Supplementary Material for "Human Memory Search as Initial-Visit Emitting Random Walk"

Kwang-Sung Jun*, Xiaojin Zhu[†], Timothy Rogers[‡] *Wisconsin Institute for Discovery, [†]Department of Computer Sciences, [‡]Department of Psychology University of Wisconsin-Madison kjun@discovery.wisc.edu, jerryzhu@cs.wisc.edu, ttrogers@wisc.edu

Zhuoran Yang Department of Mathematical Sciences Tsinghua University yzr11@mails.tsinghua.edu.cn Ming Yuan Department of Statistics University of Wisconsin-Madison myuan@stat.wisc.edu

A Derivative of (6) w.r.t. β

Give a censored list **a**, define a mapping σ that maps a state to its position in **a**; that is, $\sigma(a_i) = i$. Let $\mathbf{N}^{(k)} = (\mathbf{I} - \mathbf{Q}^{(k)})^{-1}$. Hereafter, we drop the superscript (k) from \mathbf{Q} , \mathbf{R} and \mathbf{N} when it's clear from the context.

Using $\partial (A^{-1})_{k\ell}/\partial A_{ij} = -(A^{-1})_{ki}(A^{-1})_{j\ell}$, the following identity becomes useful:

$$\begin{split} \frac{\partial N_{k\ell}}{\partial Q_{ij}} &= \frac{\partial ((\mathbf{I} - \mathbf{Q})^{-1})_{k\ell}}{\partial Q_{ij}} \\ &= \sum_{c,d} \frac{\partial ((\mathbf{I} - \mathbf{Q})^{-1})_{k\ell}}{\partial (\mathbf{I} - \mathbf{Q})_{cd}} \frac{\partial (\mathbf{I} - \mathbf{Q})_{cd}}{\partial Q_{ij}} \\ &= \sum_{c,d} ((\mathbf{I} - \mathbf{Q})^{-1})_{kc} ((\mathbf{I} - \mathbf{Q})^{-1})_{d\ell} \mathbb{1}_{\{c=i,d=j\}} \\ &= ((\mathbf{I} - \mathbf{Q})^{-1})_{ki} ((\mathbf{I} - \mathbf{Q})^{-1})_{j\ell} \\ &= N_{ki} N_{jl}. \end{split}$$

The derivative of **P** w.r.t. β is given as follows:

$$\begin{aligned} \frac{\partial P_{rc}}{\partial \beta_{ij}} &= \mathbb{1}\{r=i\} \left(\frac{\mathbb{1}\{j=c\}e^{\beta_{ic}}(\sum_{\ell=1}^{n}e^{\beta_{i\ell}}) - e^{\beta_{ic}}e^{\beta_{ij}}}{(\sum_{\ell=1}^{n}e^{\beta_{i\ell}})^2} \right) \\ &= \mathbb{1}\{r=i\}(-P_{ic}P_{ij} + \mathbb{1}\{j=c\}P_{ic}). \end{aligned}$$

The derivative of $\log \mathbb{P}(a_{k+1} \mid a_{1:k})$ with respect to $\boldsymbol{\beta}$ is

$$\frac{\partial \log \mathbb{P}(a_{k+1} \mid a_{1:k})}{\partial \beta_{ij}} = \mathbb{P}(a_{k+1} \mid a_{1:k})^{-1} \sum_{\ell=1}^{k} \frac{\partial (N_{k\ell} R_{\ell 1})}{\partial \beta_{ij}}$$
$$= \mathbb{P}(a_{k+1} \mid a_{1:k})^{-1} \left(\sum_{\ell=1}^{k} \frac{\partial N_{k\ell}}{\partial \beta_{ij}} R_{\ell 1} + N_{k\ell} \frac{\partial R_{\ell 1}}{\partial \beta_{ij}} \right)$$

We need to compute $\frac{\partial N_{k\ell}}{\partial \beta_{ij}}$:

$$\begin{split} \frac{\partial N_{k\ell}}{\partial \beta_{ij}} &= \sum_{c,d=1}^{k} \frac{\partial ((\mathbf{I} - \mathbf{Q})^{-1})_{k\ell}}{\partial (\mathbf{I} - \mathbf{Q})_{cd}} \frac{\partial (\mathbf{I} - \mathbf{Q})_{cd}}{\partial \beta_{ij}} \\ &= \sum_{c,d=1}^{k} (-1) N_{kc} N_{d\ell} \cdot (-1) \mathbb{1}_{\{a_c=i\}} (-P_{ia_d} P_{ij} + \mathbb{1}_{\{a_d=j\}} P_{ia_d}) \\ &= \mathbb{1}_{\{\sigma(i) \leq k\}} N_{k\sigma(i)} \sum_{d=1}^{k} N_{d\ell} (-P_{ia_d} P_{ij} + \mathbb{1}_{\{a_d=j\}} P_{ia_d}), \end{split}$$

