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Overview

Matrix normal form

Chance games

Games with hidden information
Non-zero sum games
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Pure strategy

A pure strategy for a player is the mapping between
all possible states the player can see, to the move
the player would make.

Player A has 4 pure strategles L/ \

A’s strategy I: (1-2>L, 4-L)

A’s strategy Il: (12L, 42R) L
A’s strategy IIl: (1°>R, 45L) \
A’s strategy IV: (19R, 4>R) 1) % ()

Player B has 3 pure strategles. / \
B’s strategy |: (2L, 3=2R)

B’s strategy Il: (2->M, 3=2R)
B’s strategy Ill: (22R, 32R)

How many pure strategies if each player can see N
states, and has b moves at each state?
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Matrix Normal Form of games
A’s strategy I: (12>L, 4->L)

(1)

a
A’s strategy Il: (12L, 42R) |/ \R
A’s strategy lll: (12R, 4->L) (2)- (3)-

A’s strategy IV: (12R, 4>R) b b

B's strategy I: (2L, 35R) L / \\ K

B’s strategy II: (2>M, 3>R) 0 M N N
+7 +3 +5

4)-
B’s strategy lll: (22R, 3=2R) ¥

a

L
® The matrix normal form is the / k
game value matrix indexed Y i
by each player’s strategies.
B-1 1Bl 1B The matrix encodes

every outcome of the

A-l 17 |13 |- game! The rules etc. are

Al |7 |3 |4 < no longer needed.
A-lll |5 5 5
A-IV |5 5 5
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Matrix normal form example

(1)
YA
L/ _ ~R_
/ \ L / 0)
(4) () () +2
-a +2 +5
-/

() ()
-1 +4

How many pure strategies does A have?

How many does B have?
What is the matrix form of this game?
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Matrix normal form example

/ \ B-1 |B-1l Bl |B-IV

Al |1 |1 |2 2

L/ \ / Al |4 |4 |2 2

a ) Al |5 |2 |5 2

L/ \* AV |5 |2 |5 2
)

® How many pure strategies does A have? 4
A-l (1L, 4>L) A-ll (1>L,4>R) A-lll (12R,4>L) A-IV (12R, 4>R)

® How many does B have? 4
B-l (2L, 3°>L) B-ll (2°L,32>R) B-lll (2°>R,3>L) B-IV (2°R, 3°R)

® What is the matrix form of this game?
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Minimax in Matrix Normal Form

Player A: for each

strategy, consider all B’s / \
counter strategies (a row

in the matrix), find the / \\ \
minimum value in that row. @

Pick the row with the

maximum minimum value. / R

Here maximin=5 g Y

B-1 |B-Il |B-ll
A-l |7 3 -1
A-ll |7 3 4
A-lll |5 S)
A-IV |5 5 S)
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Minimax in Matrix Normal Form

(1)
Player B: find the L, <R
maximum value in each / \
. 2) (3)
column. Pick the column b b

with the minimum "/ \\ \i
maximum value. M

Here minimax = 5 L ' 5 '
L R
;Y
Fundamental game theory result -1 +4
(proved by von Neumann): B-l 1B-Il 1B-l
In a 2-player, zero-sum game [, 77 (3 |1
of perfect information,
Minimax==Maximin. And S KA SO b
there always exists an optimal Al |9 |9
pure strategy for each player. |A-IV |5 5 5
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Minimax in Matrix Normal Form

Interestingly, A can tell B in
advance what strategy A will
use (the maximin), and this
information will not help B!
Similarly B can tell A what
strategy B will use.

In fact A knows what B'’s
strategy will be.

And B knows A's too.
And A knows that B knows

The game is at an equilibrium

(1)
N
(2) (3)
b b

B-1 |B-Il |B-ll
A-l |7 3 -1
A-ll |7 3 4
A-lll |5 5 S)
A-IV |5 5 S)
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Matrix Normal Form for NONdeterministic games

Recall the chance nodes (coin flip, die roll etc.):
neither player moves, but a random move is made
according to the known probability

/ ( )-a
( )-chance \
,D=0V p=0.5 ()b

()b ()b /\
( )-chance
+4 -20
p=0.8 p=0.2

()-a ()-a ()a
5 +10 +3

The game theoretic value is the expected value if
both players are optimal

What's the matrix form of this game?
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Matrix Normal Form for NONdeterministic games

/ ( )-a
( )—Chance \
pzoy p=05 ()b

()b ()b /\
( )-chance
+4 -20
p=0.8 p=0.2

S +10 +3
* A-l: L, A-lIl: R, B-Il: L, B-Il: R B-l |[B-ll
® Thei,jt entry is the expected [A-l |-8 |-8
value with strategies A-1,B-j Al 12 |3

® von Neumann’s result still holds
® Minimax == Maximin
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Non-zero sum games
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Non-zero sum games

One player’'s gain is not the other’s loss
Matrix normal form: simply lists all players’ gain

Convention: A’s
gain first, B’s next

B-| B-lI
A-l -5,-5 [-10,0
A-ll 0,-10 -1, -1

IR

Note B now wants to
maximize the blue numbers.

