Introduction to Machine Learning

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Read Chapter 1 of this book:

Xiaojin Zhu and Andrew B. Goldberg.

Introduction to Semi-Supervised Learning.

http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006

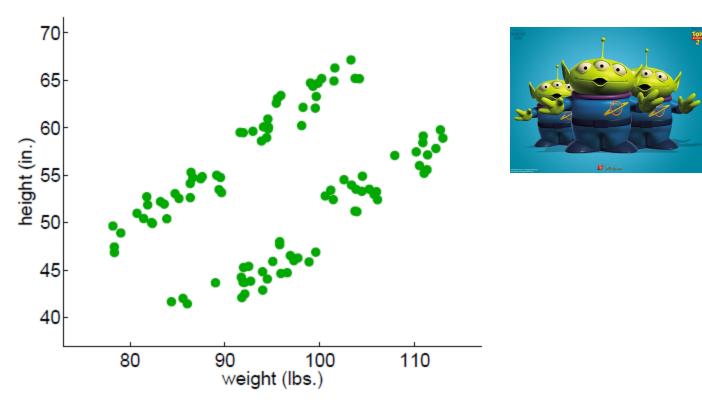
Morgan & Claypool Publishers, 2009. (download from UW computers)

Outline

- Representing "things"
 - Feature vector
 - Training sample
- Unsupervised learning
 - Clustering
- Supervised learning
 - Classification
 - Regression

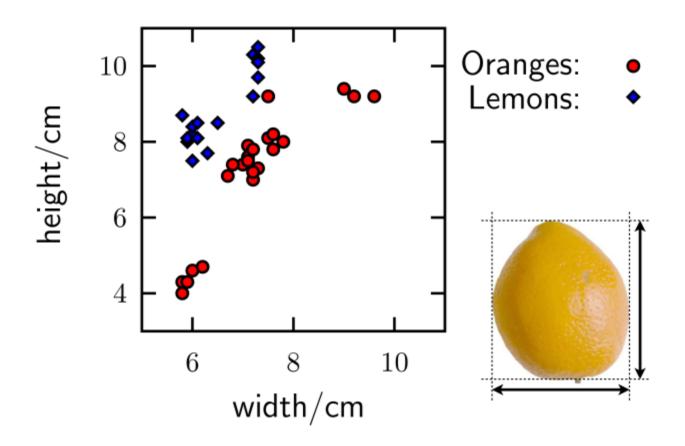
Little green men

The weight and height of 100 little green men



What can you learn from this data?

A less alien example



From Iain Murray http://homepages.inf.ed.ac.uk/imurray2/

Representing "things" in machine learning

- An instance x represents a specific object ("thing")
- x often represented by a D-dimensional feature vector $x = (x_1, \dots, x_D) \in R^D$
- Each dimension is called a feature. Continuous or discrete.
- x is a dot in the D-dimensional feature space
- Abstraction of object. Ignores any other aspects (two men having the same weight, height will be identical)

Feature representation example

- Text document
 - Vocabulary of size D (~100,000): "aardvark ... zulu"
- "bag of word": counts of each vocabulary entry
 - To marry my true love → (3531:1 13788:1 19676:1)
 - I wish that I find my soulmate this year → (3819:1 13448:1 19450:1 20514:1)
- Often remove stopwords: the, of, at, in, ...
- Special "out-of-vocabulary" (OOV) entry catches all unknown words

More feature representations

- Image
 - Color histogram
- Software
 - Execution profile: the number of times each line is executed
- Bank account
 - Credit rating, balance, #deposits in last day, week, month, year, #withdrawals ...
- You and me
 - Medical test1, test2, test3, ...

Training sample

- A training sample is a collection of instances $\mathbf{x}_1, \ldots, \mathbf{x}_n$, which is the input to the learning process.
- $\bullet \quad \mathbf{x}_i = (\mathbf{x}_{i1}, \ldots, \mathbf{x}_{iD})$
- Assume these instances are sampled independently from an unknown (population) distribution P(x)
- We denote this by $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} P(x)$, where i.i.d. stands for independent and identically distributed.

Training sample

- A training sample is the "experience" given to a learning algorithm
- What the algorithm can learn from it varies
- We introduce two basic learning paradigms:
 - unsupervised learning
 - supervised learning

No teacher.