where $\sigma(i) \leq k$ means item *i* appeared among the first *k* items in the censored list **a**. Then,

$$\begin{split} \sum_{\ell=1}^{k} \frac{\partial N_{k\ell}}{\partial \beta_{ij}} R_{\ell 1} &= \mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)} \sum_{\ell,d=1}^{k} N_{d\ell} (-P_{ia_d} P_{ij} + \mathbb{1}_{\{a_d=j\}} P_{ia_d}) R_{\ell 1} \\ &= \mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)} \left(-P_{ij} \sum_{d=1}^{k} P_{ia_d} \sum_{\ell=1}^{k} N_{d\ell} R_{\ell 1} + \sum_{d=1}^{k} \mathbb{1}_{\{a_d=j\}} P_{ia_d} \sum_{\ell=1}^{k} N_{d\ell} R_{\ell 1} \right) \\ &= \mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)} \left(-P_{ij} (\mathbf{QNR})_{\sigma(i)1} + \mathbb{1}_{\{\sigma(j) \le k\}} P_{ij} (\mathbf{NR})_{\sigma(j)1} \right) \end{split}$$

and

$$\sum_{\ell=1}^{k} N_{k\ell} \frac{\partial R_{\ell 1}}{\partial \beta_{ij}} = \sum_{\ell=1}^{k} N_{kl} \mathbb{1}_{\{\ell=\sigma(i)\}} \left(-P_{ia_{k+1}} P_{ij} + \mathbb{1}_{\{a_{k+1}=j\}} P_{ia_{k+1}} \right)$$
$$= \mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)} \left(-P_{ia_{k+1}} P_{ij} + \mathbb{1}_{\{a_{k+1}=j\}} P_{ia_{k+1}} \right).$$

Putting everything together,

$$\frac{\partial \log \mathbb{P}(a_{k+1} \mid a_{1:k})}{\partial \beta_{ij}} = \frac{\mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)}}{\mathbb{P}(a_{k+1} \mid a_{1:k})} (-P_{ij}(\mathbf{QNR})_{\sigma(i)1} + \mathbb{1}_{\{\sigma(j) \le k\}} P_{ij}(\mathbf{NR})_{\sigma(j)1} - P_{ia_{k+1}} P_{ij} + \mathbb{1}_{\{a_{k+1}=j\}} P_{ia_{k+1}}) \\
= \frac{\mathbb{1}_{\{\sigma(i) \le k\}} N_{k\sigma(i)} P_{ij}}{\mathbb{P}(a_{k+1} \mid a_{1:k})} \left(-(\mathbf{QNR})_{\sigma(i)1} + \mathbb{1}_{\{\sigma(j) \le k\}} (\mathbf{NR})_{\sigma(j)1} P_{ia_{k+1}} \left(\frac{\mathbb{1}_{\{a_{k+1}=j\}}}{P_{ij}} - 1 \right) \right) \\$$
r all $i \ne j$

for all $i \neq j$.

B The Proof of Theorem 2

We first claim that (i) there must be a recurrent state i in a censored list where $i \in W_k$ for some k. Then, it suffices to show that given (i) is true, (ii) recurrent states outside W_k cannot appear, (iii) every states in W_k must appear, and (iv) a transient state cannot appear after a recurrent state.

(i): suppose there is no recurrent state in a censored list $\mathbf{a} = (a_{1:M})$. Then, every state $a_i, i \in [M]$, is a transient state. Since the underlying random walk runs indefinitely in finite state space, there must be a state $a_j, j \in [M]$, that is visited infinitely many times. This contradicts the fact that a_j is a transient state.

Suppose a recurrent state $i \in W_k$ was visited. Then,

(*ii*): the random walk cannot escape W_k since W_k is closed.

(iii): the random walk will reach to every state in W_k in finite time since W_k is finite and irreducible.

(*iv*): the same reason as (*iii*).

C The Proof of Theorem 4

It suffices to show that $\mathbb{P}(a_{k+1} \mid a_{1:k}; \mathbf{P}) = \mathbb{P}(a_{k+1} \mid a_{1:k}; \mathbf{P}')$, where $\mathbf{a} = (a_1, \ldots, a_M)$ and $k \leq M - 1$. Define submatrices (\mathbf{Q}, \mathbf{R}) and $(\mathbf{Q}', \mathbf{R}')$ from \mathbf{P} and \mathbf{P}' , respectively, as in (2). Note that $\mathbf{Q}' = \operatorname{diag}(q_{1:k}) + (\mathbf{I} - \operatorname{diag}(q_{1:k}))\mathbf{Q}$ and $\mathbf{R}' = (\mathbf{I} - \operatorname{diag}(q_{1:k}))\mathbf{R}$.

