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Outline 

• Joint probability is great for inference in a uncertain 
world, but is terrible to obtain and store 

• Bayes net allows us to build joint distributions in 
manageable chunks 

 Independence, conditional independence 

• Bayes net can do any inference 

 but naïve algorithms can be terribly inefficient 

 Some inference algorithms can be more efficient 

• Parameter learning in Bayes nets 
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Joint distribution 

• Making a joint distribution of N variables: 

1. List all combinations of values (if each var has k 

values, kN combinations) 

2. Assign each combination a probability number 

3. They should sum to 1 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 
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Using the joint distribution 

• Once you have the joint distribution, you can do 

anything, e.g. marginalization 

P(E) = rows matching E P(row) 

• e.g. P(Sunny or Hot)= (150+50+40+5)/365 

Convince yourself this is the same as P(sunny)+P(hot)-P(sunny and hot) 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 
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Using the joint distribution 

• You can also do inference 

           rows matching Q AND E P(row) 

P(Q|E) =   

        rows matching E P(row) 

Weather Temperature Prob. 

Sunny Hot 150/365 

Sunny Cold 50/365 

Cloudy Hot 40/365 

Cloudy Cold 60/365 

Rainy Hot 5/365 

Rainy Cold 60/365 

P(Hot | Rainy) 
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The Bad News 

• Joint distribution can take up huge space 

 

• For N variables, each taking k values, the joint 

distribution has kN numbers 

 

• It would be good to use fewer numbers… 
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Using fewer numbers 

• Suppose there are two events: 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 

• The joint distribution of them has 4 entries 

 

• Do we have to invent these 4 numbers, for each 

combination P(B, E), P(B, ~E), P(~B,E), P(~B,~E)? 

 Can we ‘derive’ them using P(B) and P(E)? 

 What assumption do we need? 
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Independence  

• “Whether there’s a burglary doesn’t depend on 

whether there’s an earthquake.” 

 

• This is specified as 

P(B | E) = P(B) 

• Very strong statement!  Equivalently 

P(E | B) = P(E) 

P(B, E) = P(B) P(E) 

 

• It required domain knowledge other than probability.  

It needed an understanding of causation  



slide 9 

Independence 

• With independence, we have (can you prove them?) 

P(B,~E)=P(B)P(~E),  

P(~B,E)=P(~B)P(E),  

P(~B,~E)=P(~B)P(~E) 

• Say P(B)=0.001, P(E)=0.002, P(B|E)=P(B), the joint 

probability table is: 

 

 

 

 

 

• Now we can do anything, since we have the joint. 

Burglary Earthquake Prob 

B E 

B ~E 

~B E 

~B ~E 
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A more interesting example 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

• Your alarm is supposed to sound when there’s a 

burglary.  But it sometimes doesn’t.  And it can 

occasionally be triggered by an earthquake 
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A more interesting example 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

• Your alarm is supposed to sound when there’s a 

burglary.  But it sometimes doesn’t.  And it can 

occasionally be triggered by an earthquake 

• The knowledge we have so far: 

• P(B)=0.001, P(E)=0.002, P(B|E)=P(B) 

• Alarm is NOT independent of whether there’s 

burglary, nor is it independent of earthquake 

• We already know the joint of B, E.  All we need is  

P(A | burglary = b, earthquake = e) 

for the 4 cases of b=B, ~B, e=E, ~E, to get the full joint 
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A more interesting example 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

• Your alarm is supposed to sound when there’s a 

burglary.  But it sometimes doesn’t.  And it can 

occasionally be triggered by an earthquake 

 

 

 

 

• These 6 numbers specify the joint, instead of 7 

• Savings are larger with more variables! 

 

 

P(B)=0.001 

P(E)=0.002 

P(B|E)=P(B) 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 
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A more interesting example 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

• Your alarm is supposed to sound when there’s a 

burglary.  But it sometimes doesn’t.  And it can 

occasionally be triggered by an earthquake 

 

 

 

 

• These 6 numbers specify the joint, instead of 7 

• Savings are larger with more variables! 

