
slide 1

Game Playing

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[based on slides from A. Moore http://www.cs.cmu.edu/~awm/tutorials , C. Dyer, and J. Skrentny]

slide 2

Sadly, not these games…

slide 3

Overview

• two-player zero-sum discrete finite deterministic
game of perfect information

• Minimax search

• Alpha-beta pruning

• Large games

• two-player zero-sum discrete finite NON-deterministic

game of perfect information

slide 4

Two-player zero-sum discrete finite deterministic
games of perfect information

Definitions:

• Zero-sum: one player’s gain is the other player’s loss.

Does not mean fair.

• Discrete: states and decisions have discrete values

• Finite: finite number of states and decisions

• Deterministic: no coin flips, die rolls – no chance

• Perfect information: each player can see the

complete game state. No simultaneous decisions.

slide 5

Which of these are: Two-player zero-sum discrete finite
deterministic games of perfect information?

[Shamelessly copied
from Andrew Moore]

Zero-sum: one player’s gain is
the other player’s loss.
Does not mean fair.

Discrete: states and decisions

have discrete values

Finite: finite number of states

and decisions

Deterministic: no coin flips, die

rolls – no chance

Perfect information: each

player can see the

complete game state. No

simultaneous decisions.

slide 6

Which of these are: Two-player zero-sum discrete finite
deterministic games of perfect information?

[Shamelessly copied
from Andrew Moore]

Zero-sum: one player’s gain is
the other player’s loss.
Does not mean fair.

Discrete: states and decisions

have discrete values

Finite: finite number of states

and decisions

Deterministic: no coin flips, die

rolls – no chance

Perfect information: each

player can see the

complete game state. No

simultaneous decisions.

slide 7

II-Nim: Max simple game

• There are 2 piles of sticks. Each pile has 2 sticks.

• Each player takes one or more sticks from one pile.

• The player who takes the last stick loses.

(ii, ii)‏

slide 8

The game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max

+1

(- i) Min (- -) Min

-1
(- i) Min (- -) Min

-1
(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

Symmetry

(i ii) = (ii i)‏

Convention: score is w.r.t. the first
player‏Max.‏‏Min’s‏score‏=‏– Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

slide 9

The game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max

+1

(- i) Min

+1
(- -) Min

-1
(- i) Min (- -) Min

-1
(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

Symmetry

(i ii) = (ii i)‏

Convention: score is w.r.t. the first
player‏Max.‏‏Min’s‏score‏=‏– Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

slide 10

The game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max

+1
(- ii) Max

+1
(- i) Max

-1
(- i) Max

-1
(- -) Max

+1

(- i) Min

+1
(- -) Min

-1

(- i) Min
+1

(- -) Min
-1

(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

Symmetry

(i ii) = (ii i)‏

Convention: score is w.r.t. the first
player‏Max.‏‏Min’s‏score‏=‏– Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

slide 11

The game tree for II-Nim

(ii ii) Max

-1

(i ii) Min

-1

(- ii) Min

-1

(i i) Max

+1
(- ii) Max

+1
(- i) Max

-1
(- i) Max

-1
(- -) Max

+1

(- i) Min

+1
(- -) Min

-1

(- i) Min
+1

(- -) Min
-1

(- -) Min

 -1

(- -) Max

+1
(- -) Max

+1

Symmetry

(i ii) = (ii i)‏

Convention: score is w.r.t. the first
player‏Max.‏‏Min’s‏score‏=‏– Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

slide 12

The game tree for II-Nim

(ii ii) Max

-1

(i ii) Min

-1

(- ii) Min

-1

(i i) Max

+1
(- ii) Max

+1
(- i) Max

-1
(- i) Max

-1
(- -) Max

+1

(- i) Min

+1
(- -) Min -
1

(- i) Min
+1

(- -) Min
-1

(- -) Min -
1

(- -) Max

+1
(- -) Max

+1

Symmetry

(i ii) = (ii i)‏

Convention: score is w.r.t. the first
player‏Max.‏‏Min’s‏score‏=‏– Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

The first player always loses, if the

second player plays optimally

slide 13

Game theoretic value

• Game theoretic value (a.k.a. minimax value) of a
node = the score of the terminal node that will be
reached if both players play optimally.

• = The numbers we filled in.

• Computed bottom up

 In Max’s turn, take the max of the children (Max

will pick that maximizing action)‏

 In Min’s turn, take the min of the children (Min will

pick that minimizing action)‏

• Implemented as a modified version of DFS: minimax

algorithm

slide 14

Minimax algorithm

function Max-Value(s)‏
inputs:
 s: current state in game, Max about to play
output: best-score (for Max) available from s

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else
 α := – 
 for each s’ in Succ(s)‏
 α := max(α , Min-value(s’))‏
 return α

function Min-Value(s)‏
output: best-score (for Min) available from s

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else
 β := 
 for each s’ in Succs(s)‏
 β := min(β , Max-value(s’))‏
 return β

• Time complexity?