Previous zero-sum games trivially represented as

O-1 | O
E-l |2,-2]-3,3
E-Il 1-3,3 |4, -4
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Prisoner’s dilemma

B-testify | B-refuse
A-testify -5, -5 0, -10
A-refuse -10, 0 -1, -1
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Strict domination

¢ A's strategy i dominates A’s strategy j, if for every B's
strategy, A is better off doing i than |.

B-testify | B-refuse
A-testify -5, -5 0, -10
A-refuse -10, 0 -1, -1

If B-testify: A-testify (-5) is better than A-refuse (-10)
If B-refuse: A-testify (0) is better than A-refuse (-1)

é Testify 1s alwaym@
j

— — —
A-testify strictly dominates (all outcomes strictly better than)

A-refuse.
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Strict domination

Fundamental assumption of game theory: get rid of
strictly dominated strategies — they won’t happen.

In some cases like prisoner’s dilemma, we can use

strict domination to predict the outcome, if both

players are rational.

B-testify | B-refuse
A-testify -9, -5 0, -10
A-refuse -10, 0 -1, -1
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Strict domination

® Fundamental assumption of game theory: get rid of
strictly dominated strategies — they won’t happen.

® In some cases like prisoner’s dilemma, we can use

strict domination to predict the outcome, if both

players are rational.

B-testify | B-refuse

A-testify -9, -5 0, -10

B-testify

B-refuse

e

A-testify

-5, -5

0,-10
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Strict domination

® Fundamental assumption of game theory: get rid of
strictly dominated strategies — they won’t happen.

® In some cases like prisoner’s dilemma, we can use
strict domination to predict the outcome, if both

players are rational.

B-testify |B-refuse

A-testify -9, -5 0, -10

e

B-testify | B-rejuse
A-testify -5, -5 0, -1
v
B-testify
A-testify -9, -5
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Another strict domination example

lterated elimination of strictly dominated strategies

Player B
I I 11 1V

Player A

1 2,3 8,4 6,2 6,3

\Y 3,8 3,1 2,3 4,95
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Strict domination?

Strict domination doesn’t always happen...
| | I

I 0,4 4,0 5,3
I 4,0 0,4 5,3
1 3,5 3,95 6,6

What do you think the players will do”?
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Nash equilibria

(player 1’s strategy s,’, player 2’s strategy s, ...
player n’s strategy s, ) is a Nash equilibrium, iff

*

k
s, =argmax v(s,,:,S

l

* *

i—l’S Sz+19 . Sn)

This says: if everybody else plays at the Nash
equilibrium, player i will hurt itself unless it also plays

at the Nash equilibrium.
I [ [

T ] )
N.E. is a local
maximum in

unilateral moves. I 4 0 0 4 5 3

% / ) b )
1l 3.5 3.5 @
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Player A

Nash equilibria examples

B-testify | B-refuse | Isth | Nash
A-testify  |-5,-5 |0, -10 - 15 TheTe always a INas
equilibrium?
A-refuse  |-10,0 -1, -1 2. Can there be more than
one Nash equilibrium?
Player B
I [ |1 A\
I 3,1 4,1 5,9 2,6
[ 5,3 5,8 9,7 9,3
|11 2,3 8,4 6,2 6,3
\Y; 3,8 3,1 2,3 4,5
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Example: no N.E. with pure strategies

two-finger Morra

O-1 | Ol
E-l 12,-2]-3,3
E-Il 1-3,3|4,-4

No pure strategy Nash equilibrium, but...
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Two-player zero-sum deterministic game
with hidden information

Hidden information: something you don’t know but
your opponent knows, e.g. hidden cards, or
simultaneous moves

Example: two-finger Morra

= Each player (O and E) displays 1 or 2 fingers
= |f sum fis odd, O collects $f from E

= |f sum fis even, E collects $f from O

= Strategies?

= Matrix form?
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Two-player zero-sum deterministic game

with hidden information

Hidden information: something you don’t know but
your opponent knows, e.g. hidden cards, or
simultaneous moves

Example: two-finger Morra

Each player (O and E) displays 1 or 2 fingers
If sum fis odd, O collects $f from E

If sum f is even, E collects $f from O
Strategies?

