Game Theory Fingers, prisoners, goats Xiaojin Zhu jerryzhu@cs.wisc.edu **Computer Sciences Department University of Wisconsin, Madison** #### **Overview** - Matrix normal form - Chance games - Games with hidden information - Non-zero sum games ## **Pure strategy** A pure strategy for a player is the mapping between all possible states the player can see, to the move the player would make. Player A has 4 pure strategies: A's strategy I: $(1 \rightarrow L, 4 \rightarrow L)$ A's strategy II: $(1 \rightarrow L, 4 \rightarrow R)$ A's strategy III: $(1 \rightarrow R, 4 \rightarrow L)$ A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$ Player B has 3 pure strategies: B's strategy I: $(2\rightarrow L, 3\rightarrow R)$ B's strategy II: $(2\rightarrow M, 3\rightarrow R)$ B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$ How many pure strategies if each player can see N states, and has b moves at each state? ## **Matrix Normal Form of games** A's strategy I: $(1 \rightarrow L, 4 \rightarrow L)$ A's strategy II: $(1 \rightarrow L, 4 \rightarrow R)$ A's strategy III: $(1 \rightarrow R, 4 \rightarrow L)$ A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$ B's strategy I: $(2 \rightarrow L, 3 \rightarrow R)$ B's strategy II: $(2 \rightarrow M, 3 \rightarrow R)$ B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$ L R (3)-(2)-(2)-(2)-(3)-(4)-(1)-(3)-(1)-(1)-(1)-(2)-(3)-(1)-(1)-(1)-(2)-(3)-(1)-(1)-(1)-(1)-(1)-(2)-(3)-(4)-(4)-(4)-(5)-(6)-(7)-(8)-(8)-(9 The matrix normal form is the game value matrix indexed by each player's strategies. | | B-I | B-II | B-III | |-------|-----|------|-------| | A-I | 7 | 3 | -1 | | A-II | 7 | 3 | 4 | | A-III | 5 | 5 | 5 | | A-IV | 5 | 5 | 5 | The matrix encodes every outcome of the game! The rules etc. are no longer needed. ## Matrix normal form example - How many pure strategies does A have? - How many does B have? - What is the matrix form of this game? ## **Matrix normal form example** | | B-I | B-II | B-III | B-IV | |-------|-----|------|-------|------| | A-I | -1 | -1 | 2 | 2 | | A-II | 4 | 4 | 2 | 2 | | A-III | 5 | 2 | 5 | 2 | | A-IV | 5 | 2 | 5 | 2 | How many pure strategies does A have? 4 A-I $(1\rightarrow L, 4\rightarrow L)$ A-II $(1\rightarrow L, 4\rightarrow R)$ A-III $(1\rightarrow R, 4\rightarrow L)$ A-IV $(1\rightarrow R, 4\rightarrow R)$ How many does B have? 4 B-I $(2\rightarrow L, 3\rightarrow L)$ B-II $(2\rightarrow L, 3\rightarrow R)$ B-III $(2\rightarrow R, 3\rightarrow L)$ B-IV $(2\rightarrow R, 3\rightarrow R)$ What is the matrix form of this game? #### **Minimax in Matrix Normal Form** - Player A: for each strategy, consider all B's counter strategies (a row in the matrix), find the minimum value in that row. Pick the row with the maximum minimum value. - Here maximin=5 | | B-I | B-II | B-III | |-------|-----|------|-------| | A-I | 7 | 3 -1 | | | A-II | 7 | 3 | 4 | | A-III | 5 | 5 | 5 | | A-IV | 5 | 5 | 5 | #### **Minimax in Matrix Normal Form** - Player B: find the maximum value in each column. Pick the column with the minimum maximum value. - Here minimax = 5 Fundamental game theory result (proved by von Neumann): In a 2-player, zero-sum game of perfect information, Minimax==Maximin. And there always exists an optimal pure strategy for each player. | | B-I | B-II | B-III | |-------|-----|------|-------| | A-I | 7 | 3 -1 | | | A-II | 7 | 3 | 4 | | A-III | 5 | 5 | 5 | | A-IV | 5 | 5 | 5 | #### **Minimax in Matrix Normal Form** Interestingly, A can tell B in advance what strategy A will use (the maximin), and this information will not help B! Similarly B can tell A what strategy B will use. In fact A knows what B's strategy will be. And B knows A's too. And A knows that B knows . . . The game is at an equilibrium cegy ior each piaýer. | | B-I | B-II | B-III | |-------|-----|------|-------| | A-I | 7 | 3 | -1 | | A-II | 7 | 3 | 4 | | A-III | 5 | 5 | 5 | | A-IV | 5 | 5 | 5 | ## Matrix Normal Form for NONdeterministic games Recall the chance nodes (coin flip, die roll etc.): neither