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Optimization problems 

• Previously we want a path from start to goal 

 Uninformed search: g(s): Iterative Deepening 

 Informed search: g(s)+h(s): A* 

• Now a different setting: 

 Each state s has a score f(s) that we can compute 

 The goal is to find the state with the highest score, or 

a reasonably high score 

 Do not care about the path 

 This is an optimization problem 

 Enumerating the states is intractable 

 Even previous search algorithms are too expensive 
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Examples 

• N-queen: f(s) = number of conflicting queens 
in state s 

 

 

 

 

 

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context. 
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Examples 

• N-queen: f(s) = number of conflicting queens 
in state s 

 

 

• Traveling salesperson problem (TSP) 

 Visit each city once, return to first city 

 State = order of cities, f(s) = total mileage 

 

 

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context. 
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Examples 

• N-queen: f(s) = number of conflicting queens 
in state s 

 

 

• Traveling salesperson problem (TSP) 

 Visit each city once, return to first city 

 State = order of cities, f(s) = total mileage 

• Boolean satisfiability (e.g., 3-SAT) 

 State = assignment to variables 

 f(s) = # satisfied clauses 

 

 

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context. 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 
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1. HILL CLIMBING 
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Hill climbing 

• Very simple idea:  Start from some state s, 

 Move to a neighbor t with better score.  Repeat. 

• Question: what’s a neighbor? 

 You have to define that! 

 The neighborhood of a state is the set of neighbors 

 Also called ‘move set’  

 Similar to successor function 
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Neighbors: N-queen 

• Example: N-queen (one queen per column).  One 
possibility: 

… 

s 

f(s)=1 

Neighborhood  

of s 
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Neighbors: N-queen 

• Example: N-queen (one queen per column).  One 
possibility: 

 Pick the right-most most-conflicting column; 

 Move the queen in that column vertically to a 

different location. 

… 

s 

f(s)=1 

Neighborhood  

of s 

f=1 

f=2 

tie breaking more promising? 
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Neighbors: TSP 

• state: A-B-C-D-E-F-G-H-A 

• f = length of tour 
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Neighbors: TSP 

• state: A-B-C-D-E-F-G-H-A 

• f = length of tour 

• One possibility: 2-change 

A-B-C-D-E-F-G-H-A 

A-E-D-C-B-F-G-H-A 

flip 
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Neighbors: SAT  

• State: (A=T, B=F, C=T, D=T, E=T) 

• f = number of satisfied clauses 

• Neighbor:  

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 
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Neighbors: SAT  

• State: (A=T, B=F, C=T, D=T, E=T) 

• f = number of satisfied clauses 

• Neighbor: flip the assignment of one variable 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 

(A=F, B=F, C=T, D=T, E=T) 

(A=T, B=T, C=T, D=T, E=T) 

(A=T, B=F, C=F, D=T, E=T) 

(A=T, B=F, C=T, D=F, E=T) 

(A=T, B=F, C=T, D=T, E=F) 
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Hill climbing 

• Question: What’s a neighbor?  

 (vaguely) Problems tend to have structures.  A small 

change produces a neighboring state. 

 The neighborhood must be small enough for 

efficiency 

 Designing the neighborhood is critical.  This is the 

real ingenuity – not the decision to use hill climbing. 

• Question: Pick which neighbor?   

• Question: What if no neighbor is better than the 

current state?  
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Hill climbing 

• Question: What’s a neighbor?  

 (vaguely) Problems tend to have structures.  A small 

change produces a neighboring state. 

 The neighborhood must be small enough for 

efficiency 

 Designing the neighborhood is critical.  This is the 

real ingenuity – not the decision to use hill climbing. 

• Question: Pick which neighbor? The best one (greedy) 

• Question: What if no neighbor is better than the 

current state? Stop. (Doh!) 
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Hill climbing algorithm 

1. Pick initial state s 

2. Pick t in neighbors(s) with the largest f(t) 

3. IF f(t)  f(s) THEN stop, return s 

4. s = t.  GOTO 2. 

• Not the most sophisticated algorithm in the world. 

• Very greedy.   

• Easily stuck.  
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Hill climbing algorithm 

1. Pick initial state s 

2. Pick t in neighbors(s) with the largest f(t) 

3. IF f(t)  f(s) THEN stop, return s 

4. s = t.  GOTO 2. 

• Not the most sophisticated algorithm in the world. 

• Very greedy.   

• Easily stuck.  

 
your enemy:  

local 

optima 
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Local optima in hill climbing 

• Useful conceptual picture: f surface = ‘hills’ in state 
space 

 

 

 

 

 

• But we can’t see the landscape all at once.  Only see 

the neighborhood.  Climb in fog. 

state 

f 
Global optimum, 

where we want to be 

state 

f 
fog 
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Local optima in hill climbing 

• Local optima (there can be many!) 

