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Supplemental Material: Proofs
Proof to Theorem 1

Proof. Let n∗ be the minimal number of training items to ensure a unique solution θθθ∗. First consider the case n∗ = 0. It
happens if and only if θθθ∗ = 0 and Rank(A) = d, which is a special case of Aθθθ∗ = 0. Clearly, this case is consistent with
LB1. Next consider the case n∗ ≥ 1. Since θθθ∗ solves (1), the KKT condition holds:

−λAθθθ∗ ∈
n∗�

i=1

∂1�(x
�
i θθθ

∗, yi)xi. (29)

We seek all δδδ such that θθθ∗ + δδδ satisfies

A(θθθ∗ + δδδ) = Aθθθ∗ and x�
i (θθθ

∗ + δδδ) = x�
i θθθ

∗ ∀i = 1, · · · , n∗, (30)

For any such δδδ, simple algebra verifies that θθθ∗+ tδδδ satisfies the KKT condition (29) for any t ∈ [0, 1]. Consequently, θθθ∗+δδδ
also solves the problem in (1). To see this, we consider two situations:

• If the loss function �(·, ·) is convex in the first argument, the KKT condition is a sufficient optimality condition, which
means that θθθ∗ + δδδ solves (1).

• If the loss function �(·, ·) is smooth (not necessary convex) in the first argument, we have f(θθθ∗) = f(θθθ∗ +δδδ) by using
the Taylor expansion (recall f is defined in equation 1):

f(θθθ∗ + δδδ) =f(θθθ∗) + �∇f(θθθ∗ + tδδδ), δδδ� (for some t ∈ [0, 1])

=f(θθθ∗) +

�
n∗�

i=1

∇1�(x
�
i (θθθ

∗ + tδδδ), yi)xi + λA(θθθ∗ + tδδδ)), δδδ

�

=f(θθθ∗) +

�
n∗�

i=1

∇1�(x
�
i θθθ

∗, yi)xi + λAθθθ∗

� �� �
=0 due to the KKT condition (29)

, δδδ

�

=f(θθθ∗).

Therefore, θθθ∗ + δδδ also solves (1). However, the uniqueness of θθθ∗ requires δδδ = 0 to be the only value satisfying (30). This
is equivalent to say

Null(A) ∩ Null(Span{x1, · · · ,xn∗}) = {0}. (31)

It indicates that
Rank(A) + Dim(Span{x1, · · · ,xn∗}) ≥ d.

From n∗ ≥ Dim(span{x1, · · · ,xn∗}), we have n∗ ≥ d− Rank(A). We proved the general case for LB1.

If we have Aθθθ∗ �= 0, we can further improve LB1. Let g∗ = (g∗1 , . . . , g
∗
n∗)� be the vector satisfying

−λAθθθ∗ =

n∗�

i=1

g∗i xi and g∗i ∈ ∂1�(x
�
i θθθ

∗, yi) ∀i = 1, 2, · · · , n∗. (32)

Since θθθ∗ satisfies the KKT condition, such vector g∗ must exist. Applying Aθθθ∗ �= 0 to (32), we have g∗ �= 0 and

Dim (Span{A.1, A.2, · · · , A.d} ∩ Span{x1, · · · ,xn∗}) ≥ 1. (33)

To satisfy (31), we must have
d = Dim (Span{A.1, A.2, · · · , A.d,x1, · · · ,xn∗}) .
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Using the fact in linear algebra

Dim (Span{A.1, A.2, · · · , A.d,x1, · · · ,xn∗})
=Dim (Span{A.1, A.2, · · · , A.d})� �� �

=Rank(A)

+

Dim (Span{x1, · · · ,xn∗})� �� �
≤n∗

−

Dim (Span{A.1, A.2, · · · , A.d} ∩ Span{x1, · · · ,xn∗})� �� �
≥1 (from (33))

We conclude that n∗ ≥ d− Rank(A) + 1. We completed the proof for LB1.

