<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
<td>12.</td>
</tr>
<tr>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>18.</td>
</tr>
<tr>
<td>19.</td>
<td>20.</td>
</tr>
</tbody>
</table>
1. Consider Iterative Deepening Search on a tree, where the nodes are denoted by letters. Without knowing the tree, which of the following cannot be the sequence of nodes expanded by iterative deepening search?

(A) SABSACD... (B) SABSABCD... (C) SASAB... (D) SABCD...

(E) they all can

E: different tree structures

2. Consider a 3-puzzle where, like in the usual 8-puzzle game, a tile can only move to an adjacent empty space. Given the initial state which of the following state cannot be reached?

(A) 3 1 2
(B) 3 2 1
(C) 1 3 2
(D) 2 1 3

(E) they all can

C: odd vs. even permutation (or just enumerate)

3. To specify the joint probability distribution in any directed graphical model on n binary variables, how many conditional probability tables are needed?

(A) n (B) 2^n (C) n^2 (D) 2 (E) none of the above

A: this is the number of tables, not the entries

4. Given the following game matrix, suppose A knows that B will use the mixed strategy (1/3, 2/3, 0) on B-I, B-II, B-III. What is the expected payoff for A if A plays optimally?

<table>
<thead>
<tr>
<th></th>
<th>B-I</th>
<th>B-II</th>
<th>B-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>A-II</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>A-III</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(A) 2/3 (B) -2/3 (C) 1/3 (D) -1/3 (E) none of the above

C: convex combinations of AII and AIII are optimal in this case

5. Identify the pure strategy Nash equilibrium in the following zero-sum game. A is the max player and B is the min player.
6. We define a new Boolean logic connective \heartsuit as follows:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \heartsuit Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Which of the following is equivalent to $P \lor Q$?

(A) $(P \heartsuit Q) \heartsuit (P \heartsuit Q)$
(B) $(P \heartsuit P) \heartsuit (Q \heartsuit Q)$
(C) $(P \heartsuit P) \heartsuit Q$
(D) $(Q \heartsuit Q) \heartsuit P$
(E) none of the above

A: NOR implements OR

7. Characterize $P \Rightarrow ((Q \lor R) \Rightarrow P)$.

(A) Unsatisfiable
(B) Tautology
(C) Satisfiable but not tautology
(D) Not a propositional logic sentence
(E) None of the above

B: e.g. convert to CNF

8. Convert to Conjunctive Normal Form: $(P \Rightarrow (Q \leftrightarrow R))$

(A) $\neg P \lor \neg Q \lor \neg R \land (P \lor \neg Q \lor \neg R)$
(B) $(\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$
(C) $(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R)$
(D) $(P \lor Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$
(E) none of the above

C: by definition

9. Consider the following directed graphical model over binary variables:

\[A \rightarrow B \rightarrow C \]

Note C is disconnected. Given the CPTs:

$P(A = T) = 0.2, P(B = T | A = T) = 0.1, P(B = T | A = F) = 0.5, P(C = T) = 0.4,$

compute $P(B = F | C = T)$.

(A) 0.6
(B) 0.232
(C) 0.58
(D) 0.24
(E) none of the above

C: C and B are independent. But you can also just derive it from the definition of directed graphical models.
10. Assume the prior probability of having a female child is the same as having a male child, both are 0.5. The Smith family has two kids. One day you saw one of the Smith children, and she is a girl. The Wood family has two kids, too, and you heard that at least one of them is a girl. What is the chance that the Smith family has a boy? What is the chance that the Wood family has a boy?

(A) 1/2, 1/2
(B) 1/2, 2/3
(C) 2/3, 1/2
(D) 2/3, 2/3
(E) none of the above

B: the Wood observation only eliminates (boy,boy)

11. Which one is the translation of “John has exactly one brother”?

(A) $\exists x, y \text{ brother}(John, x) \land \text{brother}(John, y) \land x = y$

(B) $\exists x \text{ brother}(John, x) \Rightarrow \forall y(\text{brother}(John, y) \land x = y)$

(C) $\exists x \text{ brother}(John, x) \Rightarrow \forall y(\text{brother}(John, y) \Rightarrow x = y)$

(D) $\forall x \text{ brother}(John, x) \Rightarrow \exists y(\text{brother}(John, y) \land x = y)$

(E) none of the above

E: $\exists x \text{ brother}(John, x) \land \forall y(\text{brother}(John, y) \Rightarrow x = y)$

