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Sadly, not these games… 
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Overview 

• two-player zero-sum discrete finite deterministic 
game of perfect information 

• Minimax search 

• Alpha-beta pruning 

• Large games 

• two-player zero-sum discrete finite NON-deterministic 

game of perfect information 
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Two-player zero-sum discrete finite deterministic 
games of perfect information 

Definitions: 

 

• Zero-sum: one player’s gain is the other player’s loss.  

Does not mean fair. 

• Discrete: states and decisions have discrete values 

• Finite: finite number of states and decisions 

• Deterministic: no coin flips, die rolls – no chance 

• Perfect information: each player can see the 

complete game state.  No simultaneous decisions. 
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Which of these are: Two-player zero-sum discrete finite 
deterministic games of perfect information? 

[Shamelessly copied 
from Andrew Moore] 

Zero-sum: one player’s gain is 
the other player’s loss.  
Does not mean fair. 

Discrete: states and decisions 

have discrete values 

Finite: finite number of states 

and decisions 

Deterministic: no coin flips, die 

rolls – no chance 

Perfect information: each 

player can see the 

complete game state.  No 

simultaneous decisions. 
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Which of these are: Two-player zero-sum discrete finite 
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II-Nim: Max simple game 

 

• There are 2 piles of sticks.  Each pile has 2 sticks.  

• Each player takes one or more sticks from one pile. 

• The player who takes the last stick loses. 

 

(ii, ii)‏ 
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The game tree for II-Nim 

(ii ii) Max    

(i  ii) Min    (-  ii) Min    

(i i) Max    (- ii) Max    (- i) Max    (- i) Max    (- -) Max  

+1 

(-  i) Min    (-  -) Min   

-1 
(-  i) Min    (-  -) Min   

-1 
(-  -) Min   

-1 

(- -) Max  

+1 
(- -) Max  

+1 

Symmetry 

(i ii) = (ii i)‏ 

Convention: score is w.r.t. the first 
player‏Max.‏‏Min’s‏score‏=‏– Max 

who is to move 
at this state 

Two players:  

Max and Min 

Max wants the largest score 

Min wants the smallest score 
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The game tree for II-Nim 
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The game tree for II-Nim 

(ii ii) Max  

-1  

(i  ii) Min   

-1  

(-  ii) Min  

-1  

(i i) Max 

+1  
(- ii) Max 

+1  
(- i) Max   

-1  
(- i) Max   

-1  
(- -) Max  

+1 

(-  i) Min 

+1  
(-  -) Min  -
1 

(-  i) Min 
+1 

(-  -) Min   
-1 

(-  -) Min  -
1 

(- -) Max  

+1 
(- -) Max  

+1 

Symmetry 

(i ii) = (ii i)‏ 

Convention: score is w.r.t. the first 
player‏Max.‏‏Min’s‏score‏=‏– Max 

who is to move 
at this state 

Two players:  

Max and Min 

Max wants the largest score 

Min wants the smallest score 

The first player always loses, if the 

second player plays optimally 
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Game theoretic value 

• Game theoretic value (a.k.a. minimax value) of a 
node = the score of the terminal node that will be 
reached if both players play optimally. 

• = The numbers we filled in. 

• Computed bottom up 

 In Max’s turn, take the max of the children (Max 

will pick that maximizing action)‏ 

 In Min’s turn, take the min of the children (Min will 

pick that minimizing action)‏ 

• Implemented as a modified version of DFS: minimax 

algorithm 
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Minimax algorithm 

function Max-Value(s)‏ 
inputs: 
 s: current state in game, Max about to play 
output: best-score (for Max) available from s 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s )‏ 
 else  
  α := –  
  for each s’ in Succ(s)‏ 
       α := max( α , Min-value(s’))‏ 
 return α 

function Min-Value(s)‏ 
output: best-score (for Min) available from s 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s)‏ 
 else  
  β :=  
  for each s’ in Succs(s)‏ 
       β := min( β , Max-value(s’))‏ 
 return β 

• Time complexity? 

• Space complexity? 
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Minimax example 

A 

O 

W 
-3 

B 

N 
4 

F G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

max 

 

min 

 

max 

 

min 

 

max 
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Minimax algorithm 

function Max-Value(s)‏ 
inputs: 
 s: current state in game, Max about to play 
output: best-score (for Max) available from s 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s )‏ 
 else  
  α := –  
  for each s’ in Succ(s)‏ 
       α := max( α , Min-value(s’))‏ 
 return α 

function Min-Value(s)‏ 
output: best-score (for Min) available from s 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s)‏ 
 else  
  β :=  
  for each s’ in Succs(s)‏ 
       β := min( β , Max-value(s’))‏ 
 return β 

• Time complexity? 
O(bm)  bad 

• Space complexity? 

