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Abstract

Imagine two identical people receive exactly
the same training on how to classify certain
objects. Perhaps surprisingly, we show that
one can then manipulate them into classify-
ing some test items in opposite ways, sim-
ply depending on what other test items they
are asked to classify (without label feedback).
We call this the Test-Item Effect, which can
be induced by the order or the distribution of
test items. We formulate the Test-Item Ef-
fect as online semi-supervised learning, and
extend three standard human category learn-
ing models to explain it.

1. Introduction

One common approach to studying human categoriza-
tion in cognitive psychology is to build explicit statis-
tical learning models that fit observed behaviors. This
approach shares the same goal as statistical machine
learning: both aim at uncovering the underlying math-
ematical principles of the learning process. In machine
learning terms, human categorization is a classification
task: given training data {(xi, yi)} for i = 1 . . . n, learn
a classifier f : X 7→ Y. Here xi ∈ X is a stimulus (or
item), usually represented as a feature vector in Rd,
and yi ∈ Y is the category label (e.g., 0 or 1) given to
the learner. The classifier f comes from the implicit
family of classification functions that the human mind
can produce. Similar to machine learning, cognitive
studies typically assume a training phase where the
classifier f is trained, and a test phase where f is held
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fixed and applied to test items xn+1, xn+2, . . . to pre-
dict f(xn+1), f(xn+2), . . . The test phase is conducted
without label feedback, i.e., without giving the human
learner the true label yn+1, yn+2, . . .

While it is certainly possible to fix f during testing
in machine learning, the validity of this assumption
is less clear in human learning. Because there is no
label feedback during test, one might be led to think
that there is no information in the test items regard-
ing the mapping from X to Y to merit a change in
f . However, recent theoretical and empirical studies
on semi-supervised learning cast doubt on this claim.
These studies show that, under appropriate assump-
tions, both labeled and unlabeled data will influence
the trained classifier (Chapelle et al., 2006; Zhu &
Goldberg, 2009). The train/test split can be viewed
as a special case of semi-supervised learning, where all
the labeled data come first, and all the unlabeled data
come next.

We propose the term Test-Item Effect to denote
the possibility that unlabeled test items can induce
changes to the classifier f in human category learn-
ing. Specifically, the Test-Item Effect predicts that two
otherwise identical people A, B receiving exactly the
same training data can be made to disagree on certain
test items x∗, i.e., fA(x∗) 6= fB(x∗), simply by ma-
nipulating what other test data xA

n+1 . . . and xB
n+1 . . .

they are asked to classify, respectively. Note they do
not receive label feedback on any test items. If the
Test-Item Effect is real, it will have profound theo-
retical and practical implications. Existing category
learning models will need to be revised to accommo-
date such effect. Education and training procedures
will need to take the effect into account as well. As an
example, consider airport security personnel that scan
luggage, categorizing it as safe/suspicious. It would be
important to understand whether encountering partic-
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ular luggage items could unwittingly bias their cate-
gory decision.

Some past research does show that classification be-
havior can be influenced by the construction of the
test set. Zaki and Nosofsky showed that, in a one-class
classification setting (where the training data consists
of positively labeled items only, and the goal is to
classify a test item as positive or not), the presence
of a new, tight cluster in the test data shifts peo-
ple’s perception of the prototypical training item (Zaki
& Nosofsky, 2007). More dramatically, Palmeri and
Flanery showed that even with zero training data, peo-
ple can perform one-class classification if there is a
cluster in test data (Palmeri & Flanery, 1999). Fried
and Holyoak investigated mixture models separately
in labeled and unlabeled settings but did not mix
them (Fried & Holyoak, 1984). Zhu et al. showed
that humans use both labeled and unlabeled data to
estimate the class-conditional distribution p(x|y) in a
mixture model setting (Zhu et al., 2007).

Despite such evidence, the Test-Item Effect is not yet
well-understood. This paper makes two key contribu-
tions: (i) We describe a human experiment where the
order of the same set of test items induces a strong
Test-Item Effect. This experiment complements pre-
vious studies which change the test item distribution.
(ii) We introduce novel “online semi-supervised” vari-
ants of three standard human category learning mod-
els: the exemplar, the prototype, and the rational
model of categorization. Our new models perform on-
line (incremental) semi-supervised learning, which is
necessary to explain test-item order effect.