 

 

P(B)=0.001 

P(E)=0.002 

P(B|E)=P(B) 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 
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Introducing Bayes Net 

P(B)=0.001 

P(E)=0.002 

P(B|E)=P(B) 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

B E 

A 

P(B)=0.001 P(E)=0.002 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

Bayes Net 

= Bayesian Network 

= Belief Network 

DAG, often direct causation,  

but don’t have to be! 
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Join probability with Bayes Net 

B E 

A 

P(B)=0.001 P(E)=0.002 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

P(x1,…xN) = i P(xi | parents(xi)) 

• Example: P(~B, E, ~A) = P(~B) P(E) P(~A | ~B, E) 

 

DAG, often direct causation,  

but don’t have to be! 
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Join probability with Bayes Net 

B E 

A 

P(B)=0.001 P(E)=0.002 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

One node per 

random variable 

Conditional 

probability 

table (CPT) 

DAG, often direct causation,  

but don’t have to be! 

P(x1,…xN) = i P(xi | parents(xi)) 

• Example: P(~B, E, ~A) = P(~B) P(E) P(~A | ~B, E) 

• Recall the chain rule:  

P(~B, E, ~A) = P(~B) P(E | ~B) P(~A | ~B, E) 

Our B.N. has this 

independence 

assumption 
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More to the story… 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• What does the Bayes Net look like? 
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More to the story… 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• Conditional independence P(J,M|A)=P(J|A)P(M|A) 

• What does the Bayes Net look like? 

A 

J M 
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More to the story… 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

 John and Mary do not communicate (they promised 

to call you whenever they hear the alarm) 

• What kind of independence do we have? 

• Conditional independence P(J,M|A)=P(J|A)P(M|A) 

• What does the Bayes Net look like? 

A 

J M 

Our BN: P(A,J,M)=P(A) P(J|A) P(M|A) 

Chain rule: P(A,J,M)=P(A) P(J|A) P(M|A,J) 

 

Out B.N. assumes conditional independence 

P(M|A,J) = P(M|A) 
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Now with 5 variables 

 B: there’s burglary in your house 

 E: there’s an earthquake 

 A: your alarm sounds 

 J: your neighbor John calls you 

 M: your other neighbor Mary calls you 

• B, E are independent 

• J is only directly influenced by A (i.e. J is conditionally 

independent of B, E, M, given A) 

• M is only directly influenced by A (i.e. M is 

conditionally independent of B, E, J, given A) 
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Creating a Bayes Net 

• Step 1: add variables.  Choose the variables you 

want to include in the Bayes Net 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 
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Creating a Bayes Net 

• Step 2: add directed edges.   

• The graph must be acyclic.   

• If node X is given parents Q1, …, Qm, you are 

promising that any variable that’s not a 

descendent of X is conditionally independent of X 

given Q1, …, Qm 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 
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Creating a Bayes Net 

• Step 3: add CPT’s.   

• Each table must list P(X | Parent values) for all 

combinations of parent values 

B: there’s burglary in your house 

E: there’s an earthquake 

A: your alarm sounds 

J: your neighbor John calls you 

M: your other neighbor Mary calls you 

B E 

A 

J M 

e.g. you must specify 

P(J|A) AND P(J|~A). 

They don’t have to 

sum to 1! 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 
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Creating a Bayes Net  

1. Choose a set of relevant variables 

2. Choose an ordering of them, call them x1, …, xN 

3. for i = 1 to N: 

1. Add node xi to the graph 

2. Set parents(xi) to be the minimal subset of 

{x1…xi-1},  such that xi is conditionally 

independent of all other members of {x1…xi-1} 

given parents(xi) 

3. Define the CPT’s for  

P(xi | assignments of parents(xi)) 
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Conditional independence 

• Case 1: tail-to-tail 

• a, b in general not independent 

• But a, b conditionally independent given c 

• c is a ‘tail-to-tail’ node, if c observed, it blocks the 

path 

[Examples from Bishop PRML]  
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Conditional independence 