• Space complexity?

slide 15

Minimax example

A

O

W
-3

B

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

max

min

max

min

max

slide 16

Minimax algorithm

function Max-Value(s)‏
inputs:
 s: current state in game, Max about to play
output: best-score (for Max) available from s

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else
 α := – 
 for each s’ in Succ(s)‏
 α := max(α , Min-value(s’))‏
 return α

function Min-Value(s)‏
output: best-score (for Min) available from s

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else
 β := 
 for each s’ in Succs(s)‏
 β := min(β , Max-value(s’))‏
 return β

• Time complexity?
O(bm)  bad

• Space complexity?

O(bm)‏

slide 17

Against a dumber opponent?

• Max surely loses!

• If Min not optimal,

• Which way?

• Why?

(ii ii) Max

-1

(i ii) Min

 -1

(- ii) Min

-1

(i i) Max

+1
(- ii) Max

+1
(- i) Max

-1
(- i) Max

-1
(- -) Max

+1

(- i) Min

+1
(- -) Min

-1

(- i) Min
+1

(- -) Min
-1

(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

slide 18

Next: alpha-beta pruning

Gives the same game theoretic values as
minimax, but prunes part of the game tree.

"If you have an idea that is surely bad, don't take the time

 to see how truly awful it is." -- Pat Winston

slide 19

Alpha-Beta Motivation

S

A
100

C
200

D
100

B

E
120

F
20

max

min

• Depth-first order

• After returning from A, Max can get at least 100 at S

• After returning from F, Max can get at most 20 at B

• At this point, Max losts interest in B

• There is no need to explore G. The subtree at G is

pruned. Saves time.

G

slide 20

Alpha-beta pruning

function Max-Value (s,α,β)‏
inputs:
 s: current state in game, Max about to play
 α: best score (highest) for Max along path to s
 β: best score (lowest) for Min along path to s
output: min(β , best-score (for Max) available from s)‏

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else for each s’ in Succ(s)‏
 α := max(α , Min-value(s’,α,β))‏
 if (α ≥ β) then return β /* alpha pruning */
 return α

function Min-Value(s,α,β)‏
output: max(α , best-score (for Min) available from s)‏

 if (s is a terminal state)‏
 then return (terminal value of s)‏
 else for each s’ in Succs(s)‏
 β := min(β , Max-value(s’,α,β))‏

if (α ≥ β) then return α /* beta pruning */
 return β

Starting from the root:

Max-Value(root, -, +)‏

slide 21

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

• Keep two bounds along the path

 : the best Max can do

 : the best (smallest) Min can do

• If at anytime  exceeds , the remaining children are

pruned.

slide 22

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=+

slide 23

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=200

slide 24

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=-
β=+

α=-
β=100

slide 25

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=+

slide 26

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=120

slide 27

Alpha pruning example

S

A
100

C
200

D
100

B

E
120

F
20

max

min

 G

α=100
β=+

α=-
β=100

α=100
β=20

X

slide 28

Beta pruning example

A

B
20

D
20

E
-10

C
25

F
-20

G
25

max

min

max

H

• Keep two bounds along the path

 : the best Max can do

 : the best (smallest) Min can do

• If at anytime  exceeds , the remaining children are

pruned.

S

X

slide 29

Yet another alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If at anytime  exceeds , the remaining children are

pruned.

A A
A
α
=-

O

W
-3

B

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

max

– = – 

+ = + 

[Example from James Skrentny]

slide 30

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

B B

B
β
=
+

O

W
-3

N
4

F G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

[Example from James Skrentny]

slide 31

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

F F
F
α
=-

O

W
-3

B
β
=
+

N
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

[Example from James Skrentny]

slide 32

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O

W
-3

B
β
=
+

N
4

F
α
=-

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

N
4

min

max

slide 33

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

F
α
=-

F
α
=
4

O

W
-3

B
β
=
+

N
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

 updated

slide 34

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O O

O
β
=
+

W
-3

B
β
=
+

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min

slide 35

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=
+

W
-3

B
β
=
+

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

K M H
3

I
8

J L
2

A
α
=-

max

min

W
-3

min

V
-9

slide 36

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=
+

O
β
=-
3

W
-3

B
β
=
+

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min

slide 37

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=
+

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min
X
-5

Pruned!

