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A Derivative of (6) w.r.t. βββ

Give a censored list a, define a mapping σ that maps a state to its position in a; that is, σ(ai) = i.
Let N(k) = (I−Q(k))−1. Hereafter, we drop the superscript (k) from Q, R and N when it’s clear
from the context.

Using ∂(A−1)k`/∂Aij = −(A−1)ki(A−1)j`, the following identity becomes useful:

∂Nk`
∂Qij

=
∂((I−Q)−1)k`

∂Qij

=
∑
c,d

∂((I−Q)−1)k`
∂(I−Q)cd

∂(I−Q)cd
∂Qij

=
∑
c,d

((I−Q)−1)kc((I−Q)−1)d`1{c=i,d=j}

= ((I−Q)−1)ki((I−Q)−1)j`

= NkiNjl.

The derivative of P w.r.t. β is given as follows:

∂Prc
∂βij

= 1{r = i}
(
1{j = c}eβic(

∑n
`=1 e

βi`)− eβiceβij

(
∑n
`=1 e

βi`)2

)
= 1{r = i}(−PicPij + 1{j = c}Pic).

The derivative of logP(ak+1 | a1:k) with respect to β is

∂ logP(ak+1 | a1:k)
∂βij

= P(ak+1 | a1:k)−1
k∑
`=1

∂(Nk`R`1)

∂βij

= P(ak+1 | a1:k)−1
(

k∑
`=1

∂Nk`
∂βij

R`1+Nk`
∂R`1
∂βij

)
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We need to compute ∂Nk`

∂βij
:

∂Nk`
∂βij

=

k∑
c,d=1

∂((I−Q)−1)k`
∂(I−Q)cd

∂(I−Q)cd
∂βij

=

k∑
c,d=1

(−1)NkcNd` · (−1)1{ac=i}(−PiadPij + 1{ad=j}Piad)

= 1{σ(i)≤k}Nkσ(i)

k∑
d=1

Nd`(−PiadPij + 1{ad=j}Piad),

where σ(i) ≤ k means item i appeared among the first k items in the censored list a.

Then,
k∑
`=1

∂Nk`
∂βij

R`1 = 1{σ(i)≤k}Nkσ(i)

k∑
`,d=1

Nd`(−PiadPij + 1{ad=j}Piad)R`1

= 1{σ(i)≤k}Nkσ(i)

(
−Pij

k∑
d=1

Piad

k∑
`=1

Nd`R`1 +

k∑
d=1

1{ad=j}Piad

k∑
`=1

Nd`R`1

)
= 1{σ(i)≤k}Nkσ(i)

(
−Pij(QNR)σ(i)1 +1{σ(j)≤k}Pij(NR)σ(j)1

)
and

k∑
`=1

Nk`
∂R`1
∂βij

=

k∑
`=1

Nkl1{`=σ(i)}
(
−Piak+1

Pij + 1{ak+1=j}Piak+1

)
= 1{σ(i)≤k}Nkσ(i)

(
−Piak+1

Pij + 1{ak+1=j}Piak+1

)
.

Putting everything together,

∂ logP(ak+1 | a1:k)
∂βij

=
1{σ(i)≤k}Nkσ(i)

P(ak+1 | a1:k)
(−Pij(QNR)σ(i)1 + 1{σ(j)≤k}Pij(NR)σ(j)1

− Piak+1
Pij + 1{ak+1=j}Piak+1

)

=
1{σ(i)≤k}Nkσ(i)Pij

P(ak+1 | a1:k)
(
−(QNR)σ(i)1 + 1{σ(j)≤k}(NR)σ(j)1 Piak+1

(
1{ak+1=j}

Pij
− 1

))
for all i 6= j.

B The Proof of Theorem 2

We first claim that (i) there must be a recurrent state i in a censored list where i ∈ Wk for some k.
Then, it suffices to show that given (i) is true, (ii) recurrent states outside Wk cannot appear, (iii)
every states in Wk must appear, and (iv) a transient state cannot appear after a recurrent state.

(i): suppose there is no recurrent state in a censored list a = (a1:M ). Then, every state ai, i ∈ [M ],
is a transient state. Since the underlying random walk runs indefinitely in finite state space, there
must be a state aj , j ∈ [M ], that is visited infinitely many times. This contradicts the fact that aj is
a transient state.

Suppose a recurrent state i ∈Wk was visited. Then,

(ii): the random walk cannot escape Wk since Wk is closed.