UNSUPERVISED LEARNING

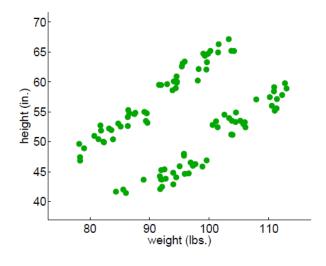
Unsupervised learning

- Training sample $\mathbf{x}_1, \ldots, \mathbf{x}_n$, that's it
- No teacher providing supervision as to how individual instances should be handled
- Common tasks:
 - clustering, separate the *n* instances into groups
 - novelty detection, find instances that are very different from the rest
 - dimensionality reduction, represent each instance with a lower dimensional feature vector while maintaining key characteristics of the training samples

Clustering

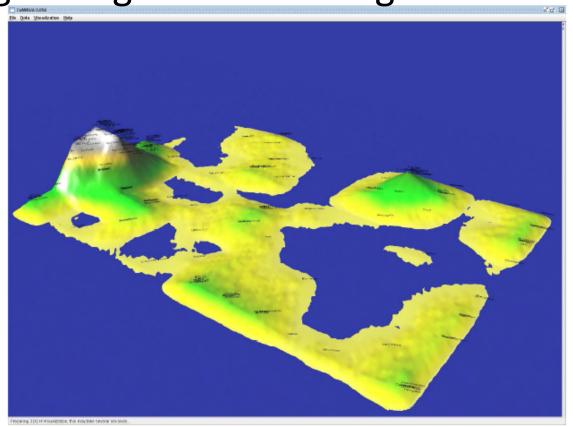
- Group training sample into k clusters
- How many clusters do you see?
- Many clustering algorithms
 - HAC
 - k-means

— ...



Example 1: music island

Organizing and visualizing music collection



CoMIRVA http://www.cp.jku.at/comirva/

Example 2: Google News

 Web
 Images
 Groups
 News
 Froogle
 Local New!
 more »
 Advanced News Search

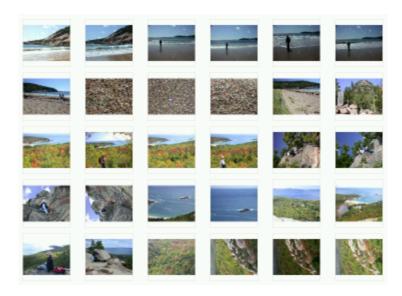
 Search News
 Search the Web

Search and browse 4.500 news sources updated continuously.

Standard News | Text Vers >Top Stories Go Top Stories U.S. Auto-generated 8 minutes ag World Looting Breaks Out in Mexico After Wilma Customize this page New! U.S. ABC News - 1 hour ago Business People with thier bikes pass near a store destroyed by Hurricane Isuzu Plans to Purchase GM's Australian Truck Unit Wilma in Cancun, Mexico, Sunday, Oct. 23, 2005. Hurricane Wilma. Peninsula On-(Update1) Sci/Tech wobbled toward Mexico's Cancun resort, and goes to Florida. line Bloomber all 33 related : Sports Mexicans and stranded ... Apple faces lawsuit over alleged defective iPod **Entertainment** Hurricane Wilma Gains Speed, to Hit Florida Tomorrow (Update4) Bloomberg Reuter - all 29 related ». Wilma steams towards US Brisbane Courier Mail Health Local6.com - CTV.ca - New York Times - Miami Heral - all 5.476 related » Bad times end as Gordon gets back to Victory Lane San Jose Mercury News all 343 related » Make: Podsednik blast lifts White Sox Rapper Shot in Alleged Carjacking in DC Google News MLB.com - 18 minutes ago Washington Post- all 104 related » Your Homepage By Scott Merkin / MLB.com. CHICAGO -- Scott Podsednik's walk-off Taiwanese biras didn't pass flu: COA home run against Houston closer Brad Lidge gave the White Sox a Buffalo News Taipei Times - all 974 related » Mews Alerts 7-6 victory and a 2-0 lead in their search for the franchise's first World Series title since 1917. ... Astros, White Sox Tied After 4 Innings San Francisco Chronicle In The News RSS | Atom Dramatic win gives Sox a 2-0 lead in Series San Jose Mercury News About Feeds Bellview Airlines Yucatan Peninsula MSNBC - Guardian Unlimited - Houston Chronicle - CNN - all 3.304 related Lech Kaczynski Marco Melandri