Proof to Theorem 2

Proof. When A has full rank we have an equivalent expression for the KKT condition (29):

−λA
1
2θθθ∗ ∈

n∗�

i=1

A− 1
2xi∂1�(x

�
i θθθ

∗, yi) ∀i = 1, · · · , n∗. (34)

Let us decomposeA− 1
2xi for all i = 1, · · · , n∗ intoA− 1

2xi = αiA
1
2θθθ∗+ui, where ui is orthogonal toA

1
2θθθ∗: u�

i A
1
2θθθ∗ =

0. Equivalently xi = αiAθθθ
∗ +A

1
2ui. Applying this decomposition, we have

x�
i θθθ

∗ = αi�θθθ∗�2A + u�
i A

1
2θθθ∗ = αi�θθθ∗�2A.

Putting it back in (34) we obtain

−λA
1
2θθθ∗ ∈

n∗�

i=1

�
αiA

1
2θθθ∗ + ui

�
∂1�(αi�θθθ∗�2A, yi) ∀i = 1, · · · , n∗. (35)

Since ui is orthogonal to A
1
2θθθ∗, (35) can be rewritten as

∃αi ∈ R, ∃yi ∈ Y, ∃gi ∈ ∂1�(αi�θθθ∗�2A, yi) ∀i = 1, · · · , n∗ (36)

satisfying
n∗�

i=1

giui = 0

− λA
1
2θθθ∗ = A

1
2θθθ∗

n∗�

i=1

αigi (37)

Since Aθθθ∗ �= 0, we have A
1
2θθθ∗ �= 0 and (37) is equivalent to −λ =

�n∗

i=1 αigi. It follows that

λ = −
n∗�

i=1

αigi ≤ n∗ sup
α∈R,y∈Y,g∈∂1�(α�θθθ∗�2

A,y)

−αg = n∗ sup
α∈R,y∈Y,g∈−∂1�(α�θθθ∗�2

A,y)

αg

It indicates the lower bound for n∗

n∗ ≥
�

λ

supα∈R,y∈Y,g∈−∂1�(α�θθθ∗�2
A,y) αg

�
.

Proof to Theorem 3
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Proof. Let D = {xi, yi}i=1,··· ,n be a teaching set for [w∗; b∗]. The following KKT condition needs to be satisfied:

0 ∈
n�

i=1

∂�(yi(x
�
i w

∗ + b∗))yi

�
xi

1

�
+

�
λAw∗

0

�
. (38)

If we construct a new training set

D̂ =

�
x̂i = xi +

b∗

�w∗�2A
Aw∗, ŷi = yi

�

i=1,··· ,n

then [w∗; 0] satisfies the KKT condition defined on D̂. This can be verified as follows:

n�

i=1

∂�(ŷi(x̂
�
i w

∗))ŷi

�
x̂i

1

�
+

�
λAw∗

0

�

=

n�

i=1

∂�(yi(x
�
i w

∗ + b∗))yi

�
xi +

b∗

�w∗�2
A
Aw∗

1

�
+

�
λAw∗

0

�

=
n�

i=1

∂�(yi(x
�
i w

∗ + b∗))yi

�
xi

1

�
+

�
λAw∗

0

�

� �� �
�0 from (38)

+

�
b∗

�w∗�2
A
Aw∗

0

�
n�

i=1

∂�(yi(x
�
i w

∗ + b∗))yi

� �� �
�0 from (38)

�0 (39)

where 0 ∈ �n
i=1 ∂�(yi(x

�
i w

∗ + b∗))yi is from the bias dimension in (38). It follows that

0 ∈
n�

i=1

∂�(ŷix̂
�
i w

∗)ŷix̂i + λAw∗

which is equivalent to

0 ∈
n�

i=1

∂�(ŷix̂
�
i w

∗)A− 1
2 ŷix̂i����

=:zi

+λA
1
2w∗

=
n�

i=1

∂�(z�i w
∗)A− 1

2 zi + λA
1
2w∗. (40)

We decompose A− 1
2 zi = αiA

1
2w∗ + ui where ui satisfies u�

i A
1
2w∗ = 0. Applying this decomposition to (40), we have

λA
1
2w∗ ∈

n�

i=1

−∂�(αi�w∗�2A)(αiA
1
2w∗ + ui). (41)

Since ui is orthogonal to A
1
2w∗, (41) implies that

λA
1
2w∗ ∈

n�

i=1

−∂�(αi�w∗�2A)αiA
1
2w∗.