(iii): the random walk will reach to every state inWk in finite time sinceWk is finite and irreducible.

(iv): the same reason as (iii).
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C The Proof of Theorem 4

It suffices to show that P(ak+1 | a1:k;P) = P(ak+1 | a1:k;P′), where a = (a1, . . . , aM ) and
k ≤ M − 1. Define submatrices (Q,R) and (Q′,R′) from P and P′, respectively, as in (2). Note
that Q′ = diag(q1:k) + (I− diag(q1:k))Q and R′ = (I− diag(q1:k))R.

P(ak+1 | a1:k;P′) = (I− diag(q1:k)− (I− diag(q1:k))Q)
−1

(I− diag(q1:k))R

= (I−Q)−1(I− diag(q1:k))−1(I− diag(q1:k))R
= P(ak+1 | a1:k;P)

D The Proof of Theorem 5

Suppose (π,P) 6= (π′,P′). We show that there exists a censored list a such that P(a;π,P) 6=
P(a;π′,P′).

Case 1: π 6= π′.

It follows that πi 6= π′i for some i. Note that the marginal probability of observing i as the first item
in a censored list is

∑
a∈D:a1=i

P(a;π,P) = πi. Then,∑
a∈D:a1=i

P(a;π,P) = πi 6= π′i =
∑

a∈D:a1=i

P(a;π′,P′).

which implies that there exists a censored list a for which P(a;π,P) 6= P(a;π′,P′).

Case 2: π = π′ but P 6= P′.

It follows that Pij 6= P ′ij for some i and j. Then, we compute the marginal probability of observing
(i, j) as the first two items in a censored list, which results in∑

a∈D:
a1=i,
a2=j

P(a;π,P) = πiPij 6= π′iP
′
ij =

∑
a∈D:

a1=i,
a2=j

P(a;π′,P′).

Then, there exists a censored list a for which P(a;π,P) 6= P(a;π′,P′).

E Results Required for Theorem 6

Throughout, assume θ = (π>,P1·, . . . ,Pn·)
>. Let supp(θ) be the set of nonzero dimensions of θ:

supp(θ) = {i | θi > 0}. Lemma 1 shows conditions on which Q∗(θ) and Q̂m(θ) are above −∞.
Lemma 1. Assume A1. Then,

supp(θ) ⊇ supp(θ∗) ⇐⇒ Q∗(θ) > −∞ (7)

supp(θ) ⊇ supp(θ∗) =⇒ Q̂m(θ) > −∞,∀m. (8)

Proof. Define two vectors of probabilities w.r.t. θ and θ∗: q = [qa = P(a;θ)]a∈D and q∗ =
[q∗a = P(a;θ∗)]a∈D. Note that

supp(q) ⊇ supp(q∗) ⇐⇒ Q∗(θ) > −∞
by the definition of Q∗(θ). Thus, for (7), it suffices to show that

supp(θ) ⊇ supp(θ∗) ⇐⇒ supp(q) ⊇ supp(q∗).

( =⇒ ) The LHS implies that the directed graph enduced by θ includes the graph enduced by θ∗;
a path that is possible w.r.t. θ∗ is also possible w.r.t. θ. Recall that a list is generated by a random
walk. Let a ∈ supp(q∗). There exists a random walk under θ∗ that generates a. Then, the same
random walk is also possible under θ, which implies a ∈ supp(q).

(⇐= ) Suppose the LHS is false. Then, there exists (i, j) s.t. Pij = 0 and P ∗ij > 0. Consider a list
a such that it has nonzero probability w.r.t. θ∗ (that is, q∗a > 0), and its first two items are i then j.
Since Pij = 0, qa = 0. However, the RHS implies that qa > 0 since q∗a > 0: a contradiction.
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For (8),

supp(θ) ⊇ supp(θ∗) =⇒ Q∗(θ) > −∞ =⇒ Q̂m(θ) > −∞,∀m,

where the last implication is due to the fact that a censored list a(i) that appears in Q̂m(θ) is gener-
ated by θ∗, so the term logP(a(i);θ) also appears in Q∗(θ).

Lemma 2. Assume A1. Then, θ∗ is the unique maximizer of Q∗(θ).

Proof. If θ satisfies supp(θ) 6⊇ supp(θ∗), then Q∗(θ) = −∞ by Lemma 1, so such θ cannot
be a maximizer. Thus, it is safe to restrict our attention to θ’s whose support include that of θ∗:
supp(θ) ⊇ supp(θ∗).