$$\mathbb{P}(a_{k+1} \mid a_{1:k}; \mathbf{P}') = (\mathbf{I} - \operatorname{diag}(q_{1:k}) - (\mathbf{I} - \operatorname{diag}(q_{1:k}))\mathbf{Q})^{-1} (\mathbf{I} - \operatorname{diag}(q_{1:k}))\mathbf{R}$$
$$= (\mathbf{I} - \mathbf{Q})^{-1} (\mathbf{I} - \operatorname{diag}(q_{1:k}))^{-1} (\mathbf{I} - \operatorname{diag}(q_{1:k}))\mathbf{R}$$
$$= \mathbb{P}(a_{k+1} \mid a_{1:k}; \mathbf{P})$$

D The Proof of Theorem 5

Suppose $(\pi, \mathbf{P}) \neq (\pi', \mathbf{P}')$. We show that there exists a censored list a such that $\mathbb{P}(\mathbf{a}; \pi, \mathbf{P}) \neq \mathbb{P}(\mathbf{a}; \pi', \mathbf{P}')$.

Case 1: $\pi \neq \pi'$.

It follows that $\pi_i \neq \pi'_i$ for some *i*. Note that the marginal probability of observing *i* as the first item in a censored list is $\sum_{\mathbf{a}\in\mathcal{D}:a_1=i} \mathbb{P}(\mathbf{a}; \boldsymbol{\pi}, \mathbf{P}) = \pi_i$. Then,

$$\sum_{\in \mathcal{D}: a_1=i} \mathbb{P}(\mathbf{a}; \boldsymbol{\pi}, \mathbf{P}) = \pi_i \neq \pi'_i = \sum_{\mathbf{a} \in \mathcal{D}: a_1=i} \mathbb{P}(\mathbf{a}; \boldsymbol{\pi}', \mathbf{P}').$$

which implies that there exists a censored list **a** for which $\mathbb{P}(\mathbf{a}; \pi, \mathbf{P}) \neq \mathbb{P}(\mathbf{a}; \pi', \mathbf{P}')$.

Case 2: $\pi = \pi'$ but $\mathbf{P} \neq \mathbf{P}'$.

It follows that $P_{ij} \neq P'_{ij}$ for some *i* and *j*. Then, we compute the marginal probability of observing (i, j) as the first two items in a censored list, which results in

$$\sum_{\mathbf{a}\in\mathcal{D}:^{a_1=i,}_{a_2=j}} \mathbb{P}(\mathbf{a};\boldsymbol{\pi},\mathbf{P}) = \pi_i P_{ij} \neq \pi_i' P_{ij}' = \sum_{\mathbf{a}\in\mathcal{D}:^{a_1=i,}_{a_2=j}} \mathbb{P}(\mathbf{a};\boldsymbol{\pi}',\mathbf{P}').$$

Then, there exists a censored list **a** for which $\mathbb{P}(\mathbf{a}; \pi, \mathbf{P}) \neq \mathbb{P}(\mathbf{a}; \pi', \mathbf{P}')$.

E Results Required for Theorem 6

a

Throughout, assume $\boldsymbol{\theta} = (\boldsymbol{\pi}^{\top}, \mathbf{P}_{1}, \dots, \mathbf{P}_{n})^{\top}$. Let $\operatorname{supp}(\boldsymbol{\theta})$ be the set of nonzero dimensions of $\boldsymbol{\theta}$: $\operatorname{supp}(\boldsymbol{\theta}) = \{i \mid \theta_i > 0\}$. Lemma 1 shows conditions on which $\mathcal{Q}^*(\boldsymbol{\theta})$ and $\widehat{\mathcal{Q}}_m(\boldsymbol{\theta})$ are above $-\infty$. Lemma 1. Assume A1. Then,

$$supp(\boldsymbol{\theta}) \supseteq supp(\boldsymbol{\theta}^*) \iff \mathcal{Q}^*(\boldsymbol{\theta}) > -\infty$$
 (7)

$$supp(\boldsymbol{\theta}) \supseteq supp(\boldsymbol{\theta}^*) \implies \widehat{\mathcal{Q}}_m(\boldsymbol{\theta}) > -\infty, \forall m.$$
 (8)

Proof. Define two vectors of probabilities w.r.t. $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^*$: $\mathbf{q} = [q_{\mathbf{a}} = \mathbb{P}(\mathbf{a}; \boldsymbol{\theta})]_{\mathbf{a} \in \mathcal{D}}$ and $\mathbf{q}^* = [q_{\mathbf{a}}^* = \mathbb{P}(\mathbf{a}; \boldsymbol{\theta}^*)]_{\mathbf{a} \in \mathcal{D}}$. Note that

$$\operatorname{supp}(\mathbf{q}) \supseteq \operatorname{supp}(\mathbf{q}^*) \iff \mathcal{Q}^*(\boldsymbol{\theta}) > -\infty$$

by the definition of $Q^*(\theta)$. Thus, for (7), it suffices to show that

$$\operatorname{supp}(\boldsymbol{\theta}) \supseteq \operatorname{supp}(\boldsymbol{\theta}^*) \iff \operatorname{supp}(\mathbf{q}) \supseteq \operatorname{supp}(\mathbf{q}^*).$$

 (\implies) The LHS implies that the directed graph enduced by θ includes the graph enduced by θ^* ; a path that is possible w.r.t. θ^* is also possible w.r.t. θ . Recall that a list is generated by a random walk. Let $\mathbf{a} \in \text{supp}(\mathbf{q}^*)$. There exists a random walk under θ^* that generates \mathbf{a} . Then, the same random walk is also possible under θ , which implies $\mathbf{a} \in \text{supp}(\mathbf{q})$.