O(bm)‏ 
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Against a dumber opponent? 

• Max surely loses! 

• If Min not optimal, 

• Which way? 

• Why? 

(ii ii) Max  

-1  

(i  ii) Min  

 -1  

(-  ii) Min  

-1  

(i i) Max 

+1  
(- ii) Max 

+1  
(- i) Max   

-1  
(- i) Max   

-1  
(- -) Max  

+1 

(-  i) Min 

+1  
(-  -) Min  

-1 

(-  i) Min 
+1 

(-  -) Min   
-1 

(-  -) Min   

-1 

(- -) Max  

+1 
(- -) Max  

+1 
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Next: alpha-beta pruning 
 

Gives the same game theoretic values as 
minimax, but prunes part of the game tree. 

"If you have an idea that is surely bad, don't take the time  

 to see how truly awful it is." -- Pat Winston 
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Alpha-Beta Motivation 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 

• Depth-first order 

• After returning from A, Max can get at least 100 at S 

• After returning from F, Max can get at most 20 at B 

• At this point, Max losts interest in B 

• There is no need to explore G.  The subtree at G is 

pruned.  Saves time. 

G 
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Alpha-beta pruning 

function Max-Value (s,α,β)‏ 
inputs: 
 s: current state in game, Max about to play 
 α: best score (highest) for Max along path to s 
 β: best score (lowest) for Min along path to s 
output: min(β , best-score (for Max) available from s)‏ 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s )‏ 
 else for each s’ in Succ(s)‏ 
  α := max( α , Min-value(s’,α,β))‏ 
  if ( α ≥ β ) then return β   /* alpha pruning */ 
 return α 

function Min-Value(s,α,β)‏ 
output: max(α , best-score (for Min) available from s )‏ 

 if ( s is a terminal state )‏ 
 then return ( terminal value of s)‏ 
 else for each s’ in Succs(s)‏ 
  β := min( β , Max-value(s’,α,β))‏ 

if (α ≥ β ) then return α   /* beta pruning */ 
 return β 

Starting from the root: 

Max-Value(root, -, +)‏ 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=- 
β=+ 

• Keep two bounds along the path 

 : the best Max can do 

 : the best (smallest) Min can do 

• If at anytime  exceeds , the remaining children are 

pruned. 



slide 22 

Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=- 
β=+ 

α=- 
β=+ 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=- 
β=+ 

α=- 
β=200 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=- 
β=+ 

α=- 
β=100 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=100 
β=+ 

α=- 
β=100 

α=100 
β=+ 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=100 
β=+ 

α=- 
β=100 

α=100 
β=120 
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Alpha pruning example 

S 

A 
100 

C 
200 

D 
100 

B 

E 
120 

F 
20 

max 

 

 

min 

 

 G 

α=100 
β=+ 

α=- 
β=100 

α=100 
β=20 

X 
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Beta pruning example 

A 

B 
20 

D 
20 

E 
-10 

C 
25 

F 
-20 

G 
25 

max 

 

min 

 

max 

H 

• Keep two bounds along the path 

 : the best Max can do 

 : the best (smallest) Min can do 

• If at anytime  exceeds , the remaining children are 

pruned. 

S 

X 
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Yet another alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If at anytime  exceeds , the remaining children are 

pruned. 

A A 
A 
α
=- 

O 

W 
-3 

B 

N 
4 

F G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

max 

– = –  

+ = +  

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

B B 

B 
β
=
+ 

O 

W 
-3 

N 
4 

F G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

F F 
F 
α
=- 

O 

W 
-3 

B 
β
=
+ 

N 
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 

W 
-3 

B 
β
=
+ 

N 
4 

F 
α
=- 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

N 
4 

min 

max 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

F 
α
=- 

F 
α
=
4 

O 

W 
-3 

B 
β
=
+ 

N 
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

 updated 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O O 

O 
β
=
+ 

W 
-3 

B 
β
=
+ 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

min 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=
+ 

W 
-3 

B 
β
=
+ 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

W 
-3 

min 

V 
-9 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=
+ 

O 
β
=-
3 

W 
-3 

B 
β
=
+ 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

min 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=-
3 

W 
-3 

B 
β
=
+ 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

min 
X 
-5 

Pruned! 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

B 
β
=
+ 

B 
β
=
4 

O 
β
=-
3 

W 
-3 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 

max 

min 
X 
-5 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=-
3 

W 
-3 

B 
β
=
4 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 
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X 
-5 