Example 3: your digital photo collection

- You probably have >1000 digital photos, 'neatly' stored in various folders...
- After this class you'll be about to organize them better
 - Simplest idea: cluster them using image creation time (EXIF tag)
 - More complicated: extract image features



Two most frequently used methods

- Many clustering algorithms. We'll look at the two most frequently used ones:
 - Hierarchical clustering
 Where we build a binary tree over the dataset
 - K-means clustering
 - Where we specify the desired number of clusters, and use an iterative algorithm to find them

- Very popular clustering algorithm
- Input:
 - A dataset x_1 , ..., x_n , each point is a numerical feature vector
 - Does NOT need the number of clusters

Hierarchical Agglomerative Clustering

Input: a training sample $\{\mathbf{x}_i\}_{i=1}^n$; a distance function d().

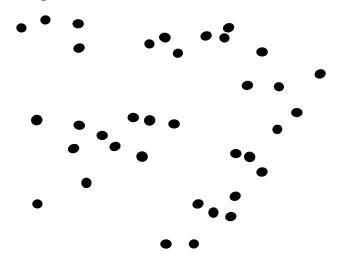
- 1. Initially, place each instance in its own cluster (called a singleton cluster).
- 2. while (number of clusters > 1) do:
- 3. Find the closest cluster pair A, B, i.e., they minimize d(A, B).
- 4. Merge A, B to form a new cluster.

Output: a binary tree showing how clusters are gradually merged from singletons to a root cluster, which contains the whole training sample.

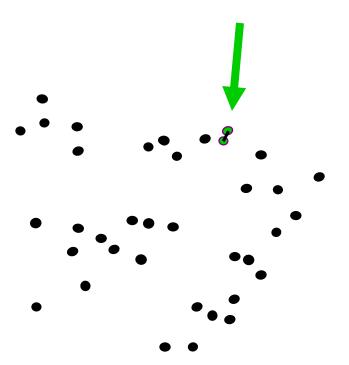
Euclidean (L2) distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\| = \sqrt{\sum_{s=1}^{D} (x_{is} - x_{js})^2}.$$

Initially every point is in its own cluster



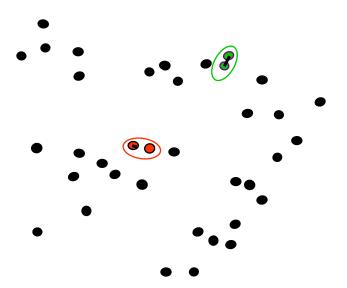
Find the pair of clusters that are the closest



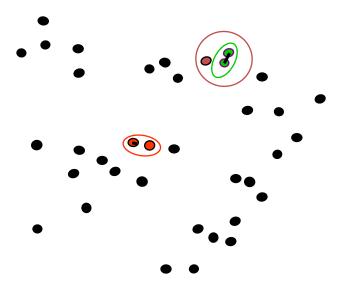
Merge the two into a single cluster

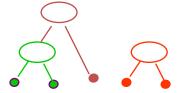


Repeat...

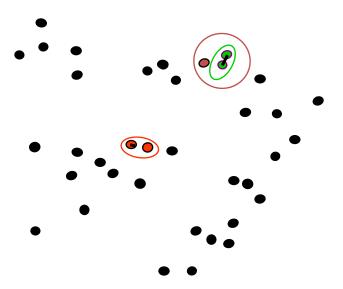


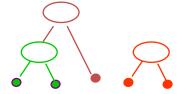
Repeat...





- Repeat...until the whole dataset is one giant cluster
- You get a binary tree (not shown here)





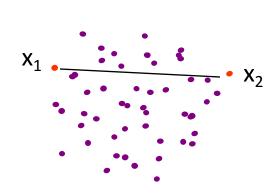
 How do you measure the closeness between two clusters?

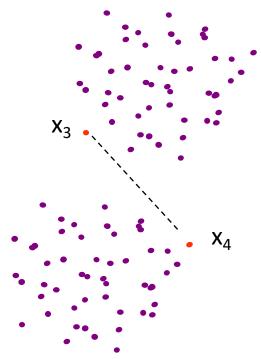
- How do you measure the closeness between two clusters? At least three ways:
 - Single-linkage: the shortest distance from any member of one cluster to any member of the other cluster. Formula?
 - Complete-linkage: the greatest distance from any member of one cluster to any member of the other cluster
 - Average-linkage: you guess it!