 (\Leftarrow) Suppose the LHS is false. Then, there exists (i, j) s.t. $P_{ij} = 0$ and $P_{ij}^* > 0$. Consider a list a such that it has nonzero probability w.r.t. θ^* (that is, $q_{\mathbf{a}}^* > 0$), and its first two items are *i* then *j*. Since $P_{ij} = 0$, $q_{\mathbf{a}} = 0$. However, the RHS implies that $q_{\mathbf{a}} > 0$ since $q_{\mathbf{a}}^* > 0$: a contradiction.

For (8),

$$\operatorname{supp}(\boldsymbol{\theta}) \supseteq \operatorname{supp}(\boldsymbol{\theta}^*) \implies \mathcal{Q}^*(\boldsymbol{\theta}) > -\infty \implies \widehat{\mathcal{Q}}_m(\boldsymbol{\theta}) > -\infty, \forall m_{\mathcal{H}}$$

where the last implication is due to the fact that a censored list $\mathbf{a}^{(i)}$ that appears in $\widehat{\mathcal{Q}}_m(\boldsymbol{\theta})$ is generated by $\boldsymbol{\theta}^*$, so the term $\log \mathbb{P}(\mathbf{a}^{(i)}; \boldsymbol{\theta})$ also appears in $\mathcal{Q}^*(\boldsymbol{\theta})$.

Lemma 2. Assume A1. Then, θ^* is the unique maximizer of $\mathcal{Q}^*(\theta)$.

Proof. If θ satisfies $\operatorname{supp}(\theta) \not\supseteq \operatorname{supp}(\theta^*)$, then $\mathcal{Q}^*(\theta) = -\infty$ by Lemma 1, so such θ cannot be a maximizer. Thus, it is safe to restrict our attention to θ 's whose support include that of θ^* : $\operatorname{supp}(\theta) \supseteq \operatorname{supp}(\theta^*)$.

Recall the definition of $Q^*(\theta)$:

$$\mathcal{Q}^*(\boldsymbol{ heta}) = \sum_{\mathbf{a}\in\mathcal{D}} \mathbb{P}(\mathbf{a}; \boldsymbol{ heta}^*) \log \mathbb{P}(\mathbf{a}; \boldsymbol{ heta}) \propto -\mathrm{KL}(\boldsymbol{ heta}^* || \boldsymbol{ heta}),$$

where $\text{KL}(\theta^*||\theta)$ is well defined since $\text{supp}(\theta) \supseteq \text{supp}(\theta^*)$. Due to the identifiability of the model (Theorem 5) and the unique minimizer property of the KL-divergence, θ^* is the unique maximizer.

We denote by $\operatorname{decomp}(\theta) = \{T, W_1, \ldots, W_K\}$ the decomposition enduced by θ as in Theorem 1. Lemma 3. $\operatorname{supp}(\widehat{\theta}_m) \supseteq \operatorname{supp}(\theta^*)$ for large enough m. Furthermore, $\operatorname{decomp}(\widehat{\theta}_m) = \operatorname{decomp}(\theta^*)$ for large enough m.

Proof. Note that due to the strong law of large numbers, a list a is valid in the true model θ^* must appear in D_m for large enough m. Since the number of censored lists that can be generated by θ^* is finite, one observes every valid censored list in the true model θ^* ; that is, there exists m' such that

$$m \ge m' \implies \{\mathbf{a} \mid \mathbf{a} \in D_m\} = \{\mathbf{a} \mid \mathbb{P}(\mathbf{a}; \boldsymbol{\theta}^*) > 0\}.$$

For the first statement, assume that $m \ge m'$. Since we observe every valid list in θ^* , by the definition of $\widehat{Q}_m(\theta)$, the following holds true:

$$\forall \boldsymbol{\theta} \in \boldsymbol{\Theta}, \ \widehat{\mathcal{Q}}_m(\boldsymbol{\theta}) > -\infty \iff \mathcal{Q}^*(\boldsymbol{\theta}) > -\infty.$$

Then, using Lemma 1,

$$\widehat{\mathcal{Q}}_m(\widehat{\boldsymbol{\theta}}_m) > -\infty \implies \mathcal{Q}^*(\widehat{\boldsymbol{\theta}}_m) > -\infty \implies \operatorname{supp}(\widehat{\boldsymbol{\theta}}_m) \supseteq \operatorname{supp}(\boldsymbol{\theta}^*).$$

For the second statement, assume $m \geq m'$. Let $\operatorname{decomp}(\widehat{\theta}_m) = \{\widehat{T}, \widehat{W}_1, \ldots, \widehat{W}_{\widehat{K}}\}$ and $\operatorname{decomp}(\theta^*) = \{T^*, W_1^*, \ldots, W_{K^*}^*\}$. Furthermore, define $\widehat{\tau}(i)$ to be the index of the closed irreducible set in $\operatorname{decomp}(\widehat{\theta}_m)$ to which *i* belongs, and define $\tau^*(i)$ similary.

