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Abstract

We study the empirical strategies that humans follow as they teach a target concept
with a simple 1D threshold to a rodBtPrevious studies of computational teach-
ing, particularly the teaching dimension model and the curriculum learning prin-
ciple, offer contradictory predictions on what optimal strategy the teacher should
follow in this teaching task. We show through behavioral studies that humans em-
ploy three distinct teaching strategies, one of which is consistent with the curricu-
lum learning principle, and propose a novel theoretical framework as a potential
explanation for this strategy. This framework, which assumes a teaching goal of
minimizing the learner’s expected generalization error at each iteration, extends
the standard teaching dimension model and offers a theoretical justification for
curriculum learning.

1 Introduction

With machine learning comes the question of how to effectitech Computational teaching

has been well studied in the machine learning commuhity [9, 12,110,[1) 2, 11,113,[184] 14, 15].
However, whether these models can predict thmmangeach is less clear. The latter question is
important not only for such areas as education and cognitive psychology but also for applications of
machine learning, as learning agents such as robots become commonplace and learn from humans.
A better understanding of the teaching strategies that humans follow might inspire the development
of new machine learning models and the design of learning agents that more naturally accommodate
these strategies.

Studies of computational teaching have followed two prominent threads. The first thread, devel-
oped by the computational learning theory community, is exemplified by the “teaching dimension”
model [9] and its extensions [12,110,[1[2] 11} [13, 18]. The second thread, motivated partly by ob-
servations in psychology [16], is exemplified by the “curriculum learning” princigle [4, 14, 15]. We
will discuss these two threads in the next section. However, they make conflicting predictions on
what optimal strategy a teacher should follow in a simple teaching task. This conflict serves as an
opportunity to compare these predictions to human teaching strategies in the same task.

This paper makes two main contributions: (i) it enriches our empirical understanding of human
teaching and (ii) it offers a theoretical explanation for a particular teaching strategy humans follow.
Our approach combines cognitive psychology and machine learning. We first conduct a behavioral
study with human participants in which participants teach a robot, following teaching strategies
of their choice. This approach differs from most previous studies of computational teaching in
machine learning and psychology that involve a predetermined teaching strategy and that focus on
the behavior of the learner rather than the teacher. We then compare the observed human teaching
strategies to those predicted by the teaching dimension model and the curriculum learning principle.

1Our data is available attp://pages.cs.wisc.edu/ ~jerryzhu/pub/humanteaching.tgz


http://pages.cs.wisc.edu/~jerryzhu/pub/humanteaching.tgz
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Figure 1: The target concept.

Empirical results indicate that human teachers follow the curriculum learning principle, while no
evidence of the teaching dimension model is observed. Finally, we provide a novel theoretical
analysis that extends recent ideas in teaching dimension model [13, 3] and offers curriculum learning
a rigorous underpinning.

2 Competing Models of Teaching

We first review the classic teaching dimension model [9, 1]. Xdte an input spacéy the label
space, andzq,y1), ..., (zn,yn) € X x Y a set of instances. We focus on binary classification in
the unit interval: X = [0,1],) = {0,1}. We call® C 2{#1=n} a concept class and ¢ H a
concept. A concept is consistent with instande:, y) iff © € h < y = 1. his consistent with a set

of instances if it is consistent with every instance in the set. A set of instances is called a teaching
set of a concept with respect taH, if 4 is the only concept i that is consistent with the set. The
teaching dimension af with respect toH is the minimum size of its teaching set. The teaching
dimension ofH is the maximum teaching dimension of its concepts.

Consider the task in Figufé 1, which we will use throughout the paper:iLet. .. < z,,. Let H be

all threshold labelingsH = {h | 30 € [0,1],Vi=1...n:z; € h < z; > 0}. The target concept
h; has the threshold between andx;;: h; = {z;11,...,2,}. Then, the teaching dimension
of mosth; is 2, as one needs the minimum teaching{set;, 0), (z,+1,1)}; for the special cases
ho = {z1,...,z,} andh,, = () the teaching dimension Is 1 with the teaching §et;,1)} and
{(z,,0)}, respectively. The teaching dimension®fis 2. For our purpose, the most important
argument is the followingThe teaching strategy for moki’s suggested by teaching dimension is
to show two instancelz;, 0), (z;+1, 1)} closest to the decision boundatgtuitively, these are the
instances most confusable by the learner.