player moves, but a random move is made according to the known probability - The game theoretic value is the expected value if both players are optimal - What's the matrix form of this game? ## Matrix Normal Form for NONdeterministic games - A-I: L, A-II: R, B-I: L, B-II: R - The i,jth entry is the expected value with strategies A-i,B-j | | B-I | B-II | |------|-----|------| | A-I | -8 | -8 | | A-II | -2 | 3 | - von Neumann's result still holds - Minimax == Maximin ## Non-zero sum games ## Non-zero sum games - One player's gain is not the other's loss - Matrix normal form: simply lists all players' gain | | B-I | B-II | |------|--------------------|---------------| | A-I | -5, - 5 | -10, 0 | | A-II | 0, -10 | -1, -1 | Convention: A's gain first, B's next Note B now wants to maximize the blue numbers. Previous zero-sum games trivially represented as | | O-I | O-II | |------|-------|-------| | E-I | 2, -2 | -3, 3 | | E-II | -3, 3 | 4, -4 | ## Prisoner's dilemma | | B-testify B-refu | | |-----------|------------------|--------| | A-testify | -5, - 5 | 0, -10 | | A-refuse | -10, 0 | -1, -1 | A's strategy i dominates A's strategy j, if for every B's strategy, A is better off doing i than j. | | B-testify | B-refuse | |-----------|----------------|----------| | A-testify | -5, - 5 | 0, -10 | | A-refuse | -10, 0 | -1, -1 | If B-testify: A-testify (-5) is better than A-refuse (-10) If B-refuse: A-testify (0) is better than A-refuse (-1) A: Testify is always better than refuse. A-testify strictly dominates (all outcomes strictly better than) A-refuse. - Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen. - In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational. | | B-testify | B-refuse | |-----------|----------------|----------| | A-testify | -5, - 5 | 0, -10 | | A-refuse | -10, 0 | -1, -1 | - Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen. - In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational. | | B-testify | B-refuse |] | | | | | |---------------|---------------|----------|---|----------------|-----------|---------------|-----| | | D testify | Diciase | 1 | | B-testify | R-refuse | | | A-testify | -5. -5 | 010 | | | D toothy | D TOTAGE | | | , | , , | , | | — | A-testify | -5. -5 | 010 | | A rofuso | 10 0 | 1 1 | | 7 t 100 till y | | | | | , , , o, o, o | , , , | • • | | | | | | - Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen. - In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational. ## **Another strict domination example** Iterated elimination of strictly dominated strategies | | | Player B | | | | |----------|----|----------|-------|-------|-------| | | | 1 | II | Ш | IV | | | I | 3 , 1 | 4 , 1 | 5,9 | 2,6 | | erA | II | 5,3 | 5,8 | 9,7 | 9,3 | | Player A | Ш | 2,3 | 8,4 | 6 , 2 | 6,3 | | | IV | 3,8 | 3,1 | 2,3 | 4 , 5 | Strict domination doesn't always happen... | | Ī | II | Ш | |-----|-----|-----|-----| | I | 0,4 | 4,0 | 5,3 | | II | 4,0 | 0,4 | 5,3 | | III | 3,5 | 3,5 | 6,6 | What do you think the players will do? ## Nash equilibria (player 1's strategy s₁*, player 2's strategy s₂*, ... player n's strategy s_n*) is a Nash equilibrium, iff $$s_{i}^{*} = \arg\max_{s} v(s_{1}^{*}, \dots, s_{i-1}^{*}, s, s_{i+1}^{*}, \dots s_{n}^{*})$$ This says: if everybody else plays at the Nash equilibrium, player i will hurt itself unless it also plays at the Nash equilibrium. N.E. is a local maximum in unilateral moves. 