- The binary tree you get is often called a dendrogram, or taxonomy, or a hierarchy of data points
- The tree can be cut at various levels to produce different numbers of clusters: if you want k clusters, just cut the (k-1) longest links
- Sometimes the hierarchy itself is more interesting than the clusters
- However there is not much theoretical justification to it...

Advance topics

- Constrained clustering: What if an expert looks at the data, and tells you
 - "I think x1 and x2 must be in the same cluster" (must-links)
 - "I think x3 and x4 cannot be in the same cluster" (cannot-links)





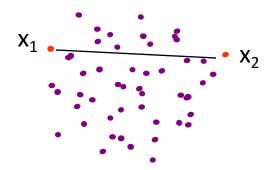
Advance topics

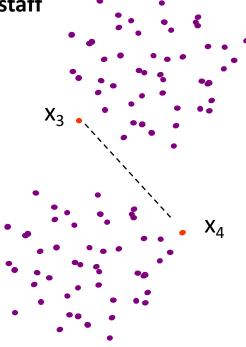
- This is clustering with supervised information (must-links and cannot-links).
 We can
 - Change the clustering algorithm to fit constraints
 - Or , learn a better distance measure
- See the book

Constrained Clustering: Advances in Algorithms, Theory, and Applications

Editors: Sugato Basu, Ian Davidson, and Kiri Wagstaff

http://www.wkiri.com/conscluster/





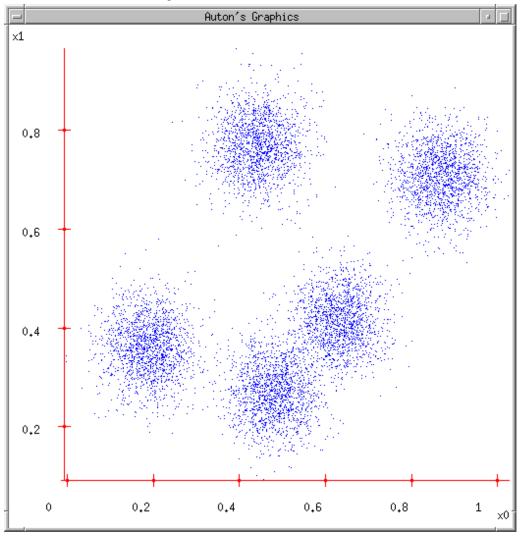
Very popular clustering method

Don't confuse it with the k-NN classifier

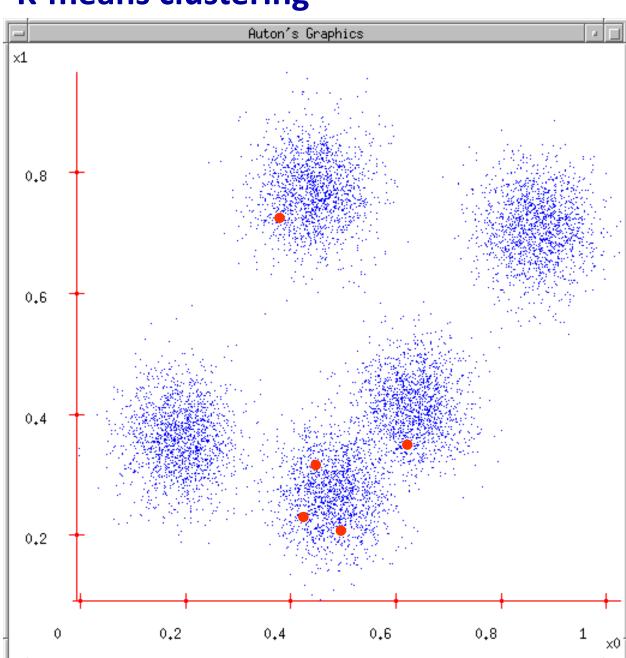
Input:

- A dataset x_1 , ..., x_n , each point is a numerical feature vector
- Assume the number of clusters, k, is given