12. Let $v(x)$ mean x is a vegetarian, $m(y)$ for meat, and $e(x, y)$ for x eats y. The following sentences are all equivalent to each other except:

(A) $\forall x v(x) \Leftrightarrow (\forall y e(x, y) \Rightarrow \neg m(y))$

(B) $\forall x v(x) \Leftrightarrow (\neg (\exists y m(y) \land e(x, y)))$

(C) $\forall x (\exists y m(y) \land e(x, y)) \Leftrightarrow \neg v(x)$

(D) $\forall x (\neg (\forall y m(y) \Rightarrow \neg e(x, y))) \Leftrightarrow \neg v(x)$

(E) No exception, they are all equivalent

E

13. Which nodes will be pruned by alpha-beta pruning?

![Diagram]

(A) I
(B) HI
(C) GHI
(D) CHI
(E) none of the above

B: after seeing 2, pruning kicks in

14. In simulated annealing one accepts a transition $s \rightarrow t$ with probability $\exp\left(-\frac{f(s)-f(t)}{T}\right)$ if $f(t) \leq f(s)$, where T is the temperature parameter. Assume that two states t, r are both worse than s, and the transition probability $s \rightarrow t$ at temperature T_1 equals the
transition probability $s \rightarrow r$ at a cooler temperature $T_2 = \frac{1}{2}T_1$. What is the relation between $f(s), f(t), f(r)$?

(A) $f(r) = \log(\exp(f(s)) + \exp(f(t)))$
(B) $f(r) = \frac{f(s) + f(t)}{2}$
(C) $f(r) = \sqrt{f(s)f(t)}$
(D) $f(r) = \frac{f(s)f(t)}{f(s)+f(t)}$
(E) none of the above

B: Simple math

15. Consider A* search on the following grid, with initial state A and goal state G, and one can move left, right, up, or down one step at a time (no wrapping around). The cost g is the number of moves taken, and the heuristic h is the Manhattan distance to G.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

At the moment that A* declares success, which states remain in OPEN?

(A) ABDEG (B) ABDE (C) ABE (D) BE (E) none of the above

D: Run the algorithm

16. The sigmoid function in a neural network is defined as

$$g(x) = \frac{e^x}{1 + e^x}.$$

There is another commonly used activation function called the hyperbolic tangent function, which is defined as

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

How are these two functions related?

(A) $tanh(x) = g(x) - 1$ (B) $tanh(x) = 2g(x) - 1$
(C) $tanh(x) = g(2x) - 1$ (D) $tanh(x) = 2g(2x) - 1$ (E) none of the above

D: Simple math

17. Consider the linear SVM problem without slack variables or kernels: this is known as the hard margin SVM. If you give it a linearly separable training data set where $x_1, \ldots, x_n \in \mathbb{R}^d$ and $y_1 \ldots y_n \in \{-1, 1\}$, it will learn a hyperplane in \mathbb{R}^d. Tom did something to your data set, and hard margin SVM no longer works on the modified data set. What might have Tom done?
(A) $x_i \leftarrow x_i + c$ for a fixed $c \in \mathbb{R}^d$ and $i = 1 \ldots n$
(B) $x_i \leftarrow ax_i$ for a fixed $a \in \mathbb{R}$ and $i = 1 \ldots n$
(C) rotated the data set in \mathbb{R}^d around the origin
(D) swapped the 1st and 2nd coordinates of each point $x_{i1} \rightleftharpoons x_{i2}$ for $i = 1 \ldots n$

B: only when $a = 0$

18. A traffic light repeats the following cycle: green 8 seconds, yellow 4 seconds, and red 4 seconds. To a car that arrives at the light at a random time, what is the entropy of the light signal?
 (A) 1 bit (B) 2/3 bits (C) 3/2 bits (D) 2 bits (E) none of the above

C: $p = (1/2, 1/4, 1/4)$

19. For kNN on a fixed training set with n items, if one increasing k from 1 gradually to n, which of the following description is impossible about training set accuracy?
 (A) Attain maximum at $k = 1$
 (B) Attain maximum at $k > 1$ but not $k = 1$
 (C) Constant for all k

B: by definition 100 accuracy at $k=1$. (C if all training items have the same label)

20. Consider three 2D points $a = (0,0), b = (0,1), c = (1,0)$. Run k-means with two clusters. Let the initial cluster centers be $(-1,0), (0,2)$. What clusters will k-means learn?
 (A) $\{a\}, \{b,c\}$ (B) $\{a,b\}, \{c\}$ (C) $\{a,c\}, \{b\}$ (D) none of the above