1 11 111 | - | | ••• | |-----|-----|-----| | 0,4 | 4,0 | 5,3 | | 4,0 | 0,4 | 5,3 | | 3,5 | 3,5 | 6,6 | Ш ## Nash equilibria examples | | B-testify | B-refuse | |-----------|----------------|----------| | A-testify | -5, - 5 | 0, -10 | | A-refuse | -10, 0 | -1, -1 | - 1. Is there always a Nash equilibrium? - 2. Can there be more than one Nash equilibrium? | | | Player B | | | | |----------|----|----------|-------|-----|-------| | | | I | II | Ш | IV | | | I | 3 , 1 | 4 , 1 | 5,9 | 2,6 | | Player A | II | 5,3 | 5,8 | 9,7 | 9,3 | | | Ш | 2,3 | 8,4 | 6,2 | 6 , 3 | | | IV | 3,8 | 3 , 1 | 2,3 | 4 , 5 | ## **Example:** no N.E. with pure strategies two-finger Morra | | O-I | O-II | |------|-------|-------| | E-I | 2, -2 | -3, 3 | | E-II | -3, 3 | 4, -4 | No pure strategy Nash equilibrium, but... ## Two-player zero-sum deterministic game with hidden information - Hidden information: something you don't know but your opponent knows, e.g. hidden cards, or simultaneous moves - Example: two-finger Morra - Each player (O and E) displays 1 or 2 fingers - If sum f is odd, O collects \$f from E - If sum f is even, E collects \$f from O - Strategies? - Matrix form? ## Two-player zero-sum deterministic game with hidden information - Hidden information: something you don't know but your opponent knows, e.g. hidden cards, or simultaneous moves - Example: two-finger Morra - Each player (O and E) displays 1 or 2 fingers - If sum f is odd, O collects \$f from E - If sum f is even, E collects \$f from O - Strategies? - Matrix form? - Maximin= –3, minimax=2 - The two are not the same! - What should O and E do? | | O-I | O-II | |------|------|------| | E-I | 2,-2 | -3,3 | | E-II | -3,3 | 4,-4 | ## Game theoretic value when there is hidden information - It turns out O can win a little over 8 cents on average in each game, if O does the right thing. - Again O can tell E what O will do, and E can do nothing about it! - The trick is to use a mixed strategy instead of a pure strategy. - A mixed strategy is defined by a probability distribution (p₁, p₂, ... p_n). n = # of pure strategies the player has - At the start of each game, the player picks number i according to p_i, and uses the ith pure strategy for this round of the game - von Neumann: every two-player zero-sum game (even with hidden information) has an optimal (mixed) strategy. ## **Boring math: Two-finger Morra** - E's mixed strategy: (p:I, (1-p):II) - O's mixed strategy: (q:I, (1-q):II) | \ | • | | \sim | |--------|-----|--------|--------| | What | 10 | | \sim | | vviiai | 1.5 | | () | | vviid | | \sim | ч. | | | | | | | | O-I | O-II | |------|-----|------| | E-I | 2 | -3 | | E-II | -3 | 4 | - step 1: let's fix p for E, and O knows that. - What if O always play O-I (q=1)? $v_1=p*2+(1-p)*(-3)$ - What if O always play O-II (q=0)? $v_0 = p^*(-3) + (1-p)^*4$ - And if O uses some other q? $q^*v_1+(1-q)^*v_0$ - O is going to pick q to minimize $q^*v_1+(1-q)^*v_0$ - Since this is a linear combination, such q must be 0 or 1, not something in between! - The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4) - step 2: E choose the p that maximizes the value above. ## More boring math - step 1: let's fix p for E. - The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4), in case O is really nasty - step 2: E choose the p* that maximizes the value above. $p^* = \operatorname{argmax}_p \min(p^*2 + (1-p)^*(-3), p^*(-3) + (1-p)^*4)$ - Solve it with (proof by "it's obvious") $$p*2+(1-p)*(-3) = p*(-3)+(1-p)*4$$ - E's optimal p* = 7/12, value = -1/12 (expect to lose \$! That's the best E can do!) - Similar analysis on O shows q* = 7/12, value = 1/12 This is a zero-sum, but unfair game. # Recipe for computing A's optimal mixed strategy for a n*m game - n*m game = A has n pure strategies and B has m. $v_{ij}=(i,j)^{th}$ entry in the matrix form. - Say A uses mixed strategy (p₁, p₂, ... p_n). A's expected gain if B uses pure strategy 1: $g_1 = p_1v_{11} + p_2v_{21} + ... + p_nv_{n1}$ A's expected gain if B uses pure strategy 2: $g_2 = p_1v_{12} + p_2v_{22} + ... + p_nv_{n2}$... A's expected gain if B uses pure strategy m: $g_m = p_1 v_{1m} + p_2 v_{2m} + ... + p_n v_{nm}$ Choose (p₁, p₂, ... p_n) to maximize min(g₁, g₂, ..., g_m) Subject to: p₁+p₂+ ... +p_n=1 #### **Fundamental theorems** - In a n-player pure strategy game, if iterated elimination of strictly dominated strategies leaves all but one cell (s₁*, s₂*, ... s_n*), then it is the unique NE of the game - Any NE will survive iterated elimination of strictly dominated strategies - [Nash 1950]: If n is finite, and each player has finite