• The dataset. Input k=5

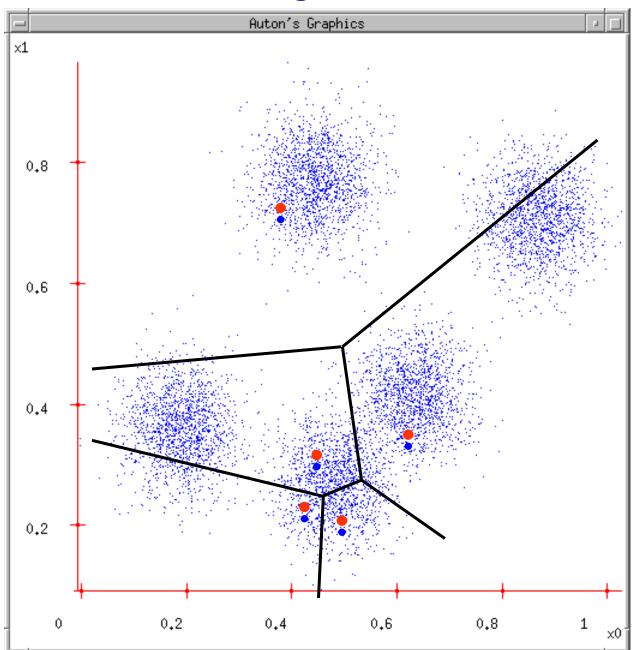


Randomly picking 5 positions as initial cluster centers (not necessarily a data point)

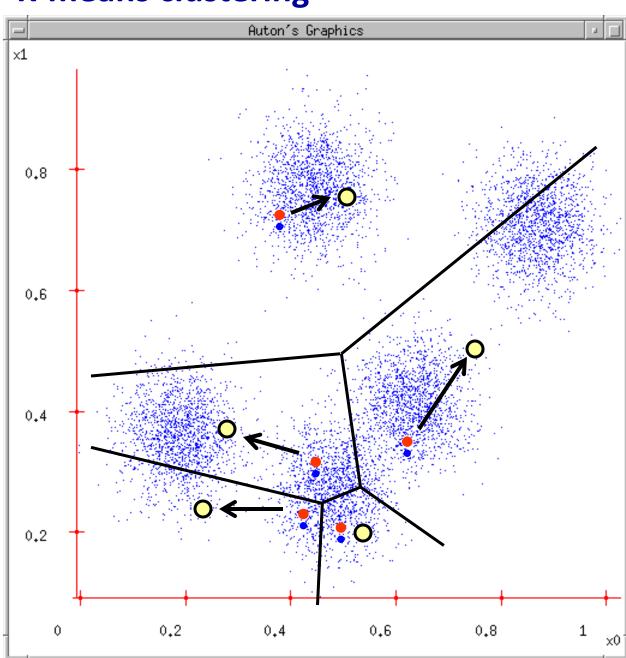


Each point finds which cluster center it is closest to (very much like 1NN). The point belongs to that cluster.