Suppose that the data D_m contains every valid list in θ^* , but decomp $(\hat{\theta}_m) \neq \text{decomp}(\theta^*)$. There are four cases. In each case, we show that there exists a list that is valid in θ^* but not in $\hat{\theta}_m$, which means that the log likelihood of $\hat{\theta}_m$ is $-\infty$. This is a contradiction in that $\hat{\theta}_m$ is the MLE.

Case 1 : $\exists s_1$ s.t. s_1 is transient in $\hat{\theta}$ but recurrent in θ^* .

Let W_k^* be the closed irreducible set to which s_1 belongs and $L = |W_k^*|$. Use θ^* to start a random walk from s_1 and generate a censored list **a**, which consists of all states in W_k^* : $\mathbf{a} = (s_1, s_2, \ldots, s_L)$. If **a** is invalid in $\hat{\theta}_m$, we have a contradiction. If not, s_L must be recurrent in $\hat{\theta}_m$ by Theorem 2. Use θ^* to generate a censored list **a'** that starts from s_L . Then, s_1 must appear after s_L in **a'**. However, this is impossible in $\hat{\theta}_m$ since s_1 is transient and s_L is recurrent: a contradiction.

Case 2 : $\exists t \text{ s.t.}$ is transient in θ^* but recurrent in $\hat{\theta}_m$.

For brevity, assume that t is the only transient state in θ^* ; this can be easily relaxed. Use θ^* to generate a censored list that starts with t, say $\mathbf{a} = (t, s_1, \ldots, s_L)$. By Theorem 2, $\{s_{1:L}\}$ is a closed irreducible set in θ^* . Define $\mathbf{a}' = (s_{1:L})$, which is also valid in θ^* . Now, a may or may not be valid in $\hat{\theta}_m$. Assume that a is valid in $\hat{\theta}_m$ since otherwise we have a contradiction. Then, in $\hat{\theta}_m$, $\{t, s_{1:L}\}$ must be a closed irreducible set since t is recurrent. Then, $\mathbf{a}' = (s_{1:L})$ is invalid in $\hat{\theta}_m$ since t must be visited as well: a contradiction.

Case 3. $\exists (i,j) \text{ s.t. } \hat{\tau}(i) = \hat{\tau}(j)$, but $\tau^*(i) \neq \tau^*(j)$.

Start a random walk from the state *i* w.r.t. θ^* and generate a censored list **a**. By Theorem 2, the censored list **a** does not contain *j*. In $\hat{\theta}_m$, however, a censored list starting from *i* must also output *j* since *i* and *j* are in the same closed irreducible set. Thus, **a** is invalid in $\hat{\theta}_m$: a contradiction.

Case 4. $\exists (i,j) \text{ s.t. } \tau^*(i) = \tau^*(j) \text{ , but } \widehat{\tau}(i) \neq \widehat{\tau}(j).$

Start a random walk from the state *i* w.r.t. θ^* and generate a censored list **a**. By Theorem 2, the censored list **a'** must also contain *j*. In $\hat{\theta}_m$, however, a censored list starting from *i* cannot output *j* since *j* is in a different closed irreducible set. Thus, **a'** is invalid in $\hat{\theta}_m$: a contradiction.

Lemma 4. Assume A1. Let $\{\widehat{\theta}_{m_j}\}$ be a convergent subsequence of $\{\widehat{\theta}_m\}$ and θ' be its limit point: $\theta' = \lim_{i \to \infty} \widehat{\theta}_{m_i}$. Then, $\lim_{i \to \infty} \mathbb{P}(\mathbf{a}; \widehat{\theta}_{m_i}) = \mathbb{P}(\mathbf{a}; \theta')$ for all \mathbf{a} that is valid in θ^* .