strategies, then there exists at least one NE (possibly involving mixed strategies) ## What if there are multiple, equally good NE? - Pat enjoys football - Chris enjoys hockey - Pat and Chris enjoy spending time together - 2 Nash equilibria - Pat prefers the (F,F) equilibrium, Chris prefers (H,H) - Could they choose (F,H) with value 0? - Solution? #### Nash equilibria in a continuous game: The Tragedy of the Commons A 1913 postcard shows the agricultural campus, where sheep used to graze. Bascom Hall is visible in the background right. UW-MADISON ARCHIVES ## The tragedy of the Commons Everybody can graze goats on the Common ## The tragedy of the Commons • The more goats, the less well fed they are. ## The tragedy of the Commons Price per goat How many goats should one rational farmer graze? allow real number, e.g. 1.5 goat is fine - How much would the farmer earn? - How many goats should n farmers each graze? ## Continuous game - Each farmer has infinite number of strategies g_i∈[0,36] - The value for farmer i, when the n farmers play at (g₁, g₂, ..., g_n) is $$g_i \sqrt{36 - \sum_{j=1}^n g_j}$$ - Assume a Nash equilibrium exists, call it (g₁*, g₂*, ..., g_n*) - $g_i^* = \operatorname{argmax}_{g_i} [\text{value for farmer } i, \text{ with } (g_1^* \dots g_i^* \dots, g_n^*)]$ - What's the value? $$g_{i}^{*} = \underset{g_{i}}{\operatorname{arg\,max}} g_{i} \sqrt{36 - \sum_{\substack{j=1 \ j \neq i}}^{n} g_{j}^{*} - g_{i}}$$ $$\frac{\partial \text{ value}}{\partial g_i} = 0$$ $$g_i^* = 24 - \frac{2}{3} \sum_{\substack{j=1 \ j \neq i}}^n g_j^*$$ We have n variables and n equations: $$g_1^* = 24 - \frac{2}{3} \sum_{\substack{j=1 \ j \neq 1}}^{n} g_j^*$$ • • • $$g_n^* = 24 - \frac{2}{3} \sum_{\substack{j=1 \ j \neq n}}^n g_j^*$$ g_i* must be the same (proof by "It's bloody obvious") So what? $$g_i^* = 24 - \frac{2}{3}(n-1)g_i^*$$ $$g_i^* = \frac{72}{2n+1}$$ So what? $$g_i^* = \frac{72}{2n+1}$$ - Say there are n=24 farmers. Each would rationally graze $g_i^* = 72/(2*24+1) = 1.47$ goats - Each would get $g_i \sqrt{36 \sum_{j=1}^{n} g_j} = 1.26 c$ - But if they cooperate and each graze only 1 goat, each would get 3.46¢ If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal But this is not a N.E.! A farmer can benefit from cheating (other 23 play at 1): slide 41 #### The tragedy - Rational behaviors lead to sub-optimal solutions! - Maximizing individual welfare not necessarily maximizes social welfare - What went wrong? #### The tragedy - Rational behaviors lead to sub-optimal solutions! - Maximizing individual welfare not necessarily maximizes social welfare - What went wrong? Shouldn't have allowed unlimited free grazing. It's not just the : the use of the atmosphere and the oceans for dumping of pollutants. Mechanism design: designing the rules of a game ## **Auction 1: English auction** - Auctioneer increase the price by d - Until only 1 bidder left - Winner pays the highest failed bid b_m , plus d - Dominant strategy: keep bidding if price below your value v - Simple: no need to consider other bidders' strategies - High communication cost ## Auction 2: first price sealed bid - Each bidder makes a single, sealed bid to the auctioneer - Winner pays the bid amount - If you believe the maximum bid of all other bidders is b_m , you should bid min(v, b_m + ε) - Have to guess other bidders' bids, hard # Auction 3: Vickrey (second price sealed) bid - Each bidder makes a single, sealed bid to the auctioneer - Winner pays the 2nd highest bid - Dominant strategy: bid your true value v - Low communication cost, and simple # Why should I care? (How does this lecture relate to AI?) - in a world where robots interact with each other... - in cyberspace where softbots interact with each other - Google Adword - Uses a variation of Vickrey auction (2nd price auction) ## What you should know - Matrix Normal Form of a game - Strategies in game - What do mixed strategies mean - Strict dominance - Nash equilibrium - Tragedy of the Commons - Basic concept of auctions