Alternatively, curriculum learning suggests an easy-to-hard (or clear-to-ambiguous) teaching strat-
egy [4]. For the target concept in Figuré 1, “easy” instances are those farthest from the de-
cision boundary in each class, while “hard” ones are the closest to the boun@arg. such
teaching strategy is to present instances from alternating classes, e.g., in the following order:
(21,0), (xn, 1), (22,0), (xpn-1,1),...,(x;,0), (z;41,1). Such a strategy has been used for second-
language teaching in humans. For example, to train Japanese listeners on the English [r]-[l] distinc-
tion, McCandlisset al. linearly interpolated a vocal tract model to create a 1D continuum similar

to Figure[] along [r] and [I] sounds. They showed that participants were better able to distinguish
the two phonemes if they were given easy (over-articulated) training instances first [16]. Compu-
tationally, curriculum learning has been justified as a heuristic related to continuation method in
optimization to avoid poor local optimal[4].

Hence, for the task in Figufg 1, we have two sharply contrasting teaching strategies at hand: the
boundary strategy starts near the decision boundary, whileetheme strategy starts with ex-

treme instances and gradually approaches the decision boundary from both sides. Our goal in this
paper is to compare human teaching strategies with these two predictions to shed more light on
models of teaching. While the teaching task used in our exploration is simple, as most real-world
teaching situations do not involve a threshold in a 1D space, we believe that it is important to lay the
foundation in a tractable task before studying more complex tasks.

3 A Human Teaching Behavioral Study

Under IRB approval, we conducted a behavioral study with human participants to explore human
teaching behaviors in a task similar to that illustrated in Figlire 1. In our study, participants teach
the target concept of “graspability"—whether an object can be grasped and picked up with one
hand—to a robot. We chose graspability because it corresponds nicely to a 1D space empirically
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Figure 2: (a) A participant performing the card sorting/labeling and teaching tasks. (b) Human
teaching sequences that follow tisgreme strategy gradually shrink the version spage

studied before [17]. We chose to use a robot learner because it offers great control and consistency
while facilitating natural interaction and teaching. The robot keeps its behavior consistent across
conditions and trials, therefore, providing us with the ability to isolate various interactional factors.
This level of experimental control is hard to achieve with a human learner. The robot also affords
embodied behavioral cues that facilitate natural interaction and teaching strategies that computers
do not afford.

Participants were 31 paid subjects recruited from the University of Wisconsin—-Madison campus.
All were native English speakers with an average age of 21 years.

Materials. We used black-and-white photos of = 31 objects chosen from the norming study

of Salmonet al. [17]. The photos were of common objects (e.g., food, furniture, animals) whose
average subjective graspability ratings evenly span the whole range. We printed each photo on a 2.5-
by-4.5 inch card. The robot was a Wakamaru humanlike robot manufactured by Mitsubishi Heavy
Industries, Ltd. It neither learned nor responded to teaching. Instead, it was programmed to follow
motion in the room with its gaze. Though seemingly senseless, this behavior in fact provides a
consistent experience to the participants without extraneous factors to bias them. It also corresponds
to the no-feedback assumption in most teaching models [3]. Participants were not informed that the
robot was not actually learning.

Procedure. Each participant completed the experiment alone. The experiment involved two sub-
tasks that were further broken down into multiple steps. In the first subtask, participants sorted the
objects based on their subjective ratings of their graspability following the steps below.

In step 1, participants were instructed to place each object along a ruler provided on a long table
as seen in Figurg 2(a). To provide baselines on the two ends of the graspability spectrum, we fixed
a highly graspable object (a toothbrush) and a highly non-graspable object (a building) on the two

ends of the ruler. We captured the image of the table and later converted the position of each card
into a participant-specific, continuous graspability rating. . ., z,, € [0, 1]. For our purpose, there

is no need to enforce inter-participant agreement.

In step 2, participants assigned a binary “graspahjez (1) or “not graspable”q = 0) label to each
object by writing the label on the back of the corresponding card. This gave us {gbels, y,,.
The sorted cards and the decision boundary from one of the participants is illustrated irf Figure 3.

In step 3, we asked participants to leave the room for a short duration so that “the robot could
examine the sorted cards on the table without looking at the labels provided at the back,” creating
the impression that the learner will associate the cards with the correspondingaglues z,, .

