Advanced Search
Hill climbing, simulated annealing, genetic algorithm

Xiaojin Zhu
jerryzhu@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]
Optimization problems

• Previously we want a path from start to goal
 ▪ Uninformed search: $g(s)$: Iterative Deepening
 ▪ Informed search: $g(s)+h(s)$: A*

• Now a different setting:
 ▪ Each state s has a score $f(s)$ that we can compute
 ▪ The goal is to find the state with the highest score, or a reasonably high score
 ▪ Do not care about the path
 ▪ This is an optimization problem
 ▪ Enumerating the states is intractable
 ▪ Even previous search algorithms are too expensive
Examples

• N-queen: $f(s) =$ number of conflicting queens in state s

Note we want s with the lowest score $f(s)=0$. The techniques are the same. Low or high should be obvious from context.
Examples

• **N-queen:** $f(s) =$ number of conflicting queens in state s

 Note we want s with the lowest score $f(s)=0$. The techniques are the same. Low or high should be obvious from context.

• **Traveling salesperson problem (TSP)**
 - Visit each city once, return to first city
 - State = order of cities, $f(s) =$ total mileage

slide 4
Examples

• N-queen: \(f(s) = \text{number of conflicting queens in state } s \)

Note we want \(s \) with the lowest score \(f(s)=0 \). The techniques are the same. Low or high should be obvious from context.

• Traveling salesperson problem (TSP)
 - Visit each city once, return to first city
 - State = order of cities, \(f(s) = \text{total mileage} \)

• Boolean satisfiability (e.g., 3-SAT)
 - State = assignment to variables
 - \(f(s) = \# \text{ satisfied clauses} \)

\[
\begin{align*}
A \lor \neg B \lor C \\
\neg A \lor C \lor D \\
B \lor D \lor \neg E \\
\neg C \lor \neg D \lor \neg E \\
\neg A \lor \neg C \lor E
\end{align*}
\]
1. HILL CLIMBING
Hill climbing

- Very simple idea: Start from some state s,
 - Move to a neighbor t with better score. Repeat.
- **Question**: what’s a neighbor?
 - You have to define that!
 - The *neighborhood* of a state is the set of neighbors
 - Also called ‘move set’
 - Similar to successor function
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:

\[f(s) = 1 \]
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:
 - Pick the right-most most-conflicting column;
 - Move the queen in that column vertically to a different location.

\[f(s) = 1 \]

Neighborhood of \(s \)

- \(f=1 \)
- \(f=2 \)

\[s \]

- tie breaking
- more promising?
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- \(f = \) length of tour
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- \(f = \) length of tour
- One possibility: 2-change

\[
\begin{align*}
A & - B - C - D - E - F - G - H - A \\
\text{flip} & \\
A & - E - D - C - B - F - G - H - A
\end{align*}
\]
Neighbors: SAT

- State: \((A=T, B=F, C=T, D=T, E=T)\)
- \(f\) = number of satisfied clauses
- Neighbor:

\[
\begin{align*}
A \vee \neg B \vee C \\
\neg A \vee C \vee D \\
B \vee D \vee \neg E \\
\neg C \vee \neg D \vee \neg E \\
\neg A \vee \neg C \vee E
\end{align*}
\]
Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)
• \(f \) = number of satisfied clauses
• Neighbor: flip the assignment of one variable

\[
\begin{align*}
(A & = F, B = F, C = T, D = T, E = T) \\
(A & = T, B = T, C = T, D = T, E = T) \\
(A & = T, B = F, C = F, D = T, E = T) \\
(A & = T, B = F, C = T, D = F, E = T) \\
(A & = T, B = F, C = T, D = T, E = F)
\end{align*}
\]

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E
\end{align*}
\]
Hill climbing

• **Question**: What’s a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

• **Question**: Pick which neighbor?

• **Question**: What if no neighbor is better than the current state?
Hill climbing

• **Question**: What’s a neighbor?
 ▪ (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 ▪ The neighborhood must be small enough for efficiency
 ▪ Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

• **Question**: Pick which neighbor? The best one (greedy)

• **Question**: What if no neighbor is better than the current state? Stop. (Doh!)
Hill climbing algorithm

1. Pick initial state s
2. Pick t in neighbors(s) with the largest $f(t)$
3. IF $f(t) \leq f(s)$ THEN stop, return s
4. $s = t$. GOTO 2.

- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.
Hill climbing algorithm

1. Pick initial state \(s \)
2. Pick \(t \) in neighbors\((s) \) with the largest \(f(t) \)
3. IF \(f(t) \leq f(s) \) THEN stop, return \(s \)
4. \(s = t \). GOTO 2.

- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.

your enemy:

local optima
Local optima in hill climbing

- Useful conceptual picture: \(f \) surface = ‘hills’ in state space

- But we can’t see the landscape all at once. Only see the neighborhood. Climb in fog.
Local optima in hill climbing

- Local optima (there can be many!)

- Plateaux
Local optima in hill climbing

- Local optima (there can be many!)
- Plateaus

Declare the top of the world? Where shall I go?

The rest of the lecture is about

Escaping local optima
Not every local minimum should be escaped
Repeated hill climbing with random restarts

• Very simple modification

1. When stuck, pick a random new start, run basic hill climbing from there.
2. Repeat this k times.
3. Return the best of the k local optima.

• Can be very effective
• Should be tried whenever hill climbing is used
Variations of hill climbing

• **Question:** How do we make hill climbing less greedy?
Variations of hill climbing

- **Question**: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?
Variations of hill climbing

• **Question**: How do we make hill climbing less greedy?
 - **Stochastic hill climbing**
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?

• **Question**: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
Variations of hill climbing

Question: How do we make hill climbing less greedy?

- **Stochastic hill climbing**
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?

Question: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)

- **First-choice hill climbing**
 - Randomly generate neighbors, one at a time
 - If better, take the move
 - Pros / cons compared with basic hill climbing?
Variations of hill climbing

- We are still greedy! Only willing to move upwards.
- Important observation in life:

| Sometimes one needs to temporarily step back in order to move forward. | Sometimes one needs to move to an inferior neighbor in order to escape a local optimum. | = |
Variations of hill climbing

WALKSAT [Selman]

• Pick a random unsatisfied clause
• Consider 3 neighbors: flip each variable
• If any improves f, accept the best
• If none improves f:
 ▪ 50% of the time pick the least bad neighbor
 ▪ 50% of the time pick a random neighbor

This is the best known algorithm for satisfying Boolean formulae.

\[
\begin{align*}
A \lor \neg B \lor C \\
\neg A \lor C \lor D \\
B \lor D \lor \neg E \\
\neg C \lor \neg D \lor \neg E \\
\neg A \lor \neg C \lor E
\end{align*}
\]
2. SIMULATED ANNEALING
Simulated Annealing

anneal

- To subject (glass or metal) to a process of heating and slow cooling in order to toughen and reduce brittleness.
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?

idea 1: $p = 0.1$
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?
idea 1: $p = 0.1$
idea 2: p decreases with time
Simulated Annealing

1. Pick initial state s
2. Randomly pick t in neighbors(s)
3. IF $f(t)$ better THEN accept $s \leftarrow t$.
4. ELSE /* t is worse than s */
5. accept $s \leftarrow t$ with a small probability
6. GOTO 2 until bored.

How to choose the small probability?

idea 1: $p = 0.1$
idea 2: p decreases with time
idea 3: p decreases with time, also as the ‘badness’ $|f(s)-f(t)|$ increases
Simulated Annealing

- If \(f(t) \) better than \(f(s) \), always accept \(t \)
- Otherwise, accept \(t \) with probability

\[
\exp\left(-\frac{|f(s) - f(t)|}{Temp}\right)
\]

Boltzmann distribution
Simulated Annealing

- If $f(t)$ better than $f(s)$, always accept t
- Otherwise, accept t with probability
 \[\exp \left(-\frac{|f(s) - f(t)|}{Temp} \right) \]

- $Temp$ is a temperature parameter that ‘cools’ (anneals) over time, e.g. $Temp \leftarrow Temp \times 0.9$ which gives $Temp = (T_0)^{\text{iteration}}$
 - High temperature: almost always accept any t
 - Low temperature: first-choice hill climbing
- If the ‘badness’ (formally known as energy difference) $|f(s) - f(t)|$ is large, the probability is small.
SA algorithm

// assuming we want to maximize f()
current = Initial-State(problem)

for t = 1 to ∞ do
 T = Schedule(t) ; // T is the current temperature, which is monotonically decreasing with t
 if T=0 then return current ; //halt when temperature = 0
 next = Select-Random-Successor-State(current)
 deltaE = f(next) - f(current) ; // If positive, next is better than current. Otherwise, next is worse than current.
 if deltaE > 0 then current = next ; // always move to a better state
 else current = next with probability p = exp(deltaE / T) ; // as T → 0, p → 0; as deltaE → -∞, p →0
end
Simulated Annealing issues