Matrix form? O-I 1Ol
Maximin= -3, minimax=2 E-l |2,-2 |-3,3
The two are not the same! |51 |33 |44

What should O and E do?
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Game theoretic value
when there is hidden information

It turns out O can win a little over 8 cents on average
in each game, if O does the right thing.

Again O can tell E what O will do, and E can do
nothing about it!

The trick is to use a mixed strategy instead of a pure
strategy.

= A mixed strategy is defined by a probability
distribution (p4, ps, ... Pn). N = # of pure strategies
the player has

= At the start of each game, the player picks number
i according to p;, and uses the it pure strategy for
this round of the game

von Neumann: every two-player zero-sum game
(even with hidden information) has an optimal
(mixed) strategy.
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Boring math: Two-finger Morra

® E’s mixed strategy: (p:l, (1-p):Il) O-1 |O-II
® O’s mixed strategy: (q:l, (1-q):1l) E-l |2 |-3
®* Whatis p, 97 E-Il -3 |4

® step 1: let’s fix p for E, and O knows that.
= What if O always play O-l (g=1)? v,=p*2+(1-p)*(-3)
= What if O always play O-ll (q=0)? v,=p*(-3)+(1-p)*4
= And if O uses some other q? q*v,+(1-q)*v,
= O is going to pick g to minimize q*v,+(1-q)*v,
= Since this is a linear combination, such g must be 0
or 1, not something in between!

= The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4)
¢ step 2: E choose the p that maximizes the value above.
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More boring math

step 1: let’s fix p for E.
= The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4),
In case O is really nasty
step 2: E choose the p* that maximizes the value above.
p™ = argmax, min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4)
Solve it with (proof by “it's obvious”)
p*2+(1-p)*(-3) = p*(-3)+(1-p)*4
E’s optimal p* = 7/12, value = -1/12 (expect to lose $!
That's the best E can do!)

Similar analysis on O shows q* = 7/12, value = 1/12

This 1s a zero-sum,
but unfair game.
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Recipe for computing A’s optimal mixed
strategy for a n*m game

n*m game = A has n pure strategies and B has m.
v;=(i,j)" entry in the matrix form.
Say A uses mixed strategy (p4, Ps, ... Pn).

A’s expected gain if B uses pure strategy 1: g4 = p1V{1tPoVaqt...+P Vi
A’s expected gain if B uses pure strategy 2: g, = p{Vi2+tpPoVast...+P Vo

A’s expected gain if B uses pure strategy m: g,, = P1Vim+P2Vomt---+PrVam
Choose (p1, Py, ... P,) t0o maximize
min(g+, 92, -+, Im)
Subject to: py+p,+ ... +p,=1
O0<p,<1foralli
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Fundamental theorems

In a n-player pure strategy game, if iterated
elimination of strictly dominated strategies leaves all
butonecell (s{, s, ... s, ), then itis the unique NE
of the game

® Any NE will survive iterated elimination of strictly

dominated strategies

[Nash 1950]: If n is finite, and each player has finite
strategies, then there exists at least one NE (possibly
involving mixed strategies)
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What if there are multiple, equally good NE?

Pat enjoys football
Chris enjoys hockey
Pat and Chris enjoy spending time together

Chris
H F
Hl 12 | 00
©
O Fl o0 | 21

2 Nash equilibria

Pat prefers the (F,F) equilibrium, Chris prefers (H,H)
Could they choose (F,H) with value 07?

Solution?

slide 31



Nash equilibria in a continuous game: The Tragedy of the Commons

HORTICULTURAL, DAIRY AND AGRIGULTURAL BUILDINGS,
UNIVERSITY OF WISCONSIN, MADISON, WIis.—13

b : "3; AR T
pad e QP?W‘\‘&E W .

-

m

A 1913 postcard shows the agricultural campus, where sheep used to graze. Bascom Hall is visible in the
background right. UW-MADISON ARCHIVES slide 32



The tragedy of the Commons

Everybody can graze goats on the Common
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The tragedy of the Commons

® The more goats, the less well fed they are.
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The tragedy of the Commons

Price per goat

| 6 price =+/36 -G
Selling 5 -
Price 4 -
per 3 -
Goat % |
0

10 20 3 36 !