Proof. There are exactly two case-by-case operators which causes the likelihood function to be discontinuous. The operators appear in (3) and (1), which respectively rely on the following conditions w.r.t. a list $\mathbf{a} = (a_{1:M})$:

$$(\mathbf{I} - \mathbf{Q}^{(k)})^{-1} \text{ exists, } \forall k \in [M - 1]$$
(9)

$$\mathbb{P}(s \mid a_{1:M}; \boldsymbol{\theta}) = 0, \forall s \in S \setminus \{a_{1:M}\}.$$
(10)

Step 1: claim that $\forall \theta \in \Theta$,

$$\operatorname{supp}(\boldsymbol{\theta}) \supseteq \operatorname{supp}(\boldsymbol{\theta}^*)$$
 and $\operatorname{decomp}(\boldsymbol{\theta}) = \operatorname{decomp}(\boldsymbol{\theta}^*) \implies \forall \mathbf{a} \text{ valid in } \boldsymbol{\theta}^* (9) \text{ and } (10)$

To show (9), suppose it is false for some $k \in [M-1]$ and some censored list $\mathbf{a} = (a_{1:M})$ valid in $\boldsymbol{\theta}^*$. The nonexistence of $(\mathbf{I} - \mathbf{Q}^{(k)})^{-1}$ implies that there is no path from a_k to a state that is outside of $\{a_{1:k}\}$ whereas there is such a path w.r.t. $\boldsymbol{\theta}^*$. This contradicts $\operatorname{supp}(\boldsymbol{\theta}) \supseteq \operatorname{supp}(\boldsymbol{\theta}^*)$.

To show (10), consider a censored list $\mathbf{a} = (a_{1:M})$ that is valid in θ^* . By Theorem 2, the last state a_M must be a recurrent state in a closed irreducible set W w.r.t. θ^* . Since θ has the same decomposition as θ^* and every state in W must be present in \mathbf{a} , no other state can appear after a_M . This implies (10).

Define

$$\Theta' = \{ \theta \in \Theta \mid ||\theta - \theta'||_{\infty} < \min_{i} \theta'_{i}, \operatorname{decomp}(\theta) = \operatorname{decomp}(\theta') \}.$$

Step 2: claim that $\mathbb{P}(\mathbf{a}; \boldsymbol{\theta})$ is a continuous function of $\boldsymbol{\theta}$ in the subspace $\boldsymbol{\Theta}'$, $\forall \mathbf{a}$ valid in $\boldsymbol{\theta}^*$. Note that $\forall \boldsymbol{\theta} \in \boldsymbol{\Theta}'$,

$$\supp(\boldsymbol{\theta}) \supseteq \supp(\boldsymbol{\theta}') \supseteq supp(\boldsymbol{\theta}') \\ \operatorname{decomp}(\boldsymbol{\theta}) = \operatorname{decomp}(\boldsymbol{\theta}') = \operatorname{decomp}(\boldsymbol{\theta}^*),$$

where the first subset relation is due to the ∞ -norm in the definition of Θ' , the second subset relation and the last equality is due to Lemma 3 and $\theta' = \lim_{j \to \infty} \widehat{\theta}_{m_j}$.

This implies, together with step 1, that $\forall \theta \in \Theta'$, (9) and (10) are satisfied, which effectively gets rid of the case-by-case operators in Θ' . This concludes the claim.

Step 3: $\lim_{j\to\infty} \mathbb{P}(\mathbf{a}; \widehat{\boldsymbol{\theta}}_{m_j}) = \mathbb{P}(\mathbf{a}; \boldsymbol{\theta}')$ for all \mathbf{a} that is valid in $\boldsymbol{\theta}^*$.

Since $\widehat{\theta}_{m_i} \to \theta'$, there exists J such that

$$j \ge J \implies ||\widehat{oldsymbol{ heta}}_{m_j} - oldsymbol{ heta}'||_\infty < \min_i heta'_i$$

Thus, after J, the sequence enters the subspace Θ' in which $\mathbb{P}(\mathbf{a}; \theta)$ is continuous $\forall \mathbf{a}$ valid in θ^* , which concludes the claim.

Lemma 5. Assume A1. Let $\{\widehat{\theta}_{m_j}\}$ be a convergent subsequence of $\{\widehat{\theta}_m\}$ and θ' be its limit point: $\theta' = \lim_{j \to \infty} \widehat{\theta}_{m_j}$. Then, $\mathcal{Q}^*(\theta') > -\infty$.

Proof. Suppose not: $Q^*(\theta') = -\infty$. Then, there exists a list **a'** that is valid in θ^* whose likelihood w.r.t. θ' converges to 0:

$$\exists \mathbf{a}' \text{ s.t. } \mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}^*) > 0 \text{ and } \mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}') = 0$$

By Lemma 4, $\mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}') = 0$ implies that $\lim_{j \to \infty} \mathbb{P}(\mathbf{a}'; \widehat{\boldsymbol{\theta}}_{m_j}) = 0$.