• Case 2: head-to-tail 

• a, b in general not independent 

• But a, b conditionally independent given c 

• c is a ‘head-to-tail’ node, if c observed, it blocks the 

path 
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Conditional independence 

• Case 3: head-to-head 

• a, b in general independent 

• But a, b NOT conditionally independent given c 

• c is a ‘head-to-head’ node, if c observed, it unblocks 

the path 

 Important: or if any of c’s descendant is observed 
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Summary: D-separation 

• For any groups of nodes A, B, C: A and B are 

conditionally independent given C, if 

 all (undirected) paths from any node in A to any 

node in B are blocked 

• A path is blocked if it includes a node such that either 

 The arrows on the path meet either head-to-tail or 

tail-to-tail at the node, and the node is in C, or 

 The arrows meet head-to-head at the node, and 

neither the node, nor any of its descendants, is in 

C. 
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• The path from a to b not blocked by either e or f 

• a, b conditionally dependent given c 
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• The path a to b is blocked both at e and at f 

• a, b conditionally independent given f 
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Conditional independence in Bayes Net 

 A node is cond. indep. of its non-descendents, given 

its parents 

 A node is cond. indep. of all other nodes, given its 

Markov blanket (parents, children, spouses) 
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Compactness of Bayes net 

• A Bayes net encodes a joint distribution, often with 

far less parameters 

• A full joint table needs kN parameters (N variables, k 

values per variable) 

 grows exponentially with N 

• If the Bayes net is sparse, e.g. each node has at 

most M parents (M<<N), only needs O(NkM) 

 grows linearly with N 

 can’t have too many parents, though 
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Where are we now? 

• We defined a Bayes net, using small number of 

parameters, to describe the joint probability 

• Any joint probability can be computed as 

P(x1,…xN) = i P(xi | parents(xi)) 

• The above joint probability can be computed in time 

linear with the number of nodes N 

• With this joint distribution, we can compute any 

conditional probability P(Q | E), thus we can perform 

any inference 

• How? 
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Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q|E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

For example P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 
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Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q|E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

For example P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Compute the joint (4 of them) 

P(B,J,~M,A,E) 

P(B,J,~M,A,~E) 

P(B,J,~M,~A,E) 

P(B,J,~M,~A,~E) 

Each is O(N) for sparse graph 
P(x1,…xN) = i P(xi | parents(xi)) 

Sum them up 
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Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q|E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

For example P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Compute the joint (8 of them) 

P(J,~M, B,A,E) 

P(J,~M, B,A,~E) 

P(J,~M, B,~A,E) 

P(J,~M, B,~A,~E) 

P(J,~M, ~B,A,E) 

P(J,~M, ~B,A,~E) 

P(J,~M, ~B,~A,E) 

P(J,~M, ~B,~A,~E) 

Each is O(N) for sparse graph 

 P(x1,…xN) = i P(xi | parents(xi)) 

Sum them up 
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Inference by enumeration 

           joint matching Q AND E P(joint) 

P(Q|E) =   

              joint matching E P(joint) 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

For example P(B | J, ~M) 

 

1. Compute P(B,J,~M) 

 

2. Compute P(J, ~M) 

 

3. Return P(B,J,~M)/P(J,~M) 

 

 

Sum up 4 joints 

Sum up 8 joints 

In general if there are 

N variables, while 

evidence contains j 

variables, how many 

joints to sum up? 
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Inference by enumeration 

• In general if there are N variables, while evidence 

contains j variables, and each variable has k values, 

how many joints to sum up?   
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Inference by enumeration 

• In general if there are N variables, while evidence 

contains j variables, and each variable has k values, 

how many joints to sum up?  k(N-j) 

 

• It is this summation that makes inference by 

enumeration inefficient 

 

• Some computation can be saved by carefully order 

the terms and re-use intermediate results (variable 

elimination) 

 

• A more complex algorithm called join tree (junction 

tree) can save even more computation 
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Inference by enumeration 