In the second subtask, participants taught the robot the (binary) concept of graspability using the
cards. In this task, participants picked up a card from the table, turned toward the robot, and held
the card up while providing a verbal description of the object’s graspability (i.e., the binary label
y) as seen in Figurg] 2(a). The two cards, “toothbrush” and “building,” were fixed to the table and
not available for teaching. The participants were randomly assigned into two conditions: (1) natural
and (2) constrained. In the “natural” condition, participants were allowed to use natural language to
describe the graspability of the objects, while those in the “constrained” condition were only allowed



to say either “graspable” or “not graspable.” They were instructed to u@asards as they felt
necessary. There was no time limit on either subtasks.

Results. The teaching sequences from all participants are presented in Figure 4. The title of each
plot contains the participant ID and condition. The participant’s rating and classification of all
objects are presented above thaxis. Objects labeled as “not graspable” are indicated with blue
circles and those labeled as “graspable” are marked with red plus signs:-&ie position of the
object represents its ratinge [0, 1]. The vertical blue and red lines denote an “ambiguous region”
around the decision boundary; objects to the left of the blue line have the label “not graspable;”
those to the right of the red line are labeled as “graspable,” and objects between theseudides
have labels in mixed order. In theory, following theundary strategy, the teacher should start with
teaching instances on these two lines as suggested by the teaching dimension mogedxishis

trial t = 1,...,15, which progresses upwards. The black line and dots represent the participant’s
teaching sequence. For example, participant PO1 started teaching hivith an object she rated

asz = 1 and labeled as “graspable;” &it= 2, she chose an example with rating= 0 and label

“not graspable;” and so on. The average teaching sequence had approximately 8 examples, while
the longest teaching sequence had a length of 15 examples.

We observedhree major human teaching strategies in our data: (1)ethteeme strategy, which

starts with objects with extreme ratings and gradually moves toward the decision boundary; (2)
thelinear strategy, which follows a prominent left-to-right or right-to-left sequence; and (3) the
positive-only strategy, which involves only positively labeled examples. We categorized most
teaching sequences into these three strategies following a simple heuristic. First, sequences that
involved only positive examples were assigned togdbstive-only strategy. Then, we assigned

the sequences whose first two teaching examples had different labelsetartimee  strategy and

the others to thénear strategy. While this simplistic approach does not guarantee perfect clas-
sification (e.g., P30 can be labeled differently), it minimizes hand-tuning and reduces the risk of
overfitting. We made two exceptions, manually assigning P14 and P16 to the extreme strategy.
Nonetheless, these few potential misclassifications do not change our conclusions below.

None of the sequences followed thmundary strategy. In fact, among all 31 participants, 20 started
teaching with the most graspable object (according to their own rating), 6 with the least graspable,
none in or around the ambiguous region kaandary strategy would predict), and 5 with some
other objects. In brief, people showed a tendency to start teaching with extreme objects, especially
the most graspable ones. During post-interview, when asked why they did not start with objects
around their decision boundary, most participants mentioned that they wanted to stacteaith
examples of graspability.

For participants who followed thextreme strategy, we are interested in whether their teaching
sequences approach the decision boundary as curriculum learning predicts. Specifically, at any
time ¢, let the partial teaching sequence (g, y1), ..., (z:,y:). The aforementioned ambiguous
region with respect to this partial sequence is the interval between the inner-most pair of teaching
examples with different labels. This can be writterl/as= [max;.,, —o x;, min;.,,—1 ;] wherej is
overl...t. V; is exactly theversion spacef consistent threshold hypotheses (the subscript 1 will
become clear in the next section). Figfe 2(b) shows a box plot of the siZefof all participants

as a function of. The red lines mark the median and the blue boxes indicate the 1st & 3rd quatrtiles.
As expected, the size of the version space decreases.
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Figure 3: Sorted cards and the decision boundary from one of the participants.
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Figure 4: Teaching sequences of all participants.

Finally, the positive-only strategy was observed significantly more in the “natural” condition
(3/16 ~ 19%) than in the “constrained” conditioft /15 = 0%), x?(1, N = 31) = 4.27,p = .04.