The goals of this paper are (i) to report two kinds
of Test-Item Effects observed in a human category-
learning task, and (ii) to assess whether the different
models vary in how well they match the reported hu-
man behavior. If some models fit the human data bet-
ter than others, this suggests that the Test-Item Ef-
fects might importantly constrain computational ac-
counts of human category learning. The main con-
tribution of this work is thus to cognitive psychology,
although machine learning researchers may find some
of the semi-supervised models interesting as well.

2. The Test-Item Effects in Human
Category Learning

We first present a new human experiment on test item
order, then review an experiment in (Zhu et al., 2007)
on test item distribution. Taken together, these ex-
periments demonstrate that the Test-Item Effect does
occur, and can have multiple causes. A human cat-

egory learning model needs to be able to explain all
such Test-Item Effects.

2.1. The Test-Item Effect Due to Order

This experiment consists of two identical conditions
except for one aspect: They share the same set of test
items, but differ in the order the test items are pre-
sented to the subjects. As we show below, subjects in
these two conditions consistently disagree on the label
of certain test items.

Participants and Materials: 40 undergraduate stu-
dents participated for partial course credit. The stim-
uli are novel shapes (Figure 1), varying according to
a single continuous parameter x ∈ [−2, 2]. There are
two classes, denoted as y = 0 or y = 1.

Procedure: In trial n, a stimulus xn appears on a
computer screen, and stays on until the subject presses
one of two keys to label it. All subjects initially have
the same 10 labeled trials, where two items occur al-
ternatively: (xn, yn) = (−2, 0), (2, 1), (−2, 0), (2, 1) . . .
For these 10 trials, after the subject presses her key,
a label feedback appears on screen indicating whether
her classification was correct (same as yn). The com-
puter screen is then cleared, and the stimulus for the
next trial appears. After these labeled trials, subjects
are presented with a series of 81 evenly spaced unla-
beled test items: xn = −2,−1.95,−1.9, . . . , 2. The
test items appear one at a time on the screen, and
the subjects have to classify them using the same pro-
cedure. However, there is no longer labeled feedback
after each classification. Importantly, the subjects are
randomly divided into two conditions of equal size. In
the “L to R” condition, the order of the test items is
as above. In the “R to L” condition, the order is the
opposite (i.e., 2, 1.95, 1.9, . . . ,−2).

Result: In Figure 2(Left) we plot P (y = 1|x), esti-
mated by the fraction of subjects in each condition who
classified x with label 1. The difference is striking1.
Subjects in the “L to R” condition tend to classify
more test items as y = 0, while those in the “R to L”
condition tend to classify more as y = 1. For instance,
for the same test item x = −0.5, only 4 out of 20 sub-
jects in the “L to R” condition classified it as y = 1,

1We point out that the two curves in Figure 2(Left) are
not symmetric about x = 0, as one would expect. We spec-
ulate that this is due to the stimulus space in Figure 1 not
being perceptually uniform. Our feature x is a parameter
used to generate the geometry of the shapes, and does not
necessarily match the human perceived similarity between
stimuli. Nonetheless, this does not affect the validity of the
observed Test-Item Effect, which only depends on the two
curves separating from each other.
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Figure 1. Example stimuli

while 15 out of 20 subjects in the “R to L” condition
did so. This is significantly different using log odds
ratio at p < 0.0004. It is clear evidence of the Test-
Item Effect, where the effect is produced by the order
of test items. In fact, for test items x ∈ [−1.2, 0.1]
a majority-vote among subjects will classify them in
opposite ways in those two conditions.