G 
-5 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=-
3 

W 
-3 

B 
β
=-
5 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
=- 

max 

min 
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X 
-5 

G 
-5 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

O 
β
=-
3 

W 
-3 

B 
β
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5 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

C 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
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5 
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min 
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X 
-5 

G 
-5 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 

C C 

C 
β
=
+ 

O 
β
=-
3 

W 
-3 

B 
β
=-
5 

N 
4 

F 
α
=
4 

G 
-5 

X 
-5 

E D 
0 

R 
0 

P 
9 

Q 
-6 

S 
3 

T 
5 

U 
-7 

V 
-9 

K M H 
3 

I 
8 

J L 
2 

A 
α
= 

max 

min 

max 

min 
X 
-5 

A 
α
=-
5 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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Alpha-beta pruning example 
• Keep two bounds along the path 

 : the best Max can do on the path 

 : the best (smallest) Min can do on the path 

• If a max node exceeds , it is pruned. 

• If a min node goes below , it is pruned. 

[Example from James Skrentny] 
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How effective is alpha-beta pruning? 

• Depends on the order of successors! 

 

 

 

 

 

 

 

 

• In the best case, the number of nodes to search is O(bm/2), the 

square root of minimax’s cost.   

• This occurs when each player's best move is the leftmost child.   

• In DeepBlue (IBM Chess), the average branching factor was 

about 6 with alpha-beta instead of 35-40 without. 

• The worst case is no pruning at all. 
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Game-playing for large games 

• We’ve seen how to find game theoretic values.  But it 
is too expensive for large games. 

• What do real chess-playing programs do? 

 They can’t possibly search the full game tree 

 They must respond in limited time 

 They can’t pre-compute a solution 
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Game-playing for large games 

• The most popular solution: heuristic evaluation 
functions for games 

 ‘Leaves’ are intermediate nodes at a depth cutoff, 

not terminals 

 Heuristically estimate their values 

 Huge amount of knowledge engineering (R&N 6.4)‏ 

 Example: Tic-Tac-Toe:  

(number of 3-lengths open for me)-(number of 3-lengths open for you)‏ 

• Each move is a new depth-cutoff game-tree search 

(as opposed to search the complete game-tree 

once). 

• Depth-cutoff can increase using iterative deepening, 

as long as there is time left. 
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More on large games 

 

• Battle the limited search depth 

 Horizon effect: things can suddenly get much 

worse just outside your search depth (‘horizon’), 

but you can’t see that 

 Quiescence / secondary search: select the most 

‘interesting’ nodes at the search boundary, expand 

them further beyond the search depth 

• Incorporate book moves 

 Pre-compute /  record opening moves, end games 
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• There is an element of chance (coin flip, dice roll, etc.)‏ 

• “Chance node” in game tree, besides Max and Min nodes.  

Neither player makes a choice.  Instead a random choice 

is made according to the outcome probabilities.   

Two-player zero-sum discrete finite 
NONdeterministic games of perfect information 

Max 

chance 

Min Min 

-20  +4    

Min 

chance 

+3 

Max 

+10 

Max 

-5 

Max 

p=0.8 p=0.2 

p=0.5 p=0.5 
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Solving non-deterministic games 

• Easy to extend minimax to non-deterministic games 

• At chance node, instead of using max() or min(), 

compute the average (weighted by the probabilities). 

 

 

 

 

 

 

• What’s the value for the chance node at right? 

• What action should Max take at root? 

• The play will be optimal.  In what sense? 

Max 

chance 

Min Min 

-20  +4    

Min 

chance 

+3 

Max 

+10 

Max 

-5 

Max 

p=0.8 p=0.2 

p=0.5 p=0.5 

4*0.5+(-20)*0.5 = -8 
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What you should know 

• What is a two-player zero-sum discrete finite 
deterministic game of perfect information 

• What is a game tree 

• What is the minimax value of a game 

• Minimax search 

• Alpha-beta pruning 

• Basic understanding of very large games 

• How to extend minimax to non-deterministic games 