Since w∗ �= 0 we have

λ ∈
n�

i=1

−∂�(αi�w∗�2A)αi.

Together with
n�

i=1

−∂�(αi�w∗�2A)αi ≤ n sup
α∈R,g∈−∂�(α�w∗�2

A)

αg,

we obtain LB3.
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Proof to Proposition 1

Proof. We simply verify the KKT condition to see that θθθ∗ is a solution to (10) by applying the construction in (11). The
uniqueness of θθθ∗ is guaranteed by the strong convexity of (10).

Proof to Proposition 2

Proof. We only need to verify that the KKT condition holds for θθθ∗. Due to the strong convexity of (12) uniqueness is
guaranteed automatically. We denote the subgradient ∂a max(1− a, 0) = −∂1 max(1− a, 0) = −I(a), where

I(a) =





1, if a < 1

[0, 1], if a = 1

0, otherwise
. (42)

The KKT condition is

n�

i=1

−yixi∂1 max(1− yix
�
i θθθ

∗, 0) + λθθθ∗

=

n�

i=1

−yixiI(yix
�
i θθθ

∗) + λθθθ∗

=− n
λθθθ∗

�λ�θθθ∗�2�I
�

λ�θθθ∗�2
�λ�θθθ∗�2�

�
+ λθθθ∗

=− λθθθ∗I

�
λ�θθθ∗�2
�λ�θθθ∗�2�

�
+ λθθθ∗

�0

where the last line is due to I
�

λ�θθθ∗�2

�λ�θθθ∗�2�

�
giving either the set [0, 1] or the value 1.

Proof to Corollary 2

Proof. We show this number matches LB2. Let A = I , �(a, b) = max(1− ab, 0), and consider the denominator of (7):

sup
α∈R,y∈Y,g∈−∂1�(α�θθθ∗�2,y)

αg = sup
α,y∈{−1,1},g∈yI(yα�θθθ∗�2)

αg

= sup
α,g∈I(α�θθθ∗�2)

αg

=
1

�θθθ∗�2

where the first equality is due to ∂1�(a, b) = −bI(ab). Therefore, LB2 =
�
λ�θθθ∗�2

�
which matches the construction

in (13).

Proof to Proposition 3

Proof. We first verify that θθθ∗ is a solution to (14) based on the teaching set construction in (16). We only need to verify
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the gradient of (14) is zero. Computing the gradient of (14), we have

n�

i=1

−yixi

1 + exp{yix�
i θθθ

∗} + λθθθ∗

=− n
xi

1 + exp

�
τ−1

�
λ�θθθ∗�2

�
λ�θθθ∗�2

τmax

�−1
�� + λθθθ∗

=− n

τ−1

�
λ�θθθ∗�2

�
λ�θθθ∗�2

τmax

�−1
�

1 + exp

�
τ−1

�
λ�θθθ∗�2

�
λ�θθθ∗�2

τmax

�−1
�� θθθ∗

�θθθ∗�2 + λθθθ∗

=− nλ�θθθ∗�2
�
λ�θθθ∗�2
τmax

�−1
θθθ∗

�θθθ∗�2 + λθθθ∗

=0,

where the third equality uses the fact λ�θθθ∗�2
�
λ�θθθ∗�2

τmax

�−1

≤ τmax and the property a = τ−1(a)

1+eτ−1(a)
. The strong convexity

of (14) automatically implies uniqueness.

Proof to Corollary 3

Proof. We show that the number matches LB2. In (7) let A = I and �(a, b) = log(1 + exp{−ab}). The denominator of
LB2 is:

sup
α∈R,y∈Y,g∈−∂1�(α�θθθ∗�2,y)

αg = sup
α,y∈{−1,1},g=y(1+exp{yα�θθθ∗�2})−1

αg

= sup
α,g=(1+exp{α�θθθ∗�2})−1

αg

=sup
α

α

1 + exp{α�θθθ∗�2}

=�θθθ∗�−2 sup
t

t

1 + exp{t}
=

τmax

�θθθ∗�2 ,

which implies LB2 =
�
λ�θθθ∗�2

τmax

�
.