We postulate that the subjects might perform self-
reinforcement: that once a person classifies a test item
x as in class y, the predicted label y (perhaps weighted
by its uncertainty) becomes a training label for the
person. For example, for a subject in the “L to R”
condition, the first few test items are all near x = −2.
The subject can easily classify them as y = 0 from
the training she just received. If self-reinforcement is
in effect, these test items will act as additional train-
ing data for the y = 0 class. This will tend to fa-
vor classifying more test items as y = 0. The op-
posite can be said for the “R to L” condition. Such
self-reinforcement corresponds to the self-training al-
gorithm in semi-supervised learning. Under certain
probabilistic models, it can also be interpreted as an
Expectation-Maximization (EM) procedure. This in-
sight will underlie our models in Section 3.

2.2. The Test-Item Effect Due to Distribution

We briefly review the experiment in (Zhu et al., 2007),
which represents a different kind of Test-Item Effect,
and whose data will be used in model fitting later.
The task is again binary categorization in the same
stimulus space. First, all subjects received 20 labeled
items: (x, y) = (−1, 0) and (1, 1), repeated 10 times
each in random order. In the subsequent 795 test tri-
als, subjects were divided into two conditions. The
two conditions differ only in how the majority of the
test items were generated (the other test items were
grid points shared across conditions): For 12 subjects
in the “L shifted” condition, 690 of the test items were
randomly sampled from a mixture of two Gaussian dis-
tributions with means at -1.43 and 0.57. These means
are shifted to the left of the labeled training items. For
10 subjects in the “R shifted” condition, the means are
-0.57 and 1.43. Again, there was no label feedback on
any test items.

We show their results in Figure 2(Right) by pool-

ing all subjects in a condition together, and fit two
logistic regression curves: human categorization on
the first 50 test items (marked “early”) and the last
50 test items (“late”). In early test, the two condi-
tions are essentially the same, and the curves over-
lap. In late test however, the curves are dramati-
cally different. The final decision threshold, i.e., the
x with P (y = 1|x) = 1/2, shifted in opposite direc-
tions in these two conditions. During late test, items
x ∈ [−0.07, 0.50] received the opposite majority clas-
sification in those two conditions. This difference rep-
resents the Test-Item Effect due to test-item distribu-
tions.

3. Online Semi-Supervised Learning
Models for the Test-Item Effect

The human behavioral data in Section 2 suggests
strong Test-Item Effects due to the order or distri-
bution of test data. We follow these desiderata in
proposing new quantitative cognitive models to ex-
plain such data: i) These models should explain the
effect of unlabeled data for classification, as opposed to
unsupervised clustering, which is well studied in psy-
chology. This suggests semi-supervised learning mod-
els. ii) They need to learn incrementally to explain
order effects. Besides which, incremental learning is
a better fit to human learning experience than batch
learning. iii) They should build upon existing human
category learning models. iv) They should have as few
parameters as possible to prevent overfitting human
behavioral data.

With these in mind, we propose three online semi-
supervised learning algorithms to model the Test-Item
Effect in humans. They extend the exemplar, the pro-
totype, and the rational categorization models in psy-
chology, which correspond to kernel regression, Gaus-
sian mixture models, and Dirichlet process mixture
models in machine learning, respectively. Although
the variety of semi-supervised learning models has
flourished in recent years, we will only employ self-
training and generative models, and leave more ad-
vanced semi-supervised assumptions such as manifolds
or large margin separation to future work.

3.1. Semi-Supervised Exemplar Model

The generalized context model (Nosofsky, 1986) in
cognitive psychology assumes that people store train-
ing items in memory, and make a category pre-
diction for a new item by a weighted average of
training item categories. The weight decreases as
the distance between the new item and the train-
ing item increases. This exemplar model can be
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Figure 2. The Test-Item Effect due to order (Left) and distribution (Right). The thick black lines mark items on which
the majority human classification differs in the two conditions.

related to the Nadaraya-Watson kernel estimator in
machine learning (Nadaraya, 1964; Wasserman, 2006;
Shi et al., 2008). In batch supervised learning,
given training data {(xi, yi)}i=1...n, one can create
a nonparametric regression function r(x) as follows:

r(x) =
∑n

i=1
K(

x−xi
h )Pn

j=1 K(
x−xj

h )
yi. The kernel K,

which determines the weight, can be any non-negative
smooth function that integrates to one, having zero
mean and non-zero variance. A common choice is the
Gaussian kernel K(z) = 1√

2π
e−z2/2, although in the-

ory the choice of kernel is not critical. More important
is the bandwidth parameter h, which controls how nar-
row or broad the kernel is. For binary classification
with y ∈ {0, 1}, r(x) can be viewed as a direct esti-
mate of P (y = 1|x), and label prediction can be made
by thresholding r(x) at 0.5.

