Human Memory Search as Initial–Visit Emitting Random Walk

Kwang–Sung Jun† (kjun@discovery.wisc.edu), Xiaojin Zhu†, Timothy Rogers‡, Zhuan Yang§, Ming Yuan§,
Wisconsin Institute for Discovery, Department of Computer Sciences, Information, Statistics, University of Wisconsin–Madison, Department of Mathematical Sciences, Tsinghua University

INITIAL–VISIT EMITTING (INVITE) RANDOM WALK

KEY: Output the state only when visiting it for the first time.

- **n states, m initial distribution, P**: Markov chain (row stochastic)
- **ξ = cow, N = horse**,...
- **censored list is not a permutation of n items or a prefix of it.**
- **Does it produce every permutation? Or every prefix?**

Transient state: state that has nonzero probability of not coming back to itself in any finite time.

Recurrent state: state that is not transient. A is closed if i ∈ A and i implies a walk from i cannot reach j.

The random walk runs indefinitely.

A censored list is not Markovian anymore.

GOOD NEWS: captures important human behavior in a cognitive task (see below)

BAD NEWS: Parameter estimation is HARD!

Main Contribution

1. First tractable model for the maximum likelihood estimate (MLE) of INVITE
2. Consistency of the INVITE MLE

Verbal Fluency: A Human Memory Search Task

TASK: List examples of animals in 60 seconds without repetition

- Different categories possible: e.g., vehicles
- A "generic" task where participants must remember past productions, inhibit this, and focus on the task.

1. Clinical application: different neurological syndromes have different patterns in lists (e.g. repeated, more, less, irrelevant items).
2. Study of human memory: responses are runs of semantically related items.
3. Related structure in semantic representation
4. Our focus is on the second application, i.e., repetition is general, but can be allowed by a reduction (see future work).

Consistency of INVITE MLE

- **Arg**: α, γ, θ – INVITE (P)
- **Which**: (m, P), (m, Π), log Pr(α = m, P)

Question: Does (m, P) converge to (m, Π) ?

A necessary condition: identifiability

4. INVITE is not identifiable (adjusting self-transitions does not change the log likelihood).

5. INVITE with m > 0 (element-wise) and without self-transitions in m is identifiable.

Challenge: a common strategy is to show uniform convergence of the log likelihood, which is not true in INVITE MLE.

Solution: show the local uniform convergence

-uniformly convergent in an intersection of a max-norm ball and a subspace of “equivalent chain decomposition” around the true parameter (m, Π).

Consistency: if m > 0 (element-wise), INVITE MLE is consistent.

Parameter Estimation: Regularized MLE

- **Data**: Dnm = (d(1), ..., d(n))
- **Relax**: assumption true time-evolving random walk terminates after finite number of steps.
- **Initial distribution m**: MAP estimation (easy)
- **Transition Matrix P**: constrained (nonnegative, sum to 1)
- **Easier**: unconstrained parameterization

Optimization problem

Experiment: Toy

Goal (1): confirm the consistency result (2) compare with baselines

- Naive Random Walk (NRW)

Use INVITE to generate censored lists

RESULTS

- **Data**: Name m n Leash Min Max Mean Median
- **Fixed**: 452 4622 1 47 30.73 21

Result: negative log likelihood on holdout set (smaller is better)

- **Without**: some neg. bias

References