Proof to Proposition 4

Proof. We first prove the case for w∗ = 0. We can verify that the KKT condition is satisfied by designing x1 and y1 as
in (18):

(x�
1 w

∗ + b∗ − y1)x1 + λw∗ =0

x�
1 w

∗ + b∗ − y1 =0.

The uniqueness of [w∗; b∗] is indicated by the strong convexity of (17) when n = 1.

We then prove the case for w∗ �= 0. With simple algebra, we can verify the KKT condition holds via the construction in
(19):

(x�
1 w

∗ + b∗ − y1)x1 + (x�
2 w

∗ + b∗ − y2)x2 + λw∗ =0

(x�
1 w

∗ + b∗ − y1) + (x�
2 w

∗ + b∗ − y2) =0.

Similarly, the uniqueness is implied by the strong convexity of (17) when n = 2.
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Proof to Corollary 4

Proof. We match the lower bound LB1 in (6). Note θθθ∗ = [w∗; b∗] ∈ Rd+1, and A in this case is a (d + 1) × (d + 1)
matrix with the d × d identity matrix Id padded with one additional row and column of zeros for the offset. Therefore
Rank(A) = Rank(Id) = d. Whenw∗ = 0, Aθθθ∗ = 0 and LB1 = (d+1)−Rank(A) = 1. Whenw∗ �= 0, Aθθθ∗ �= 0 and
LB1 = (d+ 1)−Rank(A) + 1 = 2. These lower bounds match the teaching set sizes in (18) and (19), respectively.

Proof to Proposition 5

Proof. Unlike in previous learners (including homogeneous SVM), we no longer have strong convexity w.r.t. b. In order
to prove that (21) is a teaching set, we need to verify the KKT condition and verify solution uniqueness.

We first verify the KKT condition to show that the solution under (21) includes the target model [w∗; b∗]. From (21), we
have

x�
+w

∗ + b∗ = 1, x�
−w

∗ + b∗ = −1. (43)

Applying them to the KKT condition and using the notation in (42) we obtain

− n

2
I(x�

+w
∗ + b∗)

�
x+

1

�
+

n

2
I(−x�

−w
∗ − b∗)

�
x−
1

�
+

�
λw∗

0

�

=− n

2
I(1)

�
x+

1

�
+

n

2
I(1)

�
x−
1

�
+

�
λw∗

0

�

⊃n

2
I(1)

�
x− − x+

0

�
+

�
λw∗

0

�
setting the last dimension to 0

=I(1)

�− n
�w∗�2w

∗

0

�
+

�
λw∗

0

�
applying (21)

⊇I(1)

�
−λw∗

0

�
+

�
λw∗

0

�
observing n ≥ λ�w∗�2

�0.

It proves that [w∗; b∗] solves (20) by our teaching set construction.

Next we prove uniqueness by contradiction. We use f(w, b) to denote the objective function in (20) under the teaching set.
It is easy to verify that f(w∗, b∗) = λ

2 �w∗�2. Assume that there exists another solution [w̄; b̄] different from [w∗; b∗]. We
can obtain �w̄�2 ≤ �w∗�2 due to

λ

2
�w∗�2 = f(w∗, b∗) = f(w̄, b̄) ≥ λ

2
�w̄�2.

The second equality is due to [w̄; b̄] being a solution; the inequality is due to whole-part relationship. Therefore, there are
only two possibilities for the norm of w̄: �w̄� = �w∗� or �w̄� = t�w∗� for some 0 ≤ t < 1. Next we will show that both
cases are impossible.