 

 

 

 

 

• Plateaux 

 

 

 

 

Declare top-
of-the-world? 

state 

f 

state 

f 
Where shall I go? 
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Local optima in hill climbing 

• Local optima (there can be many!) 

 

 

 

 

 

• Plateaus 

 

 

 

 

fog 
Declare top of 

the world? 

state 

f 

state 

f 

fog 

Where shall I go? 

The rest of the lecture is 
about  

Escaping  

local optima 
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Not every local minimum should be escaped 
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Repeated hill climbing with random restarts 

• Very simple modification 

1. When stuck, pick a random new start, run basic 

hill climbing from there. 

2. Repeat this k times. 

3. Return the best of the k local optima. 

 

 
• Can be very effective 

• Should be tried whenever hill climbing is used 
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Variations of hill climbing 

• Question: How do we make hill climbing less greedy? 
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Variations of hill climbing 

• Question: How do we make hill climbing less greedy? 

 Stochastic hill climbing 

• Randomly select among better neighbors 

• The better, the more likely 

• Pros / cons compared with basic hill climbing? 
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Variations of hill climbing 

• Question: How do we make hill climbing less greedy? 

 Stochastic hill climbing 

• Randomly select among better neighbors 

• The better, the more likely 

• Pros / cons compared with basic hill climbing? 

• Question: What if the neighborhood is too large to 
enumerate?  (e.g. N-queen if we need to pick both the 
column and the move within it) 
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Variations of hill climbing 

• Question: How do we make hill climbing less greedy? 

 Stochastic hill climbing 

• Randomly select among better neighbors 

• The better, the more likely 

• Pros / cons compared with basic hill climbing? 

• Question: What if the neighborhood is too large to 
enumerate?  (e.g. N-queen if we need to pick both the 
column and the move within it) 

 First-choice hill climbing 

• Randomly generate neighbors, one at a time 

• If better, take the move 

• Pros / cons compared with basic hill climbing? 



slide 27 

Variations of hill climbing 

• We are still greedy!  Only willing to move upwards. 

• Important observation in life: 

 

 
Sometimes one 
needs to 
temporarily step 
back in order to 
move forward. 

Sometimes one 
needs to move to an 
inferior neighbor in 
order to escape a 
local optimum. 

= 
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Variations of hill climbing 

• Pick a random unsatisfied clause 

• Consider 3 neighbors: flip each variable 

• If any improves f, accept the best 

• If none improves f: 

 50% of the time pick the least bad neighbor 

 50% of the time pick a random neighbor 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 

WALKSAT [Selman] 

This is the best known algorithm for 
satisfying Boolean formulae. 



slide 29 

2. SIMULATED ANNEALING 
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Simulated Annealing 

anneal  

• To subject (glass or metal) to a process of heating 

and slow cooling in order to toughen and reduce 

brittleness. 

 



slide 31 

Simulated Annealing 

1. Pick initial state s 

2. Randomly pick t in neighbors(s)  

3. IF f(t) better THEN accept st.   

4. ELSE /* t is worse than s */ 

5.    accept st with a small probability 

6. GOTO 2 until bored. 
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Simulated Annealing 

1. Pick initial state s 

2. Randomly pick t in neighbors(s)  

3. IF f(t) better THEN accept st.   

4. ELSE /* t is worse than s */ 

5.    accept st with a small probability 

6. GOTO 2 until bored. 

How to choose the small probability? 

 idea 1: p = 0.1 
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Simulated Annealing 

1. Pick initial state s 

2. Randomly pick t in neighbors(s)  

3. IF f(t) better THEN accept st.   

4. ELSE /* t is worse than s */ 

5.    accept st with a small probability 

6. GOTO 2 until bored. 

How to choose the small probability? 

 idea 1: p = 0.1 

 idea 2: p decreases with time 
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Simulated Annealing 

1. Pick initial state s 

2. Randomly pick t in neighbors(s)  

3. IF f(t) better THEN accept st.   

4. ELSE /* t is worse than s */ 

5.    accept st with a small probability 

6. GOTO 2 until bored. 

How to choose the small probability? 

 idea 1: p = 0.1 

 idea 2: p decreases with time 

 idea 3: p decreases with time, also as the ‘badness’        

|f(s)-f(t)| increases 
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Simulated Annealing 

• If f(t) better than f(s), always accept t 

• Otherwise, accept t with probability 

 

 

 

 

Boltzmann 
distribution 

 







 


Temp

tfsf |)()(|
exp
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Simulated Annealing 

• If f(t) better than f(s), always accept t 

• Otherwise, accept t with probability 

 

 

 

• Temp is a temperature parameter that ‘cools’ 

(anneals) over time, e.g. TempTemp*0.9 which 

gives Temp=(T0)
#iteration 

 High temperature: almost always accept any t 

 Low temperature: first-choice hill climbing 

• If the ‘badness’ (formally known as energy difference)  

|f(s)-f(t)| is large, the probability is small. 

