
slide 1

Advanced Search
Hill climbing, simulated annealing,

genetic algorithm

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

slide 2

Optimization problems

• Previously we want a path from start to goal

 Uninformed search: g(s): Iterative Deepening

 Informed search: g(s)+h(s): A*

• Now a different setting:

 Each state s has a score f(s) that we can compute

 The goal is to find the state with the highest score, or

a reasonably high score

 Do not care about the path

 This is an optimization problem

 Enumerating the states is intractable

 Even previous search algorithms are too expensive

slide 3

Examples

• N-queen: f(s) = number of conflicting queens
in state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 4

Examples

• N-queen: f(s) = number of conflicting queens
in state s

• Traveling salesperson problem (TSP)

 Visit each city once, return to first city

 State = order of cities, f(s) = total mileage

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 5

Examples

• N-queen: f(s) = number of conflicting queens
in state s

• Traveling salesperson problem (TSP)

 Visit each city once, return to first city

 State = order of cities, f(s) = total mileage

• Boolean satisfiability (e.g., 3-SAT)

 State = assignment to variables

 f(s) = # satisfied clauses

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

A B C

A C D

B D E

C D E

A C E

slide 6

1. HILL CLIMBING

slide 7

Hill climbing

• Very simple idea: Start from some state s,

 Move to a neighbor t with better score. Repeat.

• Question: what’s a neighbor?

 You have to define that!

 The neighborhood of a state is the set of neighbors

 Also called ‘move set’

 Similar to successor function

slide 8

Neighbors: N-queen

• Example: N-queen (one queen per column). One
possibility:

…

s

f(s)=1

Neighborhood

of s

slide 9

Neighbors: N-queen

• Example: N-queen (one queen per column). One
possibility:

 Pick the right-most most-conflicting column;

 Move the queen in that column vertically to a

different location.

…

s

f(s)=1

Neighborhood

of s

f=1

f=2

tie breaking more promising?

slide 10

Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour

slide 11

Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour

• One possibility: 2-change

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

slide 12

Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor:

A B C

A C D

B D E

C D E

A C E

slide 13

Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A B C

A C D

B D E

C D E

A C E

(A=F, B=F, C=T, D=T, E=T)

(A=T, B=T, C=T, D=T, E=T)

(A=T, B=F, C=F, D=T, E=T)

(A=T, B=F, C=T, D=F, E=T)

(A=T, B=F, C=T, D=T, E=F)

slide 14

Hill climbing

• Question: What’s a neighbor?

 (vaguely) Problems tend to have structures. A small

change produces a neighboring state.

 The neighborhood must be small enough for

efficiency

 Designing the neighborhood is critical. This is the

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor?

• Question: What if no neighbor is better than the

current state?

slide 15

Hill climbing

• Question: What’s a neighbor?

 (vaguely) Problems tend to have structures. A small

change produces a neighboring state.

 The neighborhood must be small enough for

efficiency

 Designing the neighborhood is critical. This is the

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor? The best one (greedy)

• Question: What if no neighbor is better than the

current state? Stop. (Doh!)

slide 16

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t) f(s) THEN stop, return s

4. s = t. GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.

• Easily stuck.

slide 17

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t) f(s) THEN stop, return s

4. s = t. GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.

• Easily stuck.

your enemy:

local

optima

slide 18

Local optima in hill climbing

• Useful conceptual picture: f surface = ‘hills’ in state
space

• But we can’t see the landscape all at once. Only see

the neighborhood. Climb in fog.

state

f
Global optimum,

where we want to be

state

f
fog

slide 19

Local optima in hill climbing

• Local optima (there can be many!)

• Plateaux

Declare top-
of-the-world?

state

f

state

f
Where shall I go?

slide 20

Local optima in hill climbing

• Local optima (there can be many!)

• Plateaus

fog
Declare top of

the world?

state

f

state

f

fog

Where shall I go?

The rest of the lecture is
about

Escaping

local optima

slide 21

Not every local minimum should be escaped

slide 22

Repeated hill climbing with random restarts

• Very simple modification

1. When stuck, pick a random new start, run basic

hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

• Can be very effective

• Should be tried whenever hill climbing is used

slide 23

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

slide 24

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

 Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

slide 25

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

 Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

• Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

slide 26

Variations of hill climbing

• Question: How do we make hill climbing less greedy?

 Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?

• Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

 First-choice hill climbing

• Randomly generate neighbors, one at a time

• If better, take the move

• Pros / cons compared with basic hill climbing?

slide 27

Variations of hill climbing

• We are still greedy! Only willing to move upwards.

• Important observation in life:

Sometimes one
needs to
temporarily step
back in order to
move forward.

Sometimes one
needs to move to an
inferior neighbor in
order to escape a
local optimum.