Let $0 < \epsilon < \mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}^*)$. Denote by $\#\{\mathbf{a}'\}$ the number of occurrences of the list \mathbf{a}' in $\{\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(m_j)}\}$. Then, the following statements hold:

$$\exists J_1 \text{ s.t. } j > J_1 \implies \left| \frac{\#\{\mathbf{a}'\}}{m_j} - \mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}^*) \right| < \epsilon$$
(11)

$$\exists J_2 \text{ s.t. } j < J_2 \implies \left| \widehat{\mathcal{Q}}_{m_j}(\boldsymbol{\theta}^*) - \mathcal{Q}^*(\boldsymbol{\theta}^*) \right| < \epsilon$$
(12)

$$\exists J_3 \text{ s.t. } j > J_3 \implies \log \mathbb{P}(\mathbf{a}'; \widehat{\boldsymbol{\theta}}_{m_j}) < \frac{\mathcal{Q}^*(\boldsymbol{\theta}^*) - \epsilon}{\mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}^*) - \epsilon}.$$
(13)

The first two statements are due to the law of large numbers, and the last statement is due to the convergence of $\mathbb{P}(\mathbf{a}'; \widehat{\boldsymbol{\theta}}_{m_j})$ to 0. Note that $\widehat{\mathcal{Q}}_{m_j}(\boldsymbol{\theta}^*) \leq \widehat{\mathcal{Q}}_{m_j}(\widehat{\boldsymbol{\theta}}_{m_j})$ since $\widehat{\boldsymbol{\theta}}_{m_j}$ is the maximizer of the function $\widehat{\mathcal{Q}}_{m_j}(\boldsymbol{\theta})$. Then, if $j > \max\{J_1, J_2, J_3\}$,

$$\begin{aligned} \mathcal{Q}^*(\boldsymbol{\theta}^*) - \epsilon &\leq \widehat{\mathcal{Q}}_{m_j}(\boldsymbol{\theta}^*) \\ &\leq \widehat{\mathcal{Q}}_{m_j}(\widehat{\boldsymbol{\theta}}_{m_j}) \\ &= \left(\sum_{\mathbf{a} \neq \mathbf{a}'} \frac{\#\{\mathbf{a}\}}{m_j} \log \mathbb{P}(\mathbf{a}; \widehat{\boldsymbol{\theta}}_{m_j})\right) + \frac{\#\{\mathbf{a}'\}}{m_j} \log \mathbb{P}(\mathbf{a}'; \widehat{\boldsymbol{\theta}}_{m_j}) \\ &< (\mathbb{P}(\mathbf{a}'; \boldsymbol{\theta}^*) - \epsilon) \log \mathbb{P}(\mathbf{a}'; \widehat{\boldsymbol{\theta}}_{m_j}) \\ &< \mathcal{Q}^*(\boldsymbol{\theta}^*) - \epsilon, \end{aligned}$$

where the last inequality is due to (13). This is a contrandiction.

Lemma 6. Assume A1. Let $\{\widehat{\theta}_{m_j}\}$ be a convergent subsequence of $\{\widehat{\theta}_m\}$. Let $\theta' = \lim_{j \to \infty} \widehat{\theta}_{m_j}$. Then, $\lim_{i \to \infty} \widehat{Q}_{m_i}(\widehat{\theta}_{m_i}) = \mathcal{Q}^*(\theta')$.

Proof. The idea is that we can have a compact ball around the limit point θ' and show that the log likelihood $\hat{Q}_{m_j}(\theta)$ converges uniformly on the ball. Then, after the sequence $\hat{\theta}_{m_j}$ gets in the ball, we can use the uniform convergence of the log likelihood.

Let $B_{\theta'}(r) = \{ \theta \in \Theta \mid ||\theta - \theta'||_{\infty} \leq r \}$ be an ∞ -norm ball around θ' . Choose $\epsilon' < \min_{i \in \text{supp}(\theta)} \theta_i$. We claim that

$$\forall \boldsymbol{\theta} \in B_{\boldsymbol{\theta}'}(\boldsymbol{\epsilon}'), \ \mathcal{Q}^*(\boldsymbol{\theta}) > -\infty \text{ and } \widehat{\mathcal{Q}}_m(\boldsymbol{\theta}) > -\infty, \forall m.$$
(14)

Let $\theta \in B_{\theta'}(\epsilon')$. By the definition of the ball $B_{\theta'}(\epsilon')$, $\operatorname{supp}(\theta) \supseteq \operatorname{supp}(\theta')$. Note that $Q^*(\theta') > -\infty$ by Lemma 5. By Lemma 1, $\operatorname{supp}(\theta') \supseteq \operatorname{supp}(\theta^*)$:

$$\operatorname{supp}(\boldsymbol{\theta}) \supseteq \operatorname{supp}(\boldsymbol{\theta}') \supseteq \operatorname{supp}(\boldsymbol{\theta}^*)$$

This then, again by Lemma 1, implies the claim. Now, $\widehat{\mathcal{Q}}_{m_j}(\theta)$ converges to $\mathcal{Q}^*(\theta)$ uniformly on the ball $B_{\theta'}(\epsilon')$ since the function is continuous on the ball that is compact.