(Case 1) For the case �w̄� = �w∗�, we have

f(w̄, b̄) =
n

2
max

�
1− (x�

+w̄ + b̄), 0
�
+

n

2
max

�
1 + (x�

−w̄ + b̄), 0
�
+

λ

2
�w̄�2

=
n

2
max


x�

+(w
∗ − w̄) + (b∗ − b̄)� �� �

=:Δ+

, 0


+

n

2
max


−x�

−(w
∗ − w̄)− (b∗ − b̄)� �� �

=:Δ−

, 0




+
λ

2
�w∗�2

=
n

2
max (Δ+, 0) +

n

2
max (Δ−, 0) + f(w∗, b∗).
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From f(w̄, b̄) = f(w∗, b∗), it follows Δ+ ≤ 0 and Δ− ≤ 0. Since

0 ≥ Δ+ +Δ− = (x+ − x−)
�(w∗ − w̄) =

2(w∗)�(w∗ − w̄)

�w∗�2 = 2− 2
w̄�w∗

�w∗�2 ,

we have w̄�w∗ ≥ �w∗�2. But because �w̄� = �w∗�, we must have w̄ = w∗. Applying this new observation to Δ+ ≤ 0
and Δ− ≤ 0, we obtain b∗ = b̄. It means that [w∗; b∗] = [w̄; b̄], contradicting our assumption [w∗; b∗] �= [w̄; b̄].

(Case 2) Next we turn to the case �w̄� = t�w∗� for some t ∈ [0, 1). Recall our assumption that [w̄; b̄] solves (20). Then it
follows that the following specific construction [ŵ, b̂] solves (20) as well:

ŵ = tw∗, b̂ = tb∗. (44)

To see this, we consider the following optimization problem:

min
w,b

L(w, b) :=
n

2
max(1− (x�

+w + b), 0) +
n

2
max(1 + (x�

−w + b), 0)

s.t. �w� ≤ t�w∗�.
(45)

Since [w̄; b̄] solves (20), it is easy to see that [w̄; b̄] solves (45) too, otherwise there exists a solution for (45) which gives
a lower function value on (20). Then we can verify that [ŵ; b̂] solves (45) as well by showing the following optimality
condition holds:

−
�

∂L(w,b)
∂w

∂L(w,b)
∂b

������
[ŵ;b̂]

∩ N�w�≤t�w∗�(ŵ, b̂)
� �� �

Normal cone to the set {[w; b] : �w� ≤ t�w∗�} at [ŵ; b̂]

�= ∅ (46)

Given a convex closed set Ω and a point θθθ ∈ Ω, the normal cone at point θθθ is defined to be a set

NΩ(θθθ) = {φφφ : �φφφ,ψψψ − θθθ� ≤ 0 ∀ψψψ ∈ Ω}.

The optimality condition basically suggests that at the optimal point, the negative (sub)gradient direction overlaps with the
normal cone. In other words, there is not any direction to decrease the objective at the optimal point. Readers can refer to
Bertsekas & Nedic (2003) for more details about the geometric optimality condition.

Because of (43) and (44), we have x�
+ŵ + b̂ = t < 1. Thus at [ŵ; b̂] the subgradient is

−
�

∂L(w,b)
∂w

∂L(w,b)
∂b

������
[ŵ;b̂]

=
n

2

�
x+ − x−

0

�
=

�
nw∗

�w∗�2

0

�
(47)

And the normal cone is

N�w�≤t�w∗�(ŵ, b̂) =

�
s

�
w∗

0

� ����� s ≥ 0

�
. (48)

The intersection is non-empty by choosing s = n
�w∗�2 . Since both [ŵ; b̂] and [w̄; b̄] solve (45), we have L(ŵ, b̂) = L(w̄, b̄).

Together with �ŵ� = �w̄�, we have

f(ŵ, b̂) = L(ŵ, b̂) +
λ

2
�ŵ�2 = f(w̄, b̄) = f(w∗, b∗).