slide 38

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

B
β
=
+

B
β
=
4

O
β
=-
3

W
-3

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min
X
-5

slide 39

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=
4

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min
X
-5

G
-5

slide 40

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-

max

min

max

min
X
-5

G
-5

slide 41

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=-
5

max

min

max

min
X
-5

G
-5

slide 42

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

C C

C
β
=
+

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

slide 43

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
+

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

H
3

slide 44

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

C
β
=
+

C
β
=
3

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

slide 45

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

I
8

slide 46

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

J J

J
α
=-
5

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

L
2

A
α
=

max

min

min
X
-5

A
α
=-
5

slide 47

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α
=-
5

L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

P
9

slide 48

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

J
α
=-

J
α
=
9

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

L
2

A
α
=

max

min

max

min
X
-5

A
α
=-
5

Q
-6

R
0

slide 49

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

J
α
=-

J
α
=
9

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

L
2

A
α
=

max

min

max

min
X
-5

A
α
=
3

Q
-6

R
0

slide 50

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
3

I
8

J
α
=
9

L
2

A
α
=

max

min

max

min
X
-5

A
α
=
3

slide 51

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E
β
=
2

D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K
α
=
5

M H
3

I
8

J
α
=
9

L
2

A
α
=

max

min

max

min
X
-5

A
α
=
3

slide 52

Alpha-beta pruning example
• Keep two bounds along the path

 : the best Max can do on the path

 : the best (smallest) Min can do on the path

• If a max node exceeds , it is pruned.

• If a min node goes below , it is pruned.

[Example from James Skrentny]

O
β
=-
3

W
-3

B
β
=-
5

N
4

F
α
=
4

G
-5

X
-5

E
β
=
2

D
0

C
β
=
3

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K
α
=
5

M H
3

I
8

J
α
=
9

L
2

A
α
=

max

min

max

min
X
-5

A
α
=
3

slide 53

How effective is alpha-beta pruning?

• Depends on the order of successors!

• In the best case, the number of nodes to search is O(bm/2), the

square root of minimax’s cost.

• This occurs when each player's best move is the leftmost child.

• In DeepBlue (IBM Chess), the average branching factor was

about 6 with alpha-beta instead of 35-40 without.

• The worst case is no pruning at all.

E
β
=
2

S
3

T
5

U
4

V
3

K
α
=
5

M L
2

E
β
=
2

S
3

T
5

U
4

V
3

K
α
=
5

M
α
=
4

L
2

E
β
=
2

S
3

T
5

U
4

V
3

K
 M L

2

A
α
=
3

A
α
=
3

A
α
=
3

slide 54

Game-playing for large games

• We’ve seen how to find game theoretic values. But it
is too expensive for large games.

• What do real chess-playing programs do?

 They can’t possibly search the full game tree

 They must respond in limited time

 They can’t pre-compute a solution

slide 55

Game-playing for large games

• The most popular solution: heuristic evaluation
functions for games

 ‘Leaves’ are intermediate nodes at a depth cutoff,

not terminals

 Heuristically estimate their values

 Huge amount of knowledge engineering (R&N 6.4)‏

 Example: Tic-Tac-Toe:

(number of 3-lengths open for me)-(number of 3-lengths open for you)‏

• Each move is a new depth-cutoff game-tree search

(as opposed to search the complete game-tree

once).

• Depth-cutoff can increase using iterative deepening,

as long as there is time left.

slide 56

More on large games

• Battle the limited search depth

 Horizon effect: things can suddenly get much

worse just outside your search depth (‘horizon’),

but you can’t see that

 Quiescence / secondary search: select the most

‘interesting’ nodes at the search boundary, expand

them further beyond the search depth

• Incorporate book moves

 Pre-compute / record opening moves, end games

slide 57

• There is an element of chance (coin flip, dice roll, etc.)‏

• “Chance node” in game tree, besides Max and Min nodes.

Neither player makes a choice. Instead a random choice

is made according to the outcome probabilities.

Two-player zero-sum discrete finite
NONdeterministic games of perfect information

Max

chance

Min Min

-20 +4

Min

chance

+3

Max

+10

Max

-5

Max

p=0.8 p=0.2

p=0.5 p=0.5

slide 58

Solving non-deterministic games

• Easy to extend minimax to non-deterministic games

• At chance node, instead of using max() or min(),

compute the average (weighted by the probabilities).

• What’s the value for the chance node at right?

• What action should Max take at root?

• The play will be optimal. In what sense?

Max

chance

Min Min

-20 +4

Min

chance

+3

Max

+10

Max

-5

Max

p=0.8 p=0.2

p=0.5 p=0.5

4*0.5+(-20)*0.5 = -8

slide 59

What you should know

• What is a two-player zero-sum discrete finite
deterministic game of perfect information

• What is a game tree

• What is the minimax value of a game

• Minimax search

• Alpha-beta pruning

• Basic understanding of very large games

• How to extend minimax to non-deterministic games