We propose an online semi-supervised extension of the
Nadaraya-Watson estimator via self-training, as in Al-
gorithm 1. If xn is unlabeled, the algorithm predicts
its label based on r(n) as estimated from the current
model. The algorithm then treats the real-valued r(n)
as if it is a soft label for xn, and uses it in subsequent
iterations. This is a nonparametric, semi-supervised
learning model that learns incrementally, with a single
bandwidth parameter h.

3.2. Semi-Supervised Prototype Model

Prototype models in cognitive psychology assume that
people abstract the central tendency or “prototype”
of each category, and make a category prediction by
comparing the new item to the prototypes (Posner &
Keele, 1968; Reed, 1972; Rosch, 1973; Rosch et al.,
1976). Generative mixture models are their paral-
lels in machine learning. For concreteness, we discuss
two-component Gaussian Mixture Model with param-
eters θ = (α, µ0, σ

2
0 , µ1, σ

2
1). The model is defined by

Algorithm 1 Semi-Supervised Exemplar Model
Parameter: kernel bandwidth h
for n = 1, 2, . . . do

Receive xn, predict its label by thresholding

r(xn) =
∑n−1

i=1
K(

xn−xi
h )Pn−1

j=1 K(
xn−xj

h )
ŷi at 0.5

Receive yn (may be unlabeled), update model:
if yn is unlabeled then

ŷn = r(xn)
else

ŷn = yn

end if
end for

P (x, y|θ) = P (y|θ)P (x|y, θ) where

P (y|θ) = αy(1− α)1−y

P (x|y, θ) =
(
2πσ2

y

)−1/2
exp

(
−(x− µy)2/(2σ2

y)
)
.

The label of a new item xn is predicted according to
the posterior q(y):

q(y) ≡ P (y|xn, θ) =
P (xn, y|θ)∑

y′=0,1 P (xn, y′|θ)
.

In batch supervised learning, the parameters θ can be
trivially estimated from training data as the Maximum
Likelihood Estimate. In batch semi-supervised learn-
ing where some items are unlabeled, the parameters
can still be well-estimated (up to local optima) us-
ing the (batch) EM algorithm (Dempster et al., 1977).
However, in online semi-supervised learning, param-
eter estimation is more difficult. The closest models
are the incremental EM algorithm of (Neal & Hin-
ton, 1998) and the category density model of (Fried
& Holyoak, 1984). Neal and Hinton assumed that
one can “loop back” and revisit the items repeatedly
when updating parameters. From a cognitive model-
ing perspective, it is advantageous to assume a true
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online learning setting, where items are encountered
only once and not revisited indefinitely. Fried and
Holyoak’s model does this, but it assumes a “transfer”
(i.e. test) phase where the model parameters are no
longer updated, and thus will not model the Test-Item
Effects.

With this constraint, we define a variant of the incre-
mental EM algorithm in Algorithm 2. In a human
learning analogy, one keeps incremental track of the
number of items in each Gaussian component, and
the component’s mean and variance, through sufficient
statistics. If an input item (x, y) is labeled, its suffi-
cient statistics vector is

φ̃(x, y) = (1− y, (1− y)x, (1− y)x2, y, yx, yx2).

Importantly, if the item is unlabeled, one first esti-
mates the label distribution q(y) using the current pa-
rameters, and then assigns the contribution of the item
to both Gaussian components, weighted by q(y). The
sufficient statistics vector for an unlabeled item x is

Ey∼q[φ̃(x, y)] =
∑

y=0,1

q(y)φ̃(x, y).

With the accumulative sufficient statistics, one re-
estimates the parameters as in the M-step.