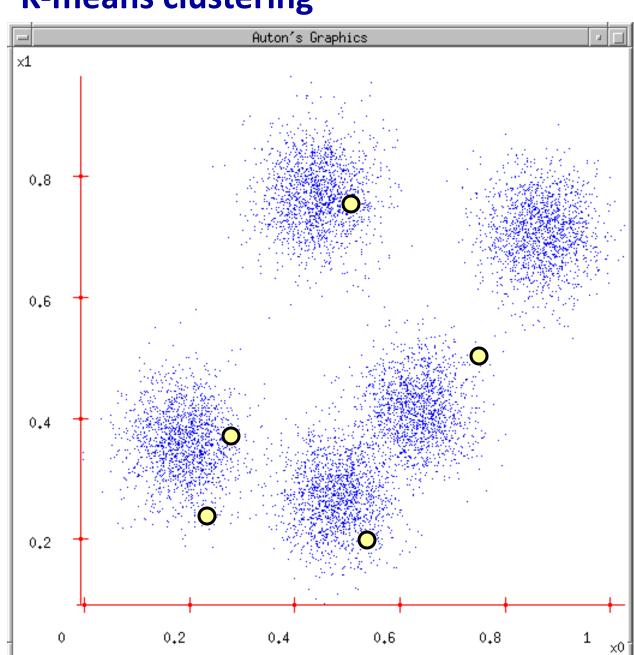
K-means clustering



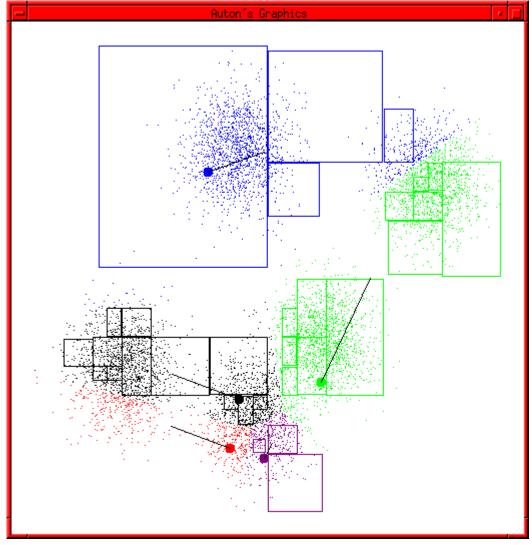
 Each cluster computes its new centroid, based on which points belong to it

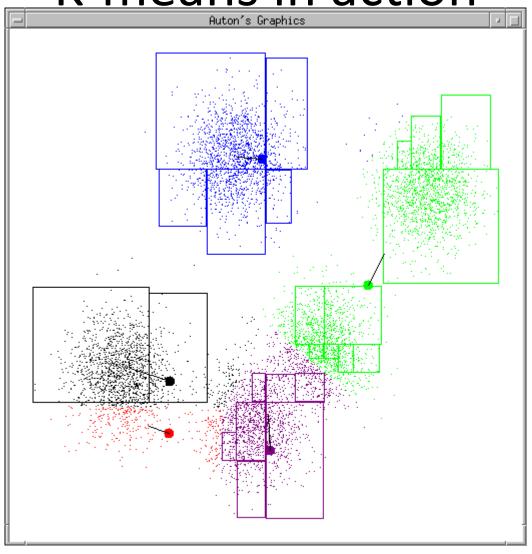


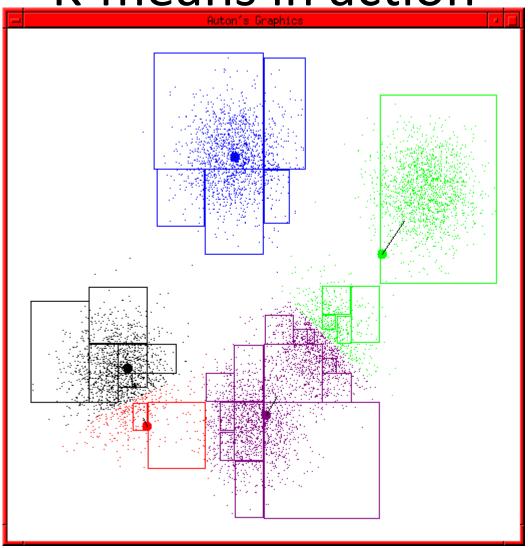
- Each cluster computes its new centroid, based on which points belong to it
- And repeat until convergence (cluster centers no longer move)...