We observed that these participants elaborated in English to the robot why they thought that their
objects were graspable. We speculate that they might have felt that they had successfully described
therulesand that there was no need to use negative examples. In contrast, the constrained condition
did not have the rich expressivity of natural language, necessitating the use of negative examples.

4 A Theoretical Account of the “Extreme” Teaching Strategy

We build on our empirical results and offer a theoretical analysis as a possible rationalization for the

extreme strategy. Research in cognitive psychology has consistently shown that humans represent
everyday objects with a large number of features (eld. 1[7, 8]). We posit that although our teaching

task was designed to mimic the one-dimensional task illustrated in Higure 1 (e.g., the linear layout

of the cards in Figurg]3), our teachers might still have believed (perhaps subconsciously) that the
robot learner, like humans, associates each teaching object with multiple feature dimensions.

Under the high-dimensional assumption, we show thagtireme strategy is an outcome of mini-

mizing per-iteration expected error of the learner. Note that the classic teaching dimensiori. model [9]
fails to predict theextreme strategy even under this assumption. Our analysis is inspired by recent
advances in teaching dimension, which assume that teaching progresses in iterations and learning
is to be maximized after each iteratidn [13, 3]. Different from those analysis, we minimize the
expected erroinstead of thavorst-case erroand employ different techniques.

4.1 Problem Setting and Model Assumptions

Our formal set up is as follows. The instance space igliienensional hypercub& = [0, 1]¢. We

use boldfacex € X to denote an instance ang; for the j-th dimension of instance;. The binary
labely is determined by the thresho%ﬂin the first dimensiony; = Lig,>1y- This formulation
idealizes our empirical study where the continuous rating is the first dimension. It implies that the
target concept is unrelated to any of the ottherl features. In practice, however, there may be other



features that are correlated with the target concept. But our analysis carries through by replacing
with the number of irrelevant dimensions.

Departing from classic teaching models, we consider a “pool-based sequential” teaching setting.
In this setting, a pool of instances are sampléd x1,...,x, ~ p(x), where we assume that

p(x) is uniform onX for simplicity. Their labelsy; ...y, may be viewed as being sampled from

the conditional distributiop(y; = 1 | x;) = Lig,>1y- The teacher can only sequentially teach
instances selected from the pool (e.g., in our empirical study, the pool consists of the 29 objects).
Her goal is for the learner to generalize well on test instances outside the pool (also sampled from
p(x,y) = p(x)p(y | x)) after each iteration.

At this point, we make two strong assumptions on the learner. First, we assume that the learner
entertains axis-parallel hypotheses. That is, each hypothesis has thefi®) = 1., —6)>0}

for some dimensio € {1...d}, threshold? € [0, 1], and orientatiors € {—1,1}. The cogni-

tive interpretation of an axis-parallel hypothesis is that the learner attends to a single dimension at
any given timﬂ As in classic teaching models, our learner is consistent (i.e., it never contradicts
with the teaching instances it receives). Negsion spacd/(t) of the learner, i.e., the set of hy-
potheses that is consistent with the teaching sequénce ), . . ., (x¢, y:) So far, takes the form

V(t) = Ug:lvk(t) Wherer(t) = {hk0,1 | MaX;.y, =0 Tjk <6< minj;yjzl l‘jk} U {hkg’,l |
max.,, —1 Tjx < 0 < minj., —ox;}. The version space can be thought of as the union of inner
intervals surviving the teaching examples.

Second, similar to the randomized learnersin [2], our learner selects a hypdéthesiermly from

the version spac¥ (t), follows it until whenh is no longer inV (¢), and then randomly selects a
replacement hypothesis—a strategy known as “win stay, lose shift” in cognitive psychiology [5]. It
is thus a Gibbs classifier. In particular, the risk, defined as the expected 0-1 loss of the learner on
a test instance, iR(t) = E(xy)~p(x,y)Enev )1 {nx)2y)- We point out that our assumptions are
psychologically plausible and will greatly simplify the derivation below.

4.2 Starting with Extreme Teaching Instances is Asymptotically Optimal

We now show why starting with extreme teaching instances as in curriculum learning, as opposed
to theboundary strategy, is optimal under our setting. Specifically, we consider the problem of se-
lecting an optimal teaching sequence of length 2, one positive and one negative;, 1), (x2,0).
Introducing the shorthangl = 11, b = x4, the teacher seeks b to minimize the risk:
in R(2 1

L nin (2) 1)
Note that we allowa, b to take any value within their domains, which is equivalent to having an
infinite pool for the teacher to choose from. We will tighten it later. Also note that we assume the
teacher does not pay attention to irrelevant dimensions, whose feature values can then be modeled
by uniform random variables.