• In general if there are N variables, while evidence 

contains j variables, and each variable has k values, 

how many joints to sum up?  k(N-j) 

 

• It is this summation that makes inference by 

enumeration inefficient 

 

• Some computation can be saved by carefully order 

the terms and re-use intermediate results (variable 

elimination) 

 

• A more complex algorithm called join tree (junction 

tree) can save even more computation 
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Approximate inference by sampling 

• Inference can be done approximately by sampling 

• General sampling approach: 

 Generate many, many samples (each sample is 

a complete assignment of all variables) 

 Count the fraction of samples matching query 

and evidence 

 As the number of samples approaches , the 

fraction converges to the posterior  

P(query | evidence) 

• We’ll see 3 sampling algorithms (there are more…) 

1. Simple sampling 

2. Likelihood weighting 

3. Gibbs sampler 
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1. Simple sampling 

• This BN defines a joint distribution 

• Can you generate a set of samples that have the 

same underlying joint distribution? 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 
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1. Simple sampling 

1. Sample B: x=rand(0,1).  If (x<0.001) B=true else B=false  

2. Sample E: x=rand(0,1).  If (x<0.002) E=true else E=false 

3. If (B==true and E==true) sample A ~ {0.95, 0.05} 

 elseif (B==true and E==false) sample A ~ {0.94, 0.06} 

 elseif (B==false and E==false) sample A ~ {0.29, 0.71} 

 else sample A ~ {0.001, 0.999} 

4. Similarly sample J  

5. Similarly sample M 

 

This generates  

one sample. 

 

Repeat to generate  

more samples 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 
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1. Inference with simple sampling 

B E 

A 

J M 

• Say we want to infer B, given E, M, i.e. P(B | E, M) 

• We generate tons of samples 

• Keep those samples with E=true and M=true, throw 

away others 

• In the ones we keep (N of them), count the ones with 

B=true, i.e. those fit our query (N1) 

• We return an estimate of  

       P(B | E, M)  N1 / N 

• The quality of this estimate improves  

as we sample more 

• You should be able to generalize 

the method to arbitrary BN  

P(E)=0.002 
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1. Inference with simple sampling 

B E 

A 

J M 

• Say we want to infer B, given E, M, i.e. P(B | E, M) 

• We generate tons of samples 

• Keep those samples with E=true and M=true, throw 

away others 

• In the ones we keep (N of them), count the ones with 

B=true, i.e. those fit our query (N1) 

• We return an estimate of  

       P(B | E, M)  N1 / N 

• The quality of this estimate improves  

as we sample more 

P(E)=0.002 

Can you see a problem  

with simple sampling? 

P(B | E, M) 
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1. Inference with simple sampling 

B E 

A 

J M 

• Since P(E)=0.002, we expect only 1 sample with 

E=true in every 500 samples 

 

• We’ll throw away the 499 samples.  Huge waste 

 

• This observation leads to… 

 

 

P(E)=0.002 

P(B | E, M) 
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2. Likelihood weighting 

B E 

A 

J M 

• Say we’ve generated B, and we’re about to generate E 

• E is an evidence node, known to be true 

• In simple sampling, we will generate 

• E=true P(E)=0.2% of the time 

• E=false 99.8% of the time 

• Instead we always generate E=true but we  

weight the sample down by P(E)=0.002 

• Initially the sample has weight w=1, 

now w=w*0.002 

• This is ‘virtually throwing away’ 

 

 

 

P(E)=0.002 

P(B | E, M) 
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2. Likelihood weighting 

B E 

A 

J M 

• Generate A, J as before 

• When it’s time to generate evidence M from P(M|A), 

again always generate M=true, but weight the sample 

by w=w*P(M|A)    [note it depends on A’s value] 

• If A=true and P(M|A)=0.7, the final weight for this 

sample is w=0.002 * 0.7 

 

• Keep all samples, each with weight 

w1, …, wN 

• Return estimate 

                     B=true wi 

P(B|E,M) =  

                        all wi 

 

