CS540 ANSWER SHEET

Name _____ Email _____

1.	2.
3.	4.
5.	6.
7.	8.
9.	10.
11.	12.
13.	14.
15.	16.
17.	18.
19.	20.

Final Examination CS540-1: Introduction to Artificial Intelligence Fall 2014 20 questions, 5 points each

INSTRUCTIONS: Choose ONE answer per question. WRITE YOUR ANSWERS ON THE ANSWER SHEET. WE WILL NOT GRADE ANSWERS ON OTHER PAGES. ON THE ANSWER SHEET WRITE DOWN THE ANSWERS ONLY – DO NOT INCLUDE INTERMEDIATE STEPS OR DERIVATIONS. BE SURE TO INCLUDE YOUR NAME AND EMAIL ON THE ANSWER SHEET, TOO.

1. Consider Iterative Deepening Search on a tree, where the nodes are denoted by letters. Without knowing the tree, which of the following **cannot** be the sequence of nodes

(B) SABSABCD... (C) SASAB...

(D) SABCD...

expanded by iterative deepening search?

(A) SABSACD...

(E) they all can

	E: different t	ree structures	3		
2.			e, like in the usu Given the initial	1 9	e, a tile can only move to which of the following state
	cannot be re $(A) \begin{array}{ c c c c }\hline & 3 & 1 \\\hline & 2 \\\hline & (E) \text{ they all } c$	(B) 2	$\begin{array}{c} 3 \\ \hline 1 \end{array} \qquad (C) \begin{array}{c} \hline 1 \\ \hline \end{array}$	$\begin{array}{c c} \hline 3 \\ \hline 2 \\ \hline \end{array} $ (D)	$\begin{array}{ c c c }\hline & 2\\\hline 1 & 3\\ \hline \end{array}$
	C: odd vs. ev	ven permutati	ion (or just enum	erate)	
3.		-	ility distribution itional probability		graphical model on n binary led?
	(A) n	(B) 2^n	(C) n^2 (D)	(E) no	ne of the above
	A: this is the	number of ta	ables, not the ent	ries	
4.					will use the mixed strategy for A if A plays optimally?
	A-II 0 A-III 1 A-III -1	B-II B-III -1 1 0 -1 1 0			
	(A) $2/3$	(B) -2/3	(C) $1/3$	(D) $-1/3$	(E) none of the above
	C: convex con	mbinations of	AII and AIII are	e optimal in this	s case
5.		pure strategy nd B is the m	-	ı in the followin	g zero-sum game. A is the

	B-I	B-II	B-III
A-I	-5	0	6
A-II	-3	-6	-2
A-III	10	2	8

(A) A-I, B-III

(B) A-III, B-I

(C) A-II, B-III

(D) A-III, B-II

(E) none of the above

D: by local maximum definition

6. We define a new Boolean logic connective \heartsuit as follows

	Р	Q	$P \heartsuit Q$
	F	F	Τ
:	F	Τ	F
	Т	F	F
	Т	Т	F

Which of the following is equivalent to $P \vee Q$?

- (A) $(P \heartsuit Q) \heartsuit (P \heartsuit Q)$ (B) $(P \heartsuit P) \heartsuit (Q \heartsuit Q)$
- (C) $(P \heartsuit P) \heartsuit Q$
- (D) $(Q \heartsuit Q) \heartsuit P$
- (E) none of the above

A: NOR implements OR

- 7. Characterize $P \Rightarrow ((Q \lor R) \Rightarrow P)$.
 - (A) Unsatisfiable
- (B) Tautology
- (C) Satisfiable but not tautology
- (D) Not a propositional logic sentence
- (E) None of the above

B: e.g. convert to CNF

- 8. Convert to Conjunctive Normal Form: $(P \Rightarrow (Q \Leftrightarrow R))$
 - (A) $(\neg P \lor \neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$
 - (B) $(\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$
 - (C) $(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R)$
 - (D) $(P \lor Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$
 - (E) none of the above

C: by definition

9. Consider the following directed graphical model over binary variables:

$$A \to B$$
 C

Note C is disconnected. Given the CPTs:

$$P(A = T) = 0.2$$
, $P(B = T \mid A = T) = 0.1$, $P(B = T \mid A = F) = 0.5$, $P(C = T) = 0.4$, compute $P(B = F \mid C = T)$.

- (A) 0.6
- (B) 0.232
- (C) 0.58
- (D) 0.24
- (E) none of the above

C: C and B are independent. But you can also just derive it from the definition of directed graphical models.