For any teaching sequence of length 2, the individual intervals of the version space are of size
Vi(2)] = a — b, |Vk(2)] = |z — zai| for & = 2...d, respectively. The total size of

the version space iV (2)] = a — b + ZZZQ |z1k — okl FigureB(a) shows that for all
hig,1 € VA(2), the decision boundary is parallel to the true decision boundary and the test
error is E(x y)~p(x) Lo 029y = |01 — 1/2]. Figure@(b) shows that for alkie,s €

u¢_,Vi(2), the decision boundary is orthogonal to the true decision boundary and the test error
is 1/2. Therefore, we hav&(2) = gy (fba 10y — 1/2(d6y + S20_, [t wa) ldek) —

min(z1k,x2r) 2
D (%(% —0)2+La— 12+, o — x2k|>. Introducing the shorthand, = |z1, —

2 2
zor|, ¢=Y2¢_, ck, One can writeR(2) = % The intuition is that a pair of teach-
ing instances lead to a version spd¢€&2) consisting of one interval per dimension. A random
hypothesis selected from the interval in the first dimen$ipf2) can range from good (i, is close

2A generalization to arbitrary non-axis parallel linear separators is possible in theory and would be interest-
ing. However, non-axis parallel linear separators (known as “information integration” in psychology) are more
challenging for human learners. Consequently, our huteacheramight not have expected the robot learner
to perform information integration either.
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Figure 5: (a) A hypothesigig,1 € Vi1(2) is parallel to the true decision boundary, with test error
|61 —1/2| (shaded area). (b) A hypothedisy, s € V2(2) is orthogonal to the true decision boundary,
with test error 1/2 (shaded area). (c) Theoretical teaching sequences gradually BHriskmilar

to human behaviors.

to 1/2) to poor ¢; far away from 1/2), while one selected froof_,V;(2) is always bad. The
teacher can optimize the risk by choosing the siz&df") related to the total version space size.
The optimal choice is specified by the following theorem.

Theorem 1. The minimum risk?(2) is achieved at = Y& +2e=ctl ' =1 — g,

Proof. First, we show that at the minimumb are symmetric arountl/2, i.e.,b = 1 — a. Suppose
1 N2 ’ 142
not. Then(a+b)/2 = 1/2-+¢for somee # 0. Leta’ = a—e, b’ = b—e. Then,2=2 e —z) Fe

2(a’—b'+c) -
1_p\2 _1)24 . 92 1_7)\2 —1)24 ¢ L Lo . i
(z-0) ;(aa_bj)c;ﬂ' 2 < bz bQ)(;’_(ZJr;)) *¢ the minimum, a contradiction. Next, substituting=

1 — ain R(2) and setting the derivative w.rd.to O proves the theorem. O

Recall thatc is the size of the part of the version space in irrelevant dimensions. \Whenoo,

¢ — oo and the solution i& = 1,b = 0. Here, the learner can form so many bad hypotheses in the
many wrong dimensions that the best strategy for the teacher is to Vh&Keas large as possible,
even though many hypotheseslin(2) have nonzero error.

Corollary 2. The minimizer tqI)) is a = 1,b = 0 when the dimensionality — co.

Proof. We characterize the distribution af by considering the distance between two random vari-
ablesxz iy, xor sampled uniformly in[0,1]. Let 2(1), 2(2) be the values ofy, xo) sorted in an
ascending order. Then, = z) — z(1) is an instance obrder statistics[6]. One can show
that, in general with independenumif[0, 1] random variables sorted in an ascending order as
Z(1) -5 2()1 ZG+1)5 - - - » 2(p)» the distancer; 1) — z(;) follows aBeta(1,t) distribution. In our
case witht = 2, ¢;, ~ Beta(1,2), whose mean is 1/3 as expected. It follows thia the sum of

d — 1 independent Beta random variables. As» oo, ¢ — oco. Lety = 1/c. Applying I'Hdpital’s

. . 2 — . —_
rule, lim,_, oo @ = lim._, oo 7”“;”1 = lim,_,o 7WY =1. O

Corollary[2 has an interesting cognitive interpretation; the teacher only needs to pay attention to the
relevant (first) dimension, zo; when selecting the two teaching instances. She does not need to
consider the irrelevant dimensions, as those will add up to a larglich simplifies the teacher’s

task in choosing a teaching sequence; she simply picks two extreme instances in the first dimension.
We also note that in practicedoes not need to be very large foto be close to 1. For example,

with d = 10 dimensions, the averageis %(d — 1) = 3 and the corresponding = 0.94, with

d =100, a = 0.99. This observation provides further psychological plausibility to our model.