Let $0 < \epsilon < 2\epsilon'$. Note

$$P\left(\|\widehat{\boldsymbol{\theta}}_{m_j} - \boldsymbol{\theta}'\|_{\infty} > \epsilon/2\right) \to 0 \tag{15}$$

$$P\left(\sup_{\boldsymbol{\theta}\in B_{\boldsymbol{\theta}'}(\epsilon')} \left|\widehat{\mathcal{Q}}_{m_j}(\boldsymbol{\theta}) - \mathcal{Q}^*(\boldsymbol{\theta})\right| > \epsilon/2\right) \to 0$$
(16)

$$P\left(|\mathcal{Q}^*(\widehat{\boldsymbol{\theta}}_{m_j}) - \mathcal{Q}^*(\boldsymbol{\theta}')| > \epsilon/2\right) \to 0.$$
(17)

(15) is due to the convergence of $\{\widehat{\theta}_{m_j}\}$. (16) holds because of the uniform convergence on the ball $B_{\theta'}(\epsilon')$. (17) holds because $Q^*(\theta)$ is continuous at θ .

Recall we want to show $\mathbb{P}(|\widehat{\mathcal{Q}}_{m_j}(\widehat{\theta}_{m_j}) - \mathcal{Q}^*(\theta')| > \epsilon) \to 0$. Note:

$$\mathbb{P}(|\widehat{\mathcal{Q}}_{m_j}(\widehat{\theta}_{m_j}) - \mathcal{Q}^*(\theta')| > \epsilon) \\ \leq \mathbb{P}(|\widehat{\mathcal{Q}}_{m_j}(\widehat{\theta}_{m_j}) - \mathcal{Q}^*(\widehat{\theta}_{m_j})| > \epsilon/2) + \mathbb{P}(|\mathcal{Q}^*(\widehat{\theta}_{m_j}) - \mathcal{Q}^*(\theta')| > \epsilon/2).$$

The second term goes to zero by (17). It remains to show that the first term goes to 0:

$$\mathbb{P}(|\widehat{\mathcal{Q}}_{m_j}(\widehat{\boldsymbol{\theta}}_{m_j}) - \mathcal{Q}^*(\widehat{\boldsymbol{\theta}}_{m_j})| > \epsilon/2) \\ \leq \mathbb{P}\left(|\widehat{\mathcal{Q}}_{m_j}(\widehat{\boldsymbol{\theta}}_{m_j}) - \mathcal{Q}^*(\widehat{\boldsymbol{\theta}}_{m_j})| > \epsilon/2 \left| ||\widehat{\boldsymbol{\theta}}_{m_j} - \boldsymbol{\theta}'||_{\infty} > \epsilon/2 \right) \mathbb{P}\left(||\widehat{\boldsymbol{\theta}}_{m_j} - \boldsymbol{\theta}'||_{\infty} > \epsilon/2\right) + \\ \mathbb{P}\left(\left\{|\widehat{\mathcal{Q}}_{m_j}(\widehat{\boldsymbol{\theta}}_{m_j}) - \mathcal{Q}^*(\widehat{\boldsymbol{\theta}}_{m_j})| > \epsilon/2\right\} \cap \left\{||\widehat{\boldsymbol{\theta}}_{m_j} - \boldsymbol{\theta}'||_{\infty} \le \epsilon/2\right\}\right).$$

The first term goes to zero by (15). The second term also goes to zero as follows, which completes the proof:

$$\mathbb{P}\left(\left\{|\widehat{\mathcal{Q}}_{m_{j}}(\widehat{\boldsymbol{\theta}}_{m_{j}}) - \mathcal{Q}^{*}(\widehat{\boldsymbol{\theta}}_{m_{j}})| > \epsilon/2\right\} \cap \left\{||\widehat{\boldsymbol{\theta}}_{m_{j}} - \boldsymbol{\theta}'||_{\infty} \leq \epsilon/2\right\}\right)$$

$$\leq \mathbb{P}\left(\left\{\sup_{\boldsymbol{\theta}\in B_{\boldsymbol{\theta}'}(\epsilon/2)} |\widehat{\mathcal{Q}}_{m_{j}}(\boldsymbol{\theta}) - \mathcal{Q}^{*}(\boldsymbol{\theta})| > \epsilon/2\right\} \cap \left\{||\widehat{\boldsymbol{\theta}}_{m_{j}} - \boldsymbol{\theta}'||_{\infty} \leq \epsilon/2\right\}\right)$$

$$\leq \mathbb{P}\left(\sup_{\boldsymbol{\theta}\in B_{\boldsymbol{\theta}'}(\epsilon')} |\widehat{\mathcal{Q}}_{m_{j}}(\boldsymbol{\theta}) - \mathcal{Q}^{*}(\boldsymbol{\theta})| > \epsilon/2\right)$$

$$\leq \mathbb{P}\left(\sup_{\boldsymbol{\theta}\in B_{\boldsymbol{\theta}'}(\epsilon')} |\widehat{\mathcal{Q}}_{m_{j}}(\boldsymbol{\theta}) - \mathcal{Q}^{*}(\boldsymbol{\theta})| > \epsilon/2\right) \rightarrow 0,$$

where the last line is due to (16).