P(E)=0.002 

P(B | E, M) 
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2. Likelihood weighting 

B E 

A 

J M 

• Generate A, J as before 

• When it’s time to generate evidence M from P(M|A), 

again always generate M=true, but weight the sample 

by w=w*P(M|A)    [note it depends on A’s value] 

• If A=true and P(M|A)=0.7, the final weight for this 

sample is w=0.002 * 0.7 

 

• Keep all samples, each with weight 

w1, …, wN 

• Return estimate 

                     B=true wi 

P(B|E,M) =  

                        all wi 

 

P(E)=0.002 

P(B | E, M) 

We apply this trick whenever we generate the 

value for an evidence node. 

 

You should be able to generalize likelihood 

weighting to general BN. 
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3. Gibbs sampler 

Gibbs sampler is the simplest method in the family of 

Markov Chain Monte Carlo (MCMC) methods 

1. Start from an arbitrary sample, but fix evidence 

nodes to their observed values, e.g. 

  (B=true, E=true, A=false, J=false, M=true) 

2. For each hidden node X, fixing all other nodes, 

resample its value from  

  P(X=x | Markov-blanket(X)) 

For example, we sample B from 

      P(B | E=true, A=false) 

Update with its new sampled value, 

and move on to A, J. 

3. We now have a new sample.   

Repeat from step 2. 

 

B E 

A 

J M 

P(B | E, M) 
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3. Gibbs sampler 

• Keep all samples.  P(B | E, M) is the fraction with 

B=true 

• In general, P(X=x | Markov-blanket(X))  

P(X=x | parents(X)) * Yjchildren(X) P(yj | parents(Yj)) 

Compute the above for X=x1,…,xk, 

then normalize 

• ‘burn-in’: do not use the  

first Nb samples (e.g. Nb=1000) 
B E 

A 

J M 

P(B | E, M) 

Where X=x 
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Parameter (CPT) learning for BN 

• Where do you get these CPT numbers? 

 Ask domain experts, or 

 Learn from data 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

How to learn this CPT? 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(B) and #(~B) in dataset. 

P(B) = #(B) / [#(B) + #(~B)] 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(E) and #(~E) in dataset. 

P(E) = #(E) / [#(E) + #(~E)] 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=true. 

P(A|B,E) = #(A) / [#(A) + #(~A)] 



slide 57 

Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=false. 

P(A|B,~E) = #(A) / [#(A) + #(~A)] 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=false and E=true. 

P(A|~B,E) = #(A) / [#(A) + #(~A)] 
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Parameter (CPT) learning for BN 

 Learn from a data set like this: 

 

B E 

A 

J M 

P(B)=0.001 

P(A | B, E)=0.95  

P(A | B, ~E)=0.94 

P(A | ~B, E)=0.29 

P(A | ~B, ~E)=0.001 

P(E)=0.002 

P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=false and E=false. 

P(A|~B,~E) = #(A) / [#(A) + #(~A)] 

p 

p 

p 

p 
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Parameter (CPT) learning for BN 

 ‘Unseen event’ problem 

 (~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, ~E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A,~J, ~M) 

(~B, ~E, ~A, J, ~M) 

(~B, E, A, J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

(~B, ~E, ~A, ~J, ~M) 

(B, E, A, ~J, M) 

(~B, ~E, ~A, ~J, ~M) 

… 

Count #(A) and #(~A) in dataset  

where B=true and E=true. 

P(A|B,E) = #(A) / [#(A) + #(~A)] 

 

What if there’s no row with  

(B, E, ~A, *, *) in the dataset? 

 

Do you want to set 

P(A|B,E)=1 

P(~A|B,E)=0? 

 

Why or why not? 
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Parameter (CPT) learning for BN 

 P(X=x | parents(X)) = (frequency of x given parents) 

is called the Maximum Likelihood (ML) estimate 

 

 ML estimate is vulnerable to ‘unseen event’ problem 

when dataset is small 

 flip a coin 3 times, all heads  one-sided coin? 