So far, we have assumed an infinite pool, such that the teacher can select the extreme teaching
instances withz1; = 1,297 = 0. In practice, the pool is finite and the optimalb values specified

in Theoren] L may not be attainable within the pool. However, it is straightforward to show that
lim. . R'(t) < 0 where the derivative is w.r.ta after substitutingg = 1 — a. That is, in the

case ofc — oo, the objective in[(Ll) is a monotonically decreasing functiom.ofTherefore, the

optimal strategy for a finite pool is to choose the negative instance with the smallestue and



the positive instance with the largest value. Note the similarity to curriculum learning which
starts with extreme (easy) instances.

4.3 The Teaching Sequence should Gradually Approach the Boundary

Thus far, we have focused on choosing the first two teaching instances. We now show that, as
teaching continues, the teacher should choose instances: \aitld b gradually approaching /2.

This is a direct consequence of minimizing the ri3§¢) at each iteration, asdecreases to 0. In this
section, we study the speed by whictecreases to 0 andto 1/2.

Consider the moment when the teacher has already presented a teaching sequence
(x1,y1),- - -, (Xt—2,y:—2) and is about to select the next pair of teaching instafices , 1), (x;,0).
Teaching with pairs is not crucial but will simplify the analysis. Following the discussion after Corol-
lary[2, we assume that the teacher only pays attention to the first dimension when selecting teaching
instances. This assumption allows us to again model the other dimensions as random variables. The
teacher wishes to determine the optimat z,_; 1,0 = z;; values according to Theore@ 1. What

is the value ot for a teaching sequence of length

Theorem 3. Let the teaching sequence contagnegative labels and — ¢y positive ones. Then
the random variables;, = o, 3),, Whereay, ~ Bernoulli (2/( £ ),1—2/(/)) (with values 1, 0

respectively) and;, ~ Beta(1,t) independently fok = 2...d. Consequentlyii(c) = %.
to

Proof. We show that for each irrelevant dimensier- 2. . . d, aftert teaching instance$Vy ()| =

axfk. As mentioned above, theséeaching instances can be viewedia#[0, 1] random variables

in the kth dimension. Sort the valuesy, ...,z in ascending order. Denote the sorted values
aszgy,..., 2. Vk(t) is non-empty only if the labels happen to be linearly separable, i.e., either
2(1) - - - 2(1,) having negative labels while the rest having positive labels or the other way around.
Consider the corresponding analogy where one randomly selects a permutatitantf (there are

t! permutations), such that the selected permutation hagfitstms with negative labels and the rest
with positive labels (there arg!(t — to)! such permutations). This probability corresponds:to
WhenVj,(t) is nonempty, its sizg/,(t)| is characterized by the order statisti¢g , 1) — 2(1,), Which
corresponds to the Beta random variabjeas mentioned earlier in the proof of Corollafy 2. [

As the binomial coefficient in the denominator Bfc) suggests¢ decreases to O rapidly with
because randomly-placed labels in 1D are increasingly unlikely to be linearly separable. Following
Theorenj L, the corresponding optinaab approach 1/2. Due to the form of Theorn 1, the pace is
slower. To illustrate how fast the optimal teaching sequence approaches 1/2 in the first dimension,
Figure@(c) shows a plot dV;| = a — b as a function ot by usingE(c) in Theorerr[]L (note in
general that this is ndt(|V; ), but only a typical value). We s&§ = t/2. This plot is similar to the

one we produced from human behavioral data in Fi§lire 2(b). For comparison, that plot is copied
here in the background. Because the effective number of independent dimehsam&known, we
present several curves for differefis. Some of these curves provide a qualitatively reasonable fit

to human behavior, despite the fact that we made several simplifying model assumptions.