Therefore, we proved that [ŵ; b̂] solves (20) as well. To see the contradiction, let us check the function value of f(ŵ, b̂)
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via a different route:

f(ŵ, b̂) =f(tw∗, tb∗)

=

n
2�

i=1

max
�
1− t(x�

+w
∗ + b∗), 0

�
+

n
2�

i=1

max
�
1 + t(x�

−w
∗ + b∗), 0

�
+

λ

2
�w∗�2t2

=

n
2�

i=1

max (1− t, 0) +

n
2�

i=1

max (1− t, 0) +
λ

2
�w∗�2t2

=n(1− t)− λ

2
�w∗�2(1− t2) +

λ

2
�w∗�2

≥n(1− t)− n

2
(1− t2) +

λ

2
�w∗�2

=
n

2
(1− t)2 + f(w∗, b∗)

>f(w∗, b∗),

where the first inequality uses the fact that n ≥ λ�w∗�2. It contradicts our early assertion f(ŵ, b̂) = f(w∗, b∗). Putting
cases 1 and 2 together we prove uniqueness.

Proof to Corollary 5

Proof. The upper bound directly follows Proposition 5. We only need to show the lower bound LB3 =
�
λ�w∗�2

�
in

Theorem 3. Let A = I , �(a) = max(1− a, 0), and consider the denominator of (9):

sup
α∈R,g∈−∂�(α�w∗�2)

αg = sup
α,g∈I(α�w∗�2)

αg =
1

�w∗�2

where the first equality is due to ∂�(a) = −I(a). Therefore, LB3 =
�
λ�w∗�2

�
which proves the lower bound.

Proof to Proposition 6

Proof. We first point out that for t to be well-defined the argument to τ−1() has to be bounded λ�w∗�2

n ≤ τmax. This

implies n ≥ λ�w∗�2

τmax
. The size of our proposed teaching set is the smallest among all such symmetric construction that

satisfy this constraint.

We verify that the KKT condition to show the construction in (23) includes the solution [w∗; b∗]. From (23), we have

x�
+w

∗ + b∗ = t x�
−w

∗ + b∗ = −t.

We apply them and the teaching set construction to compute the gradient of (22):

− n

2

1

1 + exp{x�
+w

∗ + b∗}

�
x+

1

�
+

n

2

1

1 + exp{−x�
−w∗ − b∗}

�
x−
1

�
+

�
λw∗

0

�

=− n

2

1

1 + exp{t}

�
x+

1

�
+

n

2

1

1 + exp{t}

�
x−
1

�
+

�
λw∗

0

�

=− n

�w∗�2
t

1 + exp{t}

�
w∗

0

�
+

�
λw∗

0

�

=− n

�w∗�2
λ�w∗�2

n

�
w∗

0

�
+

�
λw∗

0

�

=0.

This verifies the KKT condition.
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Finally we show uniqueness. The Hessian matrix of the objective function (22) under our training set (23) is:

n

2

exp{t}
(1 + exp{t})2� �� �

:=a

�
x+x

�
+ + x−x�

− x+ + x−
x�
+ + x�

− 2

�

� �� �
:=A

+λ

�
I 0
0� 0

�

� �� �
:=B

.

Note a > 0 andA =

�
x+

1

� �
x+ 1

�
+

�
x−
1

� �
x− 1

�
is positive semi-definite. We show that aA+λB is positive definite.

Suppose not. Then there exists [u; v] �= 0 such that [u; v]�(aA+λB)[u; v] = 0. This implies [u; v]�(aA)[u; v]+λu�u =
0. Since the first term is non-negative due to A being positive semi-definite, u = 0. But then we have 2av2 = 0 which
implies [u; v] = 0, a contradiction. Therefore uniqueness is guaranteed.

Proof to Corollary 6

Proof. The upper bound directly follows Proposition 6. We only need to show the lower bound
�
λ�w∗�2

τmax

�
by applying

LB3 in Theorem 3. Let A = I and �(a) = log(1 + exp{−a}) and consider the denominator of (9):

sup
α∈R,g∈∂�(−α�w∗�2)

αg = sup
α,g=(1+exp{α�w∗�2})−1

αg

=sup
α

α

1 + exp{α�w∗�2}

=�w∗�−2 sup
t

t

1 + exp{t}
=

τmax

�w∗�2 ,

which implies LB3 =
�
λ�w∗�2

τmax

�
.