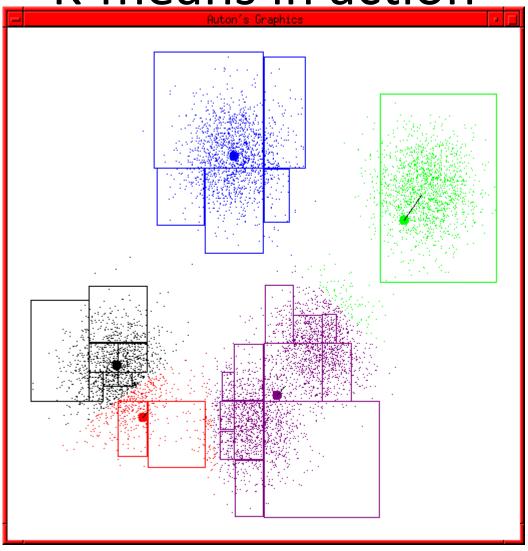


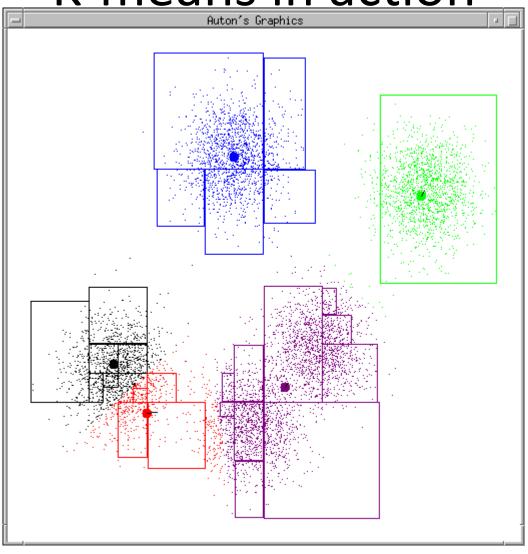
K-means: initial cluster centers

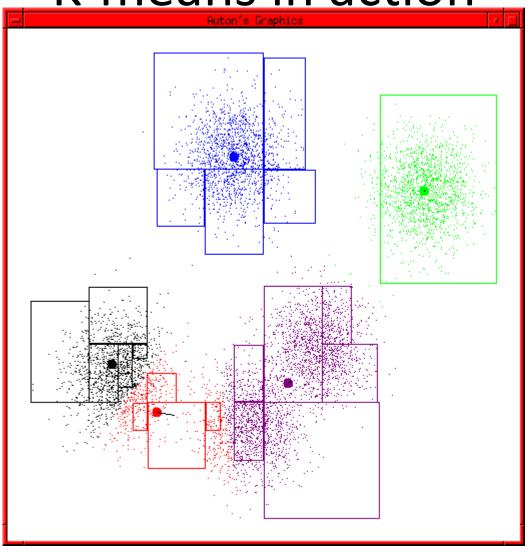


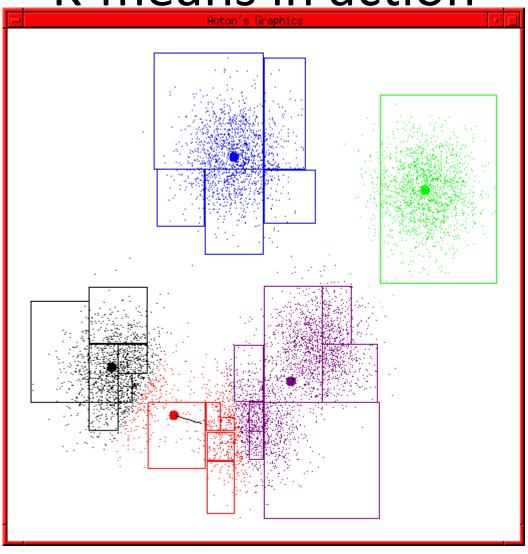


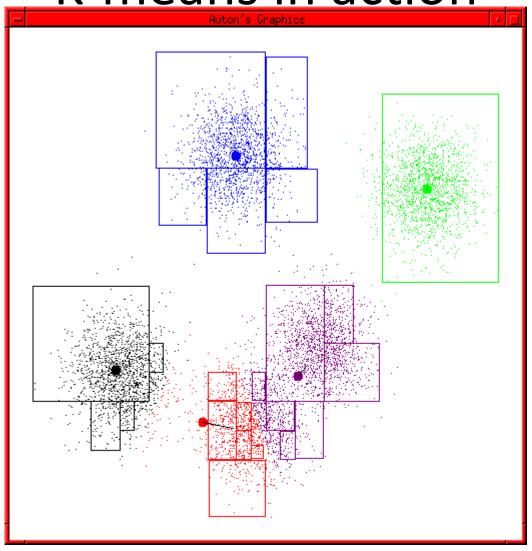


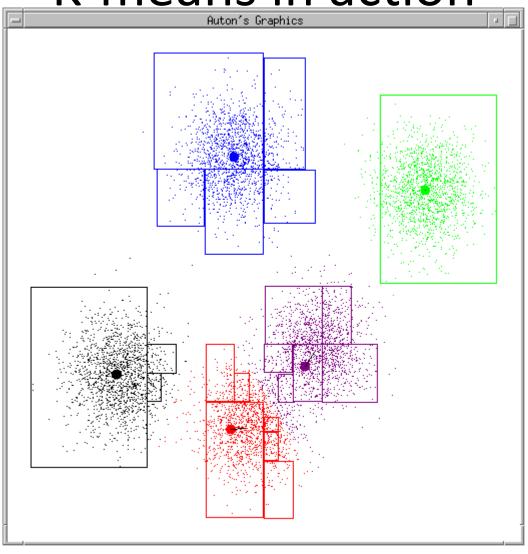