Recall the definition of Q∗(θ):

Q∗(θ) =
∑
a∈D

P(a;θ∗) logP(a;θ) ∝ −KL(θ∗||θ),

where KL(θ∗||θ) is well defined since supp(θ) ⊇ supp(θ∗). Due to the identifiability of the model
(Theorem 5) and the unique minimizer property of the KL-divergence, θ∗ is the unique maximizer.

We denote by decomp(θ) = {T,W1, . . . ,WK} the decomposition enduced by θ as in Theorem 1.

Lemma 3. supp(θ̂m) ⊇ supp(θ∗) for large enough m. Furthermore, decomp(θ̂m) = decomp(θ∗)
for large enough m.

Proof. Note that due to the strong law of large numbers, a list a is valid in the true model θ∗ must
appear in Dm for large enough m. Since the number of censored lists that can be generated by θ∗ is
finite, one observes every valid censored list in the true model θ∗; that is, there exists m′ such that

m ≥ m′ =⇒ {a | a ∈ Dm} = {a | P(a;θ∗) > 0}.

For the first statement, assume thatm ≥ m′. Since we observe every valid list in θ∗, by the definition
of Q̂m(θ), the following holds true:

∀θ ∈ Θ, Q̂m(θ) > −∞ ⇐⇒ Q∗(θ) > −∞.

Then, using Lemma 1,

Q̂m(θ̂m) > −∞ =⇒ Q∗(θ̂m) > −∞ =⇒ supp(θ̂m) ⊇ supp(θ∗).

For the second statement, assume m ≥ m′. Let decomp(θ̂m) = {T̂ , Ŵ1, . . . , ŴK̂} and
decomp(θ∗) = {T ∗,W ∗1 , . . . ,W ∗K∗}. Furthermore, define τ̂(i) to be the index of the closed ir-
reducible set in decomp(θ̂m) to which i belongs, and define τ∗(i) similary.

Suppose that the data Dm contains every valid list in θ∗, but decomp(θ̂m) 6= decomp(θ∗). There
are four cases. In each case, we show that there exists a list that is valid in θ∗ but not in θ̂m, which
means that the log likelihood of θ̂m is −∞. This is a contradiction in that θ̂m is the MLE.

Case 1 : ∃s1 s.t. s1 is transient in θ̂ but recurrent in θ∗.

Let W ∗k be the closed irreducible set to which s1 belongs and L = |W ∗k |. Use θ∗ to start a random
walk from s1 and generate a censored list a, which consists of all states inW ∗k : a = (s1, s2, . . . , sL).
If a is invalid in θ̂m, we have a contradiction. If not, sL must be recurrent in θ̂m by Theorem 2. Use
θ∗ to generate a censored list a′ that starts from sL. Then, s1 must appear after sL in a′. However,
this is impossible in θ̂m since s1 is transient and sL is recurrent: a contradiction.

Case 2 : ∃t s.t. is transient in θ∗ but recurrent in θ̂m.
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For brevity, assume that t is the only transient state in θ∗; this can be easily relaxed. Use θ∗ to
generate a censored list that starts with t, say a = (t, s1, . . . , sL). By Theorem 2, {s1:L} is a closed
irreducible set in θ∗. Define a′ = (s1:L), which is also valid in θ∗. Now, a may or may not be valid
in θ̂m. Assume that a is valid in θ̂m since otherwise we have a contradiction. Then, in θ̂m, {t, s1:L}
must be a closed irreducible set since t is recurrent. Then, a′ = (s1:L) is invalid in θ̂m since t must
be visited as well: a contradiction.

Case 3. ∃(i, j) s.t. τ̂(i) = τ̂(j) , but τ∗(i) 6= τ∗(j).

Start a random walk from the state i w.r.t. θ∗ and generate a censored list a. By Theorem 2, the
censored list a does not contain j. In θ̂m, however, a censored list starting from i must also output
j since i and j are in the same closed irreducible set. Thus, a is invalid in θ̂m: a contradiction.

Case 4. ∃(i, j) s.t. τ∗(i) = τ∗(j) , but τ̂(i) 6= τ̂(j).

Start a random walk from the state i w.r.t. θ∗ and generate a censored list a. By Theorem 2, the
censored list a′ must also contain j. In θ̂m, however, a censored list starting from i cannot output j
since j is in a different closed irreducible set. Thus, a′ is invalid in θ̂m: a contradiction.