=

slide 28

Variations of hill climbing

• Pick a random unsatisfied clause

• Consider 3 neighbors: flip each variable

• If any improves f, accept the best

• If none improves f:

 50% of the time pick the least bad neighbor

 50% of the time pick a random neighbor

A B C

A C D

B D E

C D E

A C E

WALKSAT [Selman]

This is the best known algorithm for
satisfying Boolean formulae.

slide 29

2. SIMULATED ANNEALING

slide 30

Simulated Annealing

anneal

• To subject (glass or metal) to a process of heating

and slow cooling in order to toughen and reduce

brittleness.

slide 31

Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s)

3. IF f(t) better THEN accept st.

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

slide 32

Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s)

3. IF f(t) better THEN accept st.

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

 idea 1: p = 0.1

slide 33

Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s)

3. IF f(t) better THEN accept st.

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

 idea 1: p = 0.1

 idea 2: p decreases with time

slide 34

Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s)

3. IF f(t) better THEN accept st.

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

 idea 1: p = 0.1

 idea 2: p decreases with time

 idea 3: p decreases with time, also as the ‘badness’

|f(s)-f(t)| increases

slide 35

Simulated Annealing

• If f(t) better than f(s), always accept t

• Otherwise, accept t with probability

Boltzmann
distribution

Temp

tfsf |)()(|
exp

slide 36

Simulated Annealing

• If f(t) better than f(s), always accept t

• Otherwise, accept t with probability

• Temp is a temperature parameter that ‘cools’

(anneals) over time, e.g. TempTemp*0.9 which

gives Temp=(T0)
#iteration

 High temperature: almost always accept any t

 Low temperature: first-choice hill climbing

• If the ‘badness’ (formally known as energy difference)

|f(s)-f(t)| is large, the probability is small.

Boltzmann
distribution

Temp

tfsf |)()(|
exp

slide 37

SA algorithm

// assuming we want to maximize f()

current = Initial-State(problem)

for t = 1 to do

 T = Schedule(t) ; // T is the current temperature, which is

monotonically decreasing with t

 if T=0 then return current ; //halt when temperature = 0

 next = Select-Random-Successor-State(current)

deltaE = f(next) - f(current) ; // If positive, next is better

than current. Otherwise, next is worse than current.

 if deltaE > 0 then current = next ; // always move to a

better state

 else current = next with probability p = exp(deltaE /

T) ; // as T 0, p 0; as deltaE -, p 0

end

slide 38

Simulated Annealing issues

• Cooling scheme important

• Neighborhood design is the real ingenuity, not the

decision to use simulated annealing.

• Not much to say theoretically

 With infinitely slow cooling rate, finds global

optimum with probability 1.

• Proposed by Metropolis in 1953 based on the

analogy that alloys manage to find a near global

minimum energy state, when annealed slowly.

• Easy to implement.

• Try hill-climbing with random restarts first!

slide 39

GENETIC ALGORITHM

http://www.genetic-programming.org/

slide 40

Evolution

• Survival of the fittest, a.k.a. natural selection

• Genes encoded as DNA (deoxyribonucleic acid), sequence of

bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)

• The chromosomes from the parents exchange randomly by a

process called crossover. Therefore, the offspring exhibit some

traits of the father and some traits of the mother.

 Requires genetic diversity among the parents to ensure

sufficiently varied offspring

• A rarer process called mutation also changes the genes (e.g.

from cosmic ray).

 Nonsensical/deadly mutated organisms die.

 Beneficial mutations produce “stronger” organisms

 Neither: organisms aren’t improved.

slide 41

Natural selection

• Individuals compete for resources

• Individuals with better genes have a larger chance to

produce offspring, and vice versa

• After many generations, the population consists of

lots of genes from the superior individuals, and less

from the inferior individuals

• Superiority defined by fitness to the environment

• Popularized by Darwin

• Mistake of Lamarck: environment does not force an

individual to change its genes

slide 42

Genetic algorithm

• Yet another AI algorithm based on real-world analogy

• Yet another heuristic stochastic search algorithm

• Each state s is called an individual. Often (carefully)

coded up as a string.

• The score f(s) is called the fitness of s. Our goal is to

find the global optimum (fittest) state.

• At any time we keep a fixed number of states. They

are called the population. Similar to beam search.

(3 2 7 5 2 4 1 1)

slide 43

Individual encoding

• The “DNA”

• Satisfiability problem

(A B C D E) = (T F T T T)

• TSP

A B C

A C D

B D E

C D E

A C E
A-E-D-C-B-F-G-H-A

slide 44

Genetic algorithm

• Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

slide 45

Genetic algorithm

• Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

Number of non-
attacking pairs

prob. reproduction

 fitness

slide 46

Genetic algorithm

• Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

Number of non-
attacking pairs

prob. reproduction

 fitness

 Next generation

slide 47

Genetic algorithm

• Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

Number of non-
attacking pairs

prob. reproduction

 fitness

 Next generation

slide 48

Genetic algorithm (one variety)

1. Let s1, …, sN be the current population

2. Let pi = f(si) / j f(sj) be the reproduction probability

3. FOR k = 1; k<N; k+=2

• parent1 = randomly pick according to p

• parent2 = randomly pick another

• randomly select a crossover point, swap strings

of parents 1, 2 to generate children t[k], t[k+1]

4. FOR k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a

small probability (mutation rate)

5. The new generation replaces the old: { s }{ t }.

Repeat.

slide 49

Proportional selection

• pi = f(si) / j f(sj)

• j f(sj) = 5+20+11+8+6=50

• p1=5/50=10%

slide 50

Variations of genetic algorithm

• Parents may survive into the next generation

• Use ranking instead of f(s) in computing the

reproduction probabilities.

• Cross over random bits instead of chunks.

• Optimize over sentences from a programming

language. Genetic programming.

• …

slide 51

Genetic algorithm issues

• State encoding is the real ingenuity, not the decision
to use genetic algorithm.

• Lack of diversity can lead to premature convergence
and non-optimal solution

• Not much to say theoretically

 Cross over (sexual reproduction) much more

efficient than mutation (asexual reproduction).

• Easy to implement.

• Try hill-climbing with random restarts first!