It is easy to show that Algorithm 2 maximizes a lower
bound of the log likelihood of all observed data so far.
But unlike the incremental EM algorithm of (Neal &
Hinton, 1998), it is not guaranteed to maximize the
log likelihood itself. This is a price we pay for not
revisiting old items. Nonetheless, it can still be a valid
cognitive model for human category learning.

It is possible to initialize the accumulative sufficient
statistics vector φ with certain values, which is equiv-
alent to a prior encoded in pseudo counts. In partic-
ular, the vector φ = (n0, 0, n0, n0, 0, n0) represents n0

pseudo items with mean zero and variance one for each
Gaussian. In our model fitting experiments below, we
will treat n0 as the sole parameter of Algorithm 2.
Then, Algorithm 2 is a parametric, semi-supervised
learning model that learns incrementally, with a single
prior parameter n0.

3.3. Semi-Supervised Rational Model of
Categorization

Although our task is classification, it is instructive to
think what “clusters” the previous two models concep-
tually produce. Exemplar models have effectively n
singleton clusters, one for each input item. Prototype
models have only two clusters (i.e., Gaussian compo-
nents) for binary classification. Anderson’s Rational

Algorithm 2 Semi-Supervised Prototype Model
Parameter: Prior encoded in φ
Initialize θ(0) from φ (see M-step below)
for n = 1, 2, . . . do

Receive xn, classify by q(y) = P (y|xn, θ(n−1))
Receive yn (may be unlabeled), update model
E-step:
if yn is unlabeled then

φ = φ + Eq[φ̃(xn, y)]
else

φ = φ + φ̃(xn, yn)
end if
M-step: Let φ = (n0, s0, ss0, n1, s1, ss1). Com-
pute θ(n) as follows: α = n1

n0+n1
, µ0 = s0

n0
,

σ2
0 = ss0

n0
−

(
s0
n0

)2

, µ1 = s1
n1

, σ2
1 = ss1

n1
−

(
s1
n1

)2

end for

Model of Categorization (RMC) (Anderson, 1990) is
somewhere in between: it groups items into clusters,
but the number of clusters can grow. This is a bal-
ance between memory load and classifier flexibility. In
fact, the RMC was later discovered to be equivalent to
Dirichlet process mixture model (DPMM) (Sanborn
et al., 2006; Griffiths et al., 2008), a nonparametric
Bayesian model (Neal, 2000; Rasmussen, 2000). We
present a semi-supervised variant of DPMM with par-
ticle filtering. Our model is similar to the AClass
model of (Mansinghka et al., 2007), which was used
for supervised learning. But unlike AClass where
each category has its own private DPMM, we stack
(x, y) into an extended feature vector and use one
global DPMM: G ∼ DP (G0, α2), θ1 . . . θn ∼ G,
(xi, yi) ∼ F (x, y|θi), where G0 is a base distribution
which we take to be the product of Normal-Gamma
and Beta, conjugate priors for Normal and binomial:
G0 = NG(µ0, κ0, α0, β0)Beta(α1, β1). θ = (µ, λ, p) is
a parameter vector with the mean and precision of a
Gaussian for the x component, and the “head” proba-
bility for the y component. Due to the property of the
Dirichlet process, many θ’s will be identical, creating
an implicit clustering of items. F is a product of Gaus-
sian and Bernoulli: F = Norm(x;µ, λ)py(1−p)1−y. As
is common with DPMM, we introduce cluster mem-
bership indices z1 . . . zn, and integrate out θ and G
via particle filtering (Fearnhead, 2004). That is, at it-
eration n − 1 we assume the distribution P (z1:n−1 |
x1:n−1, y1:n−2) is well-approximated by the empiri-
cal distribution on m particles z

(1)
1:n−1, . . . , z

(m)
1:n−1, each

particle is a vector of indices:

P (z1:n−1 | x1:n−1, y1:n−2) ≈
1
m

m∑
l=1

δ(z1:n−1, z
(l)
1:n−1),
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where δ(u, v) = 1 if u = v, and 0 otherwise. Then, at
iteration n, after we observe the input item xn but
before seeing its label yn, the distribution P (z1:n |
x1:n, y1:n−1) can be shown to be proportional to

m∑
l=1

δ(z1:n−1, z
(l)
1:n−1)P (yn−1 | z(l)