 

 ‘Add one’ smoothing: the simplest solution.   
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Smoothing CPT 

 ‘Add one’ smoothing:  add 1 to all counts 

 In the previous example, count #(A) and #(~A) in 

dataset where B=true and E=true 

 P(A|B,E) = [#(A)+1] / [#(A)+1 + #(~A)+1] 

 If #(A)=1, #(~A)=0:  

 without smoothing P(A|B,E)=1, P(~A|B,E)=0 

 with smoothing P(A|B,E)=0.67, P(~A|B,E)=0.33 

 If #(A)=100, #(~A)=0:  

 without smoothing P(A|B,E)=1, P(~A|B,E)=0 

 with smoothing P(A|B,E)=0.99, P(~A|B,E)=0.01 

 Smoothing bravely saves you when you don’t have 

enough data, and humbly hides away when you do 

 It’s a form of Maximum a posteriori (MAP) estimate 
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A special BN: Naïve Bayes Classifiers 

J 

C M Z 

J Person is Junior 

C Brought coat to classroom 

Z Live in zip 53706 

M Saw “Matrix” more than once 

 

 

 

 

 

 

• What’s stored in the CPTs? 
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A special BN: Naïve Bayes Classifiers 

J 

C M Z 

P(J)= 

P(C|J)= 

P(C|~J)= 

P(Z|J)= 

P(Z|~J)= 

P(M|J)= 

P(M|~J)= 

 

 

 

 

 

 

 

 

• Suppose we have a database of 30 people who 

attend a lecture.  How could we use it to estimate the 

values in the CPTs? 

J Person is Junior 

C Brought coat to classroom 

Z Live in zip 53706 

M Saw “Matrix” more than once 
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A special BN: Naïve Bayes Classifiers 

J 

C M Z 

P(J)= 

P(C|J)= 

P(C|~J)= 

P(Z|J)= 

P(Z|~J)= 

P(M|J)= 

P(M|~J)= 

# Juniors 

---------------------------- 

# people in database 

# Juniors who saw M>1 

--------------------------------- 

# Juniors 

# non-juniors who saw M>1 

--------------------------------------- 

# non-juniors 

J Person is Junior 

C Brought coat to classroom 

Z Live in zip 53706 

M Saw “Matrix” more than once 
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A special BN: Naïve Bayes Classifiers 

J 

C M Z 

P(J)= 

P(C|J)= 

P(C|~J)= 

P(Z|J)= 

P(Z|~J)= 

P(M|J)= 

P(M|~J)= 

 

 

 

 

 

 

 

 

• A new person showed up at class wearing an “I live 

right above the Union Theater where I saw Matrix 

every night” overcoat. 

• What’s the probability that the person is a Junior? 

J Person is Junior 

C Brought coat to classroom 

Z Live in zip 53706 

M Saw “Matrix” more than once 
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Is the person a junior? 

• Input (evidence): C, Z, M 

• Output (query): J 

 

P(J|C,Z,M)   

= P(J,C,Z,M) / P(C,Z,M) 

= P(J,C,Z,M) / [P(J,C,Z,M)+P(~J,C,Z,M)] 

where 

P(J,C,Z,M)=P(J)P(C|J)P(Z|J)P(M|J) 

P(~J,C,Z,M)=P(~J)P(C|~J)P(Z|~J)P(M|~J) 
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BN example: Naïve Bayes 

• A special structure:  

 a ‘class’ node y at root, want P(y|x1…xN) 

 evidence nodes x (observed features) as leaves 

 conditional independence between all evidence (Assumed.  

Usually wrong. Empirically OK) 

 

 

 

 

 

y 

x1 xN x2 
… 
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What you should know 

• Inference with joint distribution 

• Problems of joint distribution 

• Bayes net: representation (nodes, edges, CPT) and 

meaning 

• Compute joint probabilities from Bayes net 

• Inference by enumeration 

• Inference by sampling 

 Simple sampling, likelihood weighting, Gibbs 

• CPT parameter learning from data 

• Naïve Bayes 