Boltzmann 
distribution 

 







 


Temp

tfsf |)()(|
exp
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SA algorithm 

// assuming we want to maximize f() 

current = Initial-State(problem) 

for t = 1 to  do  

 T = Schedule(t) ; // T is the current temperature, which is 

monotonically decreasing with t  

 if T=0 then return current ; //halt when temperature = 0  

 next = Select-Random-Successor-State(current) 

deltaE = f(next) - f(current) ; // If positive, next is better 

than current.  Otherwise, next is worse than current.  

 if deltaE > 0 then current = next ; // always move to a 

better state  

 else current = next with probability p = exp(deltaE / 

T) ; // as T  0, p  0; as deltaE  -, p 0  

end  
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Simulated Annealing issues 

• Cooling scheme important 

• Neighborhood design is the real ingenuity, not the 

decision to use simulated annealing. 

• Not much to say theoretically 

 With infinitely slow cooling rate, finds global 

optimum with probability 1.  

• Proposed by Metropolis in 1953 based on the 

analogy that alloys manage to find a near global 

minimum energy state, when annealed slowly. 

• Easy to implement.   

• Try hill-climbing with random restarts first! 
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GENETIC ALGORITHM 

http://www.genetic-programming.org/ 
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Evolution 

• Survival of the fittest, a.k.a. natural selection 

• Genes encoded as DNA (deoxyribonucleic acid), sequence of 

bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine) 

• The chromosomes from the parents exchange randomly by a 

process called crossover. Therefore, the offspring exhibit some 

traits of the father and some traits of the mother.  

 Requires genetic diversity among the parents to ensure 

sufficiently varied offspring 

• A rarer process called mutation also changes the genes (e.g. 

from cosmic ray).  

 Nonsensical/deadly mutated organisms die. 

 Beneficial mutations produce “stronger” organisms 

 Neither: organisms aren’t improved. 
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Natural selection 

• Individuals compete for resources 

• Individuals with better genes have a larger chance to 

produce offspring, and vice versa 

• After many generations, the population consists of 

lots of genes from the superior individuals, and less 

from the inferior individuals 

• Superiority defined by fitness to the environment 

• Popularized by Darwin 

• Mistake of Lamarck: environment does not force an 

individual to change its genes 
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Genetic algorithm 

• Yet another AI algorithm based on real-world analogy 

• Yet another heuristic stochastic search algorithm 

• Each state s is called an individual.  Often (carefully) 

coded up as a string. 

 

 

 

 

• The score f(s) is called the fitness of s.  Our goal is to 

find the global optimum (fittest) state. 

• At any time we keep a fixed number of states.  They 

are called the population.   Similar to beam search. 

 

(3 2 7 5 2 4 1 1) 
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Individual encoding 

• The “DNA” 

• Satisfiability problem 

(A B C D E) = (T F T T T) 

• TSP 

A  B  C 

A  C  D 

B  D  E 

C   D   E 

A   C  E 
A-E-D-C-B-F-G-H-A 
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Genetic algorithm 

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection. 
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Genetic algorithm 

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection. 

 

Number of non-
attacking pairs 

prob. reproduction  

 fitness 
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Genetic algorithm 

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection. 

 

Number of non-
attacking pairs 

prob. reproduction  

 fitness 

 Next generation 
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Genetic algorithm 

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection. 

 

Number of non-
attacking pairs 

prob. reproduction  

 fitness 

 Next generation 
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Genetic algorithm (one variety) 

1. Let s1, …, sN be the current population 

2. Let pi = f(si) / j f(sj) be the reproduction probability 

3. FOR k = 1; k<N; k+=2 

• parent1 = randomly pick according to p 

• parent2 = randomly pick another 

• randomly select a crossover point, swap strings 

of parents 1, 2 to generate children t[k], t[k+1] 

4. FOR k = 1; k<=N; k++ 

• Randomly mutate each position in t[k] with a 

small probability (mutation rate) 

5. The new generation replaces the old: { s }{ t }.  

Repeat. 
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Proportional selection 

• pi = f(si) / j f(sj) 

• j f(sj) = 5+20+11+8+6=50 

• p1=5/50=10% 
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Variations of genetic algorithm 

• Parents may survive into the next generation 

• Use ranking instead of f(s) in computing the 

reproduction probabilities. 

• Cross over random bits instead of chunks. 

• Optimize over sentences from a programming 

language.  Genetic programming. 

• … 
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Genetic algorithm issues 

• State encoding is the real ingenuity, not the decision 
to use genetic algorithm. 

• Lack of diversity can lead to premature convergence 
and non-optimal solution 

• Not much to say theoretically 

 Cross over (sexual reproduction) much more 

efficient than mutation (asexual reproduction).  

• Easy to implement.   

• Try hill-climbing with random restarts first! 

 