Lemma 4. Assume A1. Let {θ̂mj
} be a convergent subsequence of {θ̂m} and θ′ be its limit point:

θ′ = limj→∞ θ̂mj
. Then, limj→∞ P(a; θ̂mj

) = P(a;θ′) for all a that is valid in θ∗.

Proof. There are exactly two case-by-case operators which causes the likelihood function to be dis-
continuous. The operators appear in (3) and (1), which respectively rely on the following conditions
w.r.t. a list a = (a1:M ):

(I−Q(k))−1 exists, ∀k ∈ [M − 1] (9)
P(s | a1:M ;θ) = 0,∀s ∈ S \ {a1:M}. (10)

Step 1: claim that ∀θ ∈ Θ,

supp(θ) ⊇ supp(θ∗) and decomp(θ) = decomp(θ∗) =⇒ ∀a valid in θ∗ (9) and (10)

To show (9), suppose it is false for some k ∈ [M − 1] and some censored list a = (a1:M ) valid in
θ∗. The nonexistence of (I−Q(k))−1 implies that there is no path from ak to a state that is outside
of {a1:k} whereas there is such a path w.r.t. θ∗. This contradicts supp(θ) ⊇ supp(θ∗).

To show (10), consider a censored list a = (a1:M ) that is valid in θ∗. By Theorem 2, the last
state aM must be a recurrent state in a closed irreducible set W w.r.t. θ∗. Since θ has the same
decomposition as θ∗ and every state in W must be present in a, no other state can appear after aM .
This implies (10).

Define

Θ′ = {θ ∈ Θ | ||θ − θ′||∞ < min
i
θ′i, decomp(θ) = decomp(θ′)}.

Step 2: claim that P(a;θ) is a continuous function of θ in the subspace Θ′, ∀a valid in θ∗.

Note that ∀θ ∈ Θ′,

supp(θ) ⊇ supp(θ′) ⊇ supp(θ∗)
decomp(θ) = decomp(θ′) = decomp(θ∗),

where the first subset relation is due to the∞-norm in the definition of Θ′, the second subset relation
and the last equality is due to Lemma 3 and θ′ = limj→∞ θ̂mj

.

This implies, together with step 1, that ∀θ ∈ Θ′, (9) and (10) are satisfied, which effectively gets
rid of the case-by-case operators in Θ′. This concludes the claim.

Step 3: limj→∞ P(a; θ̂mj ) = P(a;θ′) for all a that is valid in θ∗.
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Since θ̂mj
→ θ′, there exists J such that

j ≥ J =⇒ ||θ̂mj
− θ′||∞ < min

i
θ′i .

Thus, after J , the sequence enters the subspace Θ′ in which P(a;θ) is continuous ∀a valid in θ∗,
which concludes the claim.

Lemma 5. Assume A1. Let {θ̂mj} be a convergent subsequence of {θ̂m} and θ′ be its limit point:
θ′ = limj→∞ θ̂mj

. Then, Q∗(θ′) > −∞.

Proof. Suppose not: Q∗(θ′) = −∞. Then, there exists a list a′ that is valid in θ∗ whose likelihood
w.r.t. θ′ converges to 0:

∃a′ s.t. P(a′;θ∗) > 0 and P(a′;θ′) = 0,

By Lemma 4, P(a′;θ′) = 0 implies that limj→∞ P(a′; θ̂mj
) = 0.

Let 0 < ε < P(a′;θ∗). Denote by #{a′} the number of occurrences of the list a′ in
{a(1), . . . ,a(mj)}. Then, the following statements hold:

∃J1 s.t. j > J1 =⇒
∣∣∣∣#{a′}mj

− P(a′;θ∗)
∣∣∣∣ < ε (11)

∃J2 s.t. j < J2 =⇒
∣∣∣Q̂mj

(θ∗)−Q∗(θ∗)
∣∣∣ < ε (12)

∃J3 s.t. j > J3 =⇒ logP(a′; θ̂mj ) <
Q∗(θ∗)− ε
P(a′;θ∗)− ε

. (13)

The first two statements are due to the law of large numbers, and the last statement is due to the
convergence of P(a′; θ̂mj

) to 0. Note that Q̂mj
(θ∗) ≤ Q̂mj

(θ̂mj
) since θ̂mj

is the maximizer of
the function Q̂mj

(θ). Then, if j > max{J1, J2, J3},

Q∗(θ∗)− ε ≤ Q̂mj
(θ∗)

≤ Q̂mj
(θ̂mj

)

=

∑
a6=a′

#{a}
mj

logP(a; θ̂mj
)

+
#{a′}
mj

logP(a′; θ̂mj
)

< (P(a′;θ∗)− ε) logP(a′; θ̂mj )

< Q∗(θ∗)− ε,

where the last inequality is due to (13). This is a contrandiction.