- 10. Assume the prior probability of having a female child is the same as having a male child, both are 0.5. The Smith family has two kids. One day you saw one of the Smith children, and she is a girl. The Wood family has two kids, too, and you heard that at least one of them is a girl. What is the chance that the Smith family has a boy? What is the chance that the Wood family has a boy?
 - (A) 1/2, 1/2
- (B) 1/2, 2/3
- (C) 2/3, 1/2
- (D) 2/3, 2/3

(E) none of the above

B: the Wood observation only eliminates (boy,boy)

- 11. Which one is the translation of "John has exactly one brother"?
 - (A) $\exists x, y \ brother(John, x) \land brother(John, y) \land x = y$
 - (B) $\exists x \ brother(John, x) \Rightarrow \forall y (brother(John, y) \land x = y)$
 - (C) $\exists x \ brother(John, x) \Rightarrow \forall y (brother(John, y) \Rightarrow x = y)$
 - (D) $\forall x \ brother(John, x) \Rightarrow \exists y (brother(John, y) \land x = y)$
 - (E) none of the above

E: $\exists x \ brother(John, x) \land \forall y (brother(John, y) \Rightarrow x = y)$

- 12. Let v(x) mean x is a vegetarian, m(y) for meat, and e(x, y) for x eats y. The following sentences are all equivalent to each other **except**:
 - (A) $\forall x \ v(x) \Leftrightarrow (\forall y \ e(x,y) \Rightarrow \neg m(y))$
 - (B) $\forall x \ v(x) \Leftrightarrow (\neg(\exists y \ m(y) \land e(x,y)))$
 - (C) $\forall x (\exists y \ m(y) \land e(x,y)) \Leftrightarrow \neg v(x)$
 - (D) $\forall x (\neg(\forall y \ m(y) \Rightarrow \neg e(x, y))) \Leftrightarrow \neg v(x)$
 - (E) No exception, they are all equivalent

Е

13. Which nodes will be pruned by alpha-beta pruning?

- (A) I
- (B) HI
- (C) GHI
- (D) CHI
- (E) none of the above

B: after seeing 2, pruning kicks in

14. In simulated annealing one accepts a transition $s \to t$ with probability $\exp\left(-\frac{f(s)-f(t)}{T}\right)$ if $f(t) \le f(s)$, where T is the temperature parameter. Assume that two states t, r are both worse than s, and the transition probability $s \to t$ at temperature T_1 equals the

transition probability $s \to r$ at a cooler temperature $T_2 = \frac{1}{2}T_1$. What is the relation between f(s), f(t), f(r)?

(A)
$$f(r) = \log(\exp(f(s)) + \exp(f(t)))$$

(B)
$$f(r) = \frac{f(s) + f(t)}{2}$$

(B)
$$f(r) = \frac{f(s)+f(t)}{2}$$

(C) $f(r) = \sqrt{f(s)f(t)}$
(D) $f(r) = \frac{f(s)f(t)}{f(s)+f(t)}$
(E) none of the above

(D)
$$f(r) = \frac{f(s)f(t)}{f(s)+f(t)}$$

B: simple math

15. Consider A* search on the following grid, with initial state A and goal state G, and one can move left, right, up, or down one step at a time (no wrapping around). The cost g is the number of moves taken, and the heuristic h is the Manhattan distance to

A	В	С
D	Е	F
G	Н	I

At the moment that A* declares success, which states remain in OPEN?

- (A) ABDEG
- (B) ABDE
- (C) ABE
- (D) BE

(E) none of the above

D: run the algorithm

16. The sigmoid function in a neural network is defined as

$$g(x) = \frac{e^x}{1 + e^x}.$$

There is another commonly used activation function called the hyperbolic tangent function, which is defined as

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

How are these two functions related?

- (A) tanh(x) = g(x) 1 (B) tanh(x) = 2g(x) 1 (C) tanh(x) = g(2x) 1 (D) tanh(x) = 2g(2x) 1
- (E) none of the above

D: simple math

17. Consider the linear SVM problem without slack variables or kernels: this is known as the hard margin SVM. If you give it a linearly separable training data set where $x_1,\ldots,x_n\in\mathbb{R}^d$ and $y_1\ldots y_n\in\{-1,1\}$, it will learn a hyperplane in \mathbb{R}^d . Tom did something to your data set, and hard margin SVM no longer works on the modified data set. What might have Tom done?

- (A) $x_i \leftarrow x_i + c$ for a fixed $c \in \mathbb{R}^d$ and $i = 1 \dots n$
- (B) $x_i \leftarrow ax_i$ for a fixed $a \in \mathbb{R}$ and $i = 1 \dots n$
- (C) rotated the data set in \mathbb{R}^d around the origin
- (D) swapped the 1st and 2nd coordinates of each point $x_{i1} \rightleftharpoons x_{i2}$ for $i = 1 \dots n$

B: only when a = 0

- 18. A traffic light repeats the following cycle: green 8 seconds, yellow 4 seconds, and red 4 seconds. To a car that arrives at the light at a random time, what is the entropy of the light signal?
 - (A) 1 bit
- (B) 2/3 bits
- (C) 3/2 bits
- (D) 2 bits
- (E) none of the above

C: p=(1/2, 1/4, 1/4)

- 19. For kNN on a fixed training set with n items, if one increasing k from 1 gradually to n, which of the following description is **impossible about training set accuracy**?
 - (A) Attain maximum at k=1
 - (B) Attain maximum at k > 1 but not k = 1
 - (C) Constant for all k

B: by definition 100 accuracy at k=1. (C if all training items have the same label)

- 20. Consider three 2D points a = (0,0), b = (0,1), c = (1,0). Run k-means with two clusters. Let the initial cluster centers be (-1,0),(0,2). What clusters will k-means learn?
 - (A) $\{a\}, \{b, c\}$
- (B) $\{a, b\}, \{c\}$ (C) $\{a, c\}, \{b\}$
- (D) none of the above