G= number of goats

How many goats should one rational farmer graze?

| allow real number, e.g. 1.5 goat is fine |

How much would the farmer earn?
How many goats should n farmers each graze?

slide 35



Continuous game

Each farmer has infinite number of strategies g,[0,36]
The value for farmer i, when the n farmers play at (g4,
do, ..., ) IS

gi\/36_zgj
j=1

Assume a Nash equilibrium exists, call it (1,95, ..., 9, )
gi = argmax g [value for farmer /, with (g4"...g; ..., 9 ')
What's the value?
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The tragedy of the Commons

g, =argmax g, \/
8i

O value 0
agi

% 2 i %
8 :24__Zgj
345

J#I

36_Zg; — &
j=1

J#I

We have n variables and »n equations :

&1 :24__Zgj

Jj#l

* 2 d *

J#n

g; must be the

bloody obvious™)

same (proof by “It

N

S

S

-
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The tragedy of the Commons

So what?
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The tragedy of the Commons

%k 2 %k
8i :24_5(71_1)&

" 72

& ot
Say there are n=24 farmers. Each would rationally
graze g; = 72/(2*24+1) = 1.47 goats

Each would get J%_i . =1.26¢

So what?

But if they cooperate and each graze only 1 goat,
each would get 3.46¢
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The tragedy of the Commons

If all 24 farmers agree on the
same number of goals to raise, 1
goat per farmer would be optimal

\ 12535
4 ' \ ‘ 1.259

1.2585

1.258

(78]

1.2575

-/| 142 144 [146 148 15

/
| If the other 23
farmers play the N.E.
of 1.47 goats each,
0 05 : e 1.47 goats would be
my goats o t. 1
ptima

my income
N
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The tragedy of the Commons

If all 24 farmers agree on the
same number of goals to raise, 1 But this isnot a N.E.! A

goat per farmer would be optimal farmer can benefit from
cheating (other 23 play at 1):

20—

.

W

15|

my income
N

10}

my income

0 0.5 1 A
my goats

0 1 1 1 1 1
0 2 4 6 8 10 12
my goats

‘by rule’
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The tragedy

Rational behaviors lead to sub-optimal solutions!

Maximizing individual welfare not necessarily
maximizes social welfare

What went wrong?
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The tragedy

Rational behaviors lead to sub-optimal solutions!

Maximizing individual welfare not necessarily
maximizes social welfare

What went wrong?
Shouldn’t have allowed unlimited free grazing.

>
7

It's not just the “JWZ : the use of the atmosphere and
the oceans for dumping of pollutants.

Mechanism design: designing the rules of a game
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Auction 1: English auction

Auctioneer increase the price by d
Until only 1 bidder left
Winner pays the highest failed bid b,,,, plus d

Dominant strategy: keep bidding if price below your
value v

Simple: no need to consider other bidders’ strategies
High communication cost
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Auction 2: first price sealed bid

Each bidder makes a single, sealed bid to the
auctioneer

Winner pays the bid amount

If you believe the maximum bid of all other bidders is
b.,, you should bid min(v, b,,+¢)

Have to guess other bidders’ bids, hard

slide 45



Auction 3: Vickrey (second price sealed) bid

Each bidder makes a single, sealed bid to the
auctioneer

Winner pays the 29 highest bid

Dominant strategy: bid your true value v
Low communication cost, and simple
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Why should | care?

(How does this lecture relate to Al?)
in a world where robots interact with each other..

® in cyberspace where softbots interact with each other
¢ Google Adword

3 Google Search: artificial intellipance - Mozilla Firefox

Fils Edt Yew Go Bookmarks Jooks Help

madges Groups News Froogle Local Deskiop more » =
CO' )81( artificial intelligence [ Search %‘,M'
Web Results 1 - 10 of about 15,500,000 for artificial intelligence g i 0.08 saconds)

Book results for anmclal Intelllqence

m wtificial Intelligenc Nils J Nilsson - 513 pages

American Association for Artificial Intelligence
(AAAI)
AAAl advances the understanding of the mechanisms
undertying thought and intelligent
bahavior and thair embodimant in machinas

ora/- 11K -

ree Research
Free access to computer science
books and j umnals

nnge na comireading

Artificial Intelligence
Build Sophisticated Applicatons
Fast Using Common Lisp Free Triall

Artificial Intelligence Depot

Al community where everyone interested in artificial
intelligence can ¢
news, exchange Ideas and research information

Artificial Intelligence
Ultra Hal - Your digital assistant
and companion. Chat with a computer
Ve Zabaware

n - 24l

Artificial Intelligence
Artificial Intelligence characlers

MIT Computer Science and Artificial Intelligence

vaur website Eas Y & lfljll'u;l'

Laboratory

= Uses a variation of Vickrey auction (2" price auction)
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What you should know

Matrix Normal Form of a game
Strategies in game

What do mixed strategies mean
Strict dominance

Nash equilibrium

Tragedy of the Commons

Basic concept of auctions
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