5 Conclusion and Future Work

We conducted a human teaching experiment and observed three distinct human teaching strategies.
Empirical results yielded no evidence for theundary strategy but showed that thextreme

strategy is consistent with the curriculum learning principle. We presented a theoretical framework
that extends teaching dimension and explains two defining properties eftthme strategy: (1)
teaching starts with extreme instances and (2) teaching gradually approaches the decision boundary.

Our framework predicts that, in the absence of irrelevant dimensibas{), teaching should start

at the decision boundary. To verify this prediction, in our future work, we plan to conduct additional
human teaching studies where the objects have no irrelevant attributes. We also plan to further
investigate and explain thimear  strategy and theositive-only strategy that we observed in

our current study.

Acknowledgments: We thank Li Zhang and Eftychios Sifakis for helpful comments. Research supported by
NSF 11S-0953219, 11S-0916038, AFOSR FA9550-09-1-0313, Wisconsin Alumni Research Foundation, and
Mitsubishi Heavy Industries, Ltd.



References

(1]
(2]

(3]
(4]
(5]

(6]
(7]

(8]

El
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

D. Angluin. Queries revisitedTheoretical Computer Sciencgl3(2):175-194, 2004.

F. J. Balbach and T. Zeugmann. Teaching randomized learner®robreedings of the 19th Annual
Conference on Computational Learning Theory (CQlpElges 229-243. Springer, 2006.

F. J. Balbach and T. Zeugmann. Recent developments in algorithmic teachiPgrckedings of the 3rd
International Conference on Language and Automata Theory and Applicatiagses 1-18, 2009.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In L. Bottou and M. Littman,
editors,Proceedings of the 26th International Conference on Machine Learpimges 41-48, Montreal,
June 2009. Omnipress.

J. S. Bruner, J. J. Goodnow, and G. A. AustinStudy of ThinkingNew York: Wiley, 1956.
H. A. David and H. N. NagarajaOrder Statistics Wiley, 3rd edition, 2003.

S. De Deyne and G. Storms. Word associations: Network and semantic propBetesvior Research
Methods 40:213-231, 2008.

S. De Deyne and G. Storms. Word associations: Norms for 1,424 Dutch words in a continuous task.
Behavior Research Methad$0:198-205, 2008.

S. Goldman and M. Kearns. On the complexity of teachilmurnal of Computer and Systems Sciences
50(1):20-31, 1995.

S. Goldman and H. Mathias. Teaching a smarter leardeurnal of Computer and Systems Sciences
52(2):255267, 1996.

S. Hanneke. Teaching dimension and the complexity of active learnifyotreedings of the 20th Annual
Conference on Computational Learning Theory (CQlpEjge 6681, 2007.

T. Hegedis. Generalized teaching dimensions and the query complexity of learniiRyodeedings of
the eighth Annual Conference on Computational Learning Theory (CQlages 108-117, 1995.

H. Kobayashi and A. Shinohara. Complexity of teaching by a restricted humber of exampleg- In
ceedings of the 22nd Annual Conference on Computational Learning Theory (CigBs 293-302,
20009.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable modeldPs 2010.

Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual category discovery. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Q0RR)

B. D. McCandliss, J. A. Fiez, A. Protopapas, M. Conway, and J. L. McClelland. Success and failure in
teaching the [r]-[l] contrast to Japanese adults: Tests of a Hebbian model of plasticity and stabilization in
spoken language perceptid@ognitive, Affective, & Behavioral Neuroscien2¢2):89—-108, 2002.

J. P. Salmon, P. A. McMullen, and J. H. Filliter. Norms for two types of manipulability (graspability and
functional usage), familiarity, and age of acquisition for 320 photographs of objetsavior Research
Methods 42(1):82—95, 2010.

S. Zilles, S. Lange, R. Holte, and M. Zinkevich. Models of cooperative teaching and leajoungnal of
Machine Learning Researcth2:349-384, 2011.



	Introduction
	Competing Models of Teaching
	A Human Teaching Behavioral Study
	A Theoretical Account of the ``Extreme'' Teaching Strategy
	Problem Setting and Model Assumptions
	Starting with Extreme Teaching Instances is Asymptotically Optimal
	The Teaching Sequence should Gradually Approach the Boundary

	Conclusion and Future Work