1:n−1, y1:n−2)

P (zn | z(l)
1:n−1)P (xn | zn, z

(l)
1:n−1, x1:n−1). (1)

One would further sample from (1) m new particles
z
(1)
1:n, . . . z

(m)
1:n . The empirical distribution on these new

particles will approximate P (z1:n | x1:n, y1:n−1). This
update is the key to particle filtering, which uses a
fixed number of particles to approximate an increas-
ingly complex distribution.

In (1), one needs to compute three conditional proba-
bilities. The conditional probability of zn is computed
from the Chinese Restaurant Process prior. Let there
be K unique index values 1 . . .K in z1:n−1, then

P (zn = k | z1:n−1) =
{

nk/(α2 + n− 1), k ≤ K
α2/(α2 + n− 1), k = K + 1

where nk is the number of indices with value k in
z1:n−1. The conditional probability of xn is computed
from a student-t distribution,

P (xn | z1:n, x1:n−1) = t2α (xn | µ, β(κ + 1)/(ακ)) ,

with µ = (κ0µ0 + Nx̄)/(κ0 + N), κ = κ0 + N ,
α = α0 + N/2, β = β0 + 1

2

∑N
i=1 δ(zi, zn)(xi − x̄)2 +

(κ0N(x̄−µ0)2)/(2(κ0 +N)), and N =
∑n−1

i=1 δ(zi, zn),
x̄ = 1

N

∑n−1
i=1 δ(zi, zn)xi.

Importantly, for our semi-supervised variant of
DPMM, the conditional probability of yn−1 is com-
puted from a beta-binomial distribution

P (yn−1 | z1:n−1, y1:n−2) =
c1 + α1

c0 + c1 + α1 + β1
. (2)

Note some of the y’s might be unlabeled. If yn−1

is unlabeled, the probability is simply 1 since it
must take either one of the labels. If some y’s
in y1:n−2 are unlabeled, one can show that those
are marginalized over, resulting in the following
counts: c1 =

∑n−2
i=1 δ(zi, zn−1)δ(yi, 1), and c0 =∑n−2

i=1 δ(zi, zn−1)δ(yi, 0). Here, we define δ(yi, 1) =
δ(yi, 0) = 0 if yi is unlabeled. Once the particles are
updated with (1), predicting yn is straightforward:

p(yn | x1:n, y1:n−1) ≈
1
m

m∑
l=1

p(yn | z(l)
1:n, y1:n−1) (3)

Algorithm 3 Semi-Supervised Rational Model of
Categorization

Parameters: α2, µ0, κ0, α0, β0, α1, β1

Initialize m empty particles; y0 =unlabeled
for n = 1, 2, . . . do

Receive yn−1 (may be unlabeled) and xn

Re-sample m particles from (1)
Predict yn with new particles from (3)

end for

where p(yn | z
(l)
1:n, y1:n−1) is computed with (2). The

complete algorithm is given in Algorithm 3. In our ex-
periments, we use m = 64 particles, set the hyperpa-
rameters at µ0 = 0, κ0 = 1, α0 = β0 = 1, α1 = β1 = 1,
and leave the Dirichlet process concentration parame-
ter α2 as the sole parameter.

4. Model Comparison

Parameter tuning. Let (x[s]
n , y

[s]
n ), n = 1, 2, . . . be

the sequence of training and test data that the s-th
subject saw during human experiments, where some
y’s may be unlabeled. Furthermore, let h

[s]
n ∈ {0, 1}

be the binary classification response the s-th subject
made at trial n. Each of our models predicts the label
probability P (yn|x1:n, y1:n−1, θ) at trail n, given pa-
rameter θ = h, n0, or α2. We define training set log
likelihood as

`tr(θ) ≡
∑
s∈tr

∑
n

log P (h[s]
n | x[s]

1:n, y
[s]
1:n−1, θ).

