of Tables 1 and 2, and Figure 6(d)

6 Discussions

We have presented a set of experiments exploring human obditefarning behaviors. Our results
suggest that people can perform manifold learning, but ariign there is no alternative, simpler
explanation of the data, and people need strong hints abewfraph structure.

We propose that Bayesian model selection is one possibletavayplain these human behaviors.
Recall we defined seven Gaussian Processes, each with gewulifieernel. For a given GP with
kernelk, the evidence(yi.; | x1., k) is the marginal likelihood on labeled data, integrating thet
hidden discriminant function sampled from the GP. With nplét candidate GP models, one may
perform model selection by selecting the one with the largesginal likelihood. From the absence
of manifold learning in conditions without highlighting @rith random highlighting, we speculate
that the GP with the graph-based kerhédll) is special: it is accessible in a participant’s repeeoi

3The individual number of leaps-of-faith are 0, 1, 2, 4, 10, 13, #3,14, 15, 15, 16, 18, 19, 20, 21, 22, 24,
25, 27, 33, 36, and 36 respectively, for the 23 participants.

“In addition, if we create a GP from the Laplacian of the random highlightiaglyrthe GP accuracy in
predicting4'moond’ h® human majority vote is 0.46, and the percentage of participant&ricond’h® who can
be attributed to this model is 0.
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Figure 6: The4!moond’h® experiment with 30 participants. (a) THémoond’n® condition. (b) The
behavioral evaluation fot'moond’n®, where thez-axis is the shortest path length of an unlabeled
point to a labeled point, and theaxis is the fraction of participants who classified thatalngled
point consistent with the nearest labeled point. (c) Theeshehavioral evaluation fa moond’n. (d)
The majority vote ird!moond’n*.

only when strong hints (highlighting) exists and agree$ie underlying unlabeled data manifold
structure. Under this assumption, we can then explain tinérast between the lack of manifold
learning in2'moond’n, and the presence of manifold learning4finoond’n. On one hand, for the
2'moond’h condition, the evidence for the seven GP models on the twalddbpoints are: (graph)
0.249, (1NN/3) 0.250, (INN¢;) 0.250, (multi-v) 0.250, (multi-h) 0.250, (single-v) 024(single-

h) 0.249. The graph-based GP has slightly lower evidenae skaeral other GPs, which may be
due to our specific choice of kernel parameters in (1). In asecthere is no reason to prefer the
GP with a graph kernel, and we do not expect humans to learnasmifoid in 2'moond’h. On the
other hand, for!moond’n, the evidence for the seven GP models on those four labeletispare:
(graph) 0.0626, (LNNMg) 0.0591, (INN¢;) 0.0625, (multi-v) 0.0625, (multi-h) 0.0625, (single-v)
0.0341, (single-h) 0.0342. The graph-based GP has a sradlbleer other GPs. In particular, it is
better than the evidence 1/16 for kernels that treat theltheled points essentially independently.
The graph-based GP obtains this lead by warping the spacg #ie two manifolds so that the two
positive (resp. negative) labeled points tend to co-vahusT there is a reason to prefer the GP with
a graph kernel, and we do expect humans to learn on manifalGhiiand' n.

We also explore the convex combination of the seven GPs aharnmodel for human behavior:

k(\) = Z;l Aiki, wherel; > 0, \; = 1. This allows a weighted combination of kernels to be
used, and is more powerful than selecting a single kernehirAgve optimize the mixing weights

by maximizing the evidence(y.; | z1., k(A\)). This is a constrained optimization problem, and can
be easily solved up to local optimum (because evidence ismei@l non-convex) with a projected
gradient method, given the gradient of the log evidence. tReR'moond’n condition, in 100 trials
with random starting\ values, the maximum evidence always converges to 1/4, whgleptimum

A is not unique and occupies a subspéte\s, A3, Mg, A5, 0,0) with Ao+ A3+X4+ A5 = 1 and mean
(0,0.27,0.25,0.22,0.26, 0, 0). Note the weight for the graph-based kerkels zero. In contrast, for
the4'moond’n condition, in 100 trials\ overwhelmingly converges td, 0, 0, 0, 0, 0, 0) with evidence
0.0626. i.e., it again suggests that people would performifoid learning in4‘moond’h.

Of course, this Bayesian model selection analysis is owveplgied. For instance, we did not con-
sider people’s priop(\) on GP models, i.e., which model they would prefer beforerggthe data.
It is possible that humans favor models which produce aaisdfel decision boundaries. Defining
and incorporating non-uniform(\) priors is a topic for future research.
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