Lemma 6. Assume A1. Let {θ̂mj
} be a convergent subsequence of {θ̂m}. Let θ′ = limj→∞ θ̂mj

.
Then, limj→∞ Q̂mj (θ̂mj ) = Q∗(θ′).

Proof. The idea is that we can have a compact ball around the limit point θ′ and show that the log
likelihood Q̂mj

(θ) converges uniformly on the ball. Then, after the sequence θ̂mj
gets in the ball,

we can use the uniform convergence of the log likelihood.

Let Bθ′(r) = {θ ∈ Θ | ||θ − θ′||∞ ≤ r} be an ∞-norm ball around θ′. Choose ε′ <
mini∈supp(θ) θi. We claim that

∀θ ∈ Bθ′(ε
′), Q∗(θ) > −∞ and Q̂m(θ) > −∞,∀m. (14)

Let θ ∈ Bθ′(ε
′). By the definition of the ball Bθ′(ε

′), supp(θ) ⊇ supp(θ′). Note that Q∗(θ′) >
−∞ by Lemma 5. By Lemma 1, supp(θ′) ⊇ supp(θ∗):

supp(θ) ⊇ supp(θ′) ⊇ supp(θ∗).
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This then, again by Lemma 1, implies the claim. Now, Q̂mj
(θ) converges to Q∗(θ) uniformly on

the ball Bθ′(ε
′) since the function is continuous on the ball that is compact.

Let 0 < ε < 2ε′. Note

P
(
‖θ̂mj

− θ′‖∞ > ε/2
)
→ 0 (15)

P

(
sup

θ∈Bθ′ (ε
′)

∣∣∣Q̂mj
(θ)−Q∗(θ)

∣∣∣ > ε/2

)
→ 0 (16)

P
(
|Q∗(θ̂mj )−Q∗(θ′)| > ε/2

)
→ 0. (17)

(15) is due to the convergence of {θ̂mj}. (16) holds because of the uniform convergence on the ball
Bθ′(ε

′). (17) holds because Q∗(θ) is continuous at θ.

Recall we want to show P(|Q̂mj
(θ̂mj

)−Q∗(θ′)| > ε)→ 0. Note:

P(|Q̂mj (θ̂mj
)−Q∗(θ′)| > ε)

≤P(|Q̂mj
(θ̂mj

)−Q∗(θ̂mj
)| > ε/2) + P(|Q∗(θ̂mj

)−Q∗(θ′)| > ε/2).

The second term goes to zero by (17). It remains to show that the first term goes to 0:

P(|Q̂mj
(θ̂mj

)−Q∗(θ̂mj
)| > ε/2)

≤P
(
|Q̂mj (θ̂mj )−Q∗(θ̂mj )| > ε/2

∣∣∣ ||θ̂mj − θ′||∞ > ε/2
)
P
(
||θ̂mj − θ′||∞ > ε/2

)
+

P
({
|Q̂mj (θ̂mj )−Q∗(θ̂mj )| > ε/2

}
∩
{
||θ̂mj − θ′||∞ ≤ ε/2

})
.

The first term goes to zero by (15). The second term also goes to zero as follows, which completes
the proof:

P
({
|Q̂mj

(θ̂mj
)−Q∗(θ̂mj

)| > ε/2
}
∩
{
||θ̂mj

− θ′||∞ ≤ ε/2
})

≤P

({
sup

θ∈Bθ′ (ε/2)

|Q̂mj (θ)−Q∗(θ)| > ε/2

}
∩
{
||θ̂mj − θ′||∞ ≤ ε/2

})

≤P

(
sup

θ∈Bθ′ (ε/2)

|Q̂mj
(θ)−Q∗(θ)| > ε/2

)

≤P

(
sup

θ∈Bθ′ (ε
′)

|Q̂mj
(θ)−Q∗(θ)| > ε/2

)
→ 0,

where the last line is due to (16).
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