Because the order and distribution tasks used the same
stimuli, we merge their subjects and fit a single param-
eter for both tasks.2 Specifically, we take 32 subjects,
eight each from the “order task L to R”, “order task R
to L”, “distribution task L shifted”, and “distribution
task R shifted” conditions to form the training set tr.
The remaining 4, 2, 12, 12 subjects in those conditions
form the test set te, and define test set log likelihood
`te(θ) accordingly. These sets are shared by the three
models. For each model, we find the maximum like-
lihood estimate parameter θ̂ = arg maxθ `tr(θ) on the
training set using a coarse parameter grid as shown in
Figure 3.

Observations. We report in Table 1 the log likeli-
hood `te(θ̂) on the test set, which was not involved in
parameter tuning. In addition, Figure 4 shows the be-
havior of the three models over a wide range of param-

2This reduces data sparsity. We assume that because
the stimulus space is the same, and the learners have no
prior knowledge that the tasks are different, they will use
the same parameter setting in both tasks.
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Figure 3. Training set log likelihood `tr(θ) for some θ

Table 1. Test set log likelihood `te(θ̂)

exemplar prototype RMC
θ̂ h = 0.6 n0 = 12 α2 = 0.3

`te(θ̂) -3727 -2460 -2169

eters (including θ̂). We make a few observations: (i)
All three models predict test-items effects. All mod-
els show different classification behavior following the
same supervised training depending upon the order
and distribution of the test items. (ii) Some mod-
els are more consistent with the empirical data than
others. Specifically, the semi-supervised RMC model
showed a qualitatively similar pattern (and the best
log-likelihoods) to both datasets under a range of pa-
rameter values. The prototype model fared well un-
der some parameter choices but not others; and the
exemplar model failed to qualitatively match the em-
pirical data under any of the studied parametrization.
The test item effect thus provides evidence useful for
constraining theories of human categorization. In this
case, it suggests that the RMC provides a better ap-
proximation of human category learning than either
prototype or exemplar theories, though to more firmly
assess this hypothesis it will be necessary to consider
other parametrization of the later kinds of models.

Down-weight unlabeled exemplars. Our semi-
supervised exemplar model has the lowest likelihood.
On the “order” task, the two curves are too wide apart;
on the “distribution” task, they overlap, cross, or even
flip. A natural idea for improvement is to afford a
weight parameter w < 1 to unlabeled exemplars: per-
haps a self-assigned label is worth less than a true la-
bel. Specifically, one can adapt the Nadaraya-Watson

kernel estimator into r(x) =
∑n

i=1
wiK(

x−xi
h )Pn

j=1 wiK(
x−xj

h )
yi,

with wi = w if xi is unlabeled, and wi = 1 otherwise.
Figure 5(left) shows `tr(w, h = 0.6) for the exemplar
model with w ranging from 0 (supervised learning)
to 2 (overweight). Clearly, semi-supervised learning
(w > 0) is much better than supervised learning at ex-
plaining the human data. Training likelihood peaks at
w = 0.2 and decreases thereafter. The test set log like-
lihood with w = 0.2, h = 0.6 is -2934, still worse than
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Figure 5. Down-weight unlabeled exemplars

the other two models (which have only one parame-
ter). The other two panels in Figure 5 show exemplar
model predictions similar to the top row of Figure 4,
but with w = 0.2, h = 0.6. Overall, down-weight un-
labeled exemplar helps, but not overwhelmingly.

5. Conclusions

We have presented a novel Test-Item Effect in human
categorization, induced by test item order. Together
with previously known distribution-induced effect, it
calls for new online semi-supervised learning models.
We presented such extensions to the standard exem-
plar, prototype, and RMC models. Simulations show
that all of our models exhibit the Test-Item Effect,
with semi-supervised RMC giving the best fit.
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Figure 4. (Top) Semi-supervised exemplar model, (middle) Semi-supervised prototype model, (bottom) Semi-supervised
rational model of categorization. Columns 1–3 show model predictions P (yn = 1|x1:n, y1:n−1) on the “order” task
(Section 2.1), and columns 4–6 the “distribution” task (Section 2.2). The legend is the same as in Figure 2.
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