- Cooling scheme important
- Neighborhood design is the real ingenuity, not the decision to use simulated annealing.
- Not much to say theoretically
 - With infinitely slow cooling rate, finds global optimum with probability 1.
- Proposed by Metropolis in 1953 based on the analogy that alloys manage to find a near global minimum energy state, when annealed slowly.
- Easy to implement.
- Try hill-climbing with random restarts first!
GENETIC ALGORITHM

http://www.genetic-programming.org/
Evolution

• Survival of the fittest, a.k.a. natural selection
• Genes encoded as DNA (deoxyribonucleic acid), sequence of bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)
• The chromosomes from the parents exchange randomly by a process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the mother.
 ▪ Requires genetic diversity among the parents to ensure sufficiently varied offspring
• A rarer process called mutation also changes the genes (e.g. from cosmic ray).
 ▪ Nonsensical/deadly mutated organisms die.
 ▪ Beneficial mutations produce “stronger” organisms
 ▪ Neither: organisms aren’t improved.
Natural selection

- Individuals compete for resources
- Individuals with better genes have a larger chance to produce offspring, and vice versa
- After many generations, the population consists of lots of genes from the superior individuals, and less from the inferior individuals
- Superiority defined by fitness to the environment
- Popularized by Darwin
- Mistake of Lamarck: environment does not force an individual to change its genes
Genetic algorithm

- Yet another AI algorithm based on real-world analogy
- Yet another heuristic stochastic search algorithm
- Each state s is called an individual. Often (carefully) coded up as a string.

```
(3 2 7 5 2 4 1 1)
```

- The score $f(s)$ is called the fitness of s. Our goal is to find the global optimum (fittest) state.
- At any time we keep a fixed number of states. They are called the population. Similar to beam search.
Individual encoding

- The “DNA”
- Satisfiability problem
 \[(A \land B \land C \land D \land E) = (T \land F \land T \land T \land T)\]
- TSP
 A-E-D-C-B-F-G-H-A

\[\begin{align*}
A \lor \neg B \lor C \\
\neg A \lor C \lor D \\
B \lor D \lor \neg E \\
\neg C \lor \neg D \lor \neg E \\
\neg A \lor \neg C \lor E
\end{align*}\]
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

(a)
Initial Population

| 24748552 |
| 32752411 |
| 24415124 |
| 32543213 |
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

<table>
<thead>
<tr>
<th>Initial Population</th>
<th>Fitness Function</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>24748552</td>
<td>24 31%</td>
<td>32752411</td>
</tr>
<tr>
<td>32752411</td>
<td>23 29%</td>
<td>24748552</td>
</tr>
<tr>
<td>24415124</td>
<td>20 26%</td>
<td>32752411</td>
</tr>
<tr>
<td>32543213</td>
<td>11 14%</td>
<td>24415124</td>
</tr>
</tbody>
</table>

Number of non-attacking pairs: prob. reproduction \propto fitness
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

![Diagram of Genetic Algorithm]

- (a) Initial Population
- (b) Fitness Function
- (c) Selection
- (d) Cross-Over

- Number of non-attacking pairs
- prob. reproduction \propto fitness

\rightarrow Next generation
Genetic algorithm

- **Genetic algorithm**: a special way to generate neighbors, using the analogy of **cross-over, mutation, and natural selection**.

![Diagram showing the process of genetic algorithm]

- **Number of non-attacking pairs**
- **Fitness Function**
- **Selection**
- **Cross-Over**
- **Mutation**

→ **Next generation**
Genetic algorithm (one variety)

1. Let s_1, \ldots, s_N be the current population
2. Let $p_i = f(s_i) / \sum_j f(s_j)$ be the reproduction probability
3. FOR $k = 1; k < N; k += 2$
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children $t[k], t[k+1]$
4. FOR $k = 1; k <= N; k++$
 - Randomly mutate each position in $t[k]$ with a small probability (mutation rate)
5. The new generation replaces the old: $\{ s \} \leftarrow \{ t \}$. Repeat.
Proportional selection

- \(p_i = \frac{f(s_i)}{\sum_j f(s_j)} \)
- \(\sum_j f(s_j) = 5 + 20 + 11 + 8 + 6 = 50 \)
- \(p_1 = \frac{5}{50} = 10\% \)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>
Variations of genetic algorithm

- Parents may survive into the next generation
- Use ranking instead of $f(s)$ in computing the reproduction probabilities.
- Cross over random bits instead of chunks.
- Optimize over sentences from a programming language. Genetic programming.
- ...

Genetic algorithm issues

- State encoding is the real ingenuity, not the decision to use genetic algorithm.
- Lack of diversity can lead to premature convergence and non-optimal solution.
- Not much to say theoretically:
 - Cross over (sexual reproduction) much more efficient than mutation (asexual reproduction).
- Easy to implement.
- Try hill-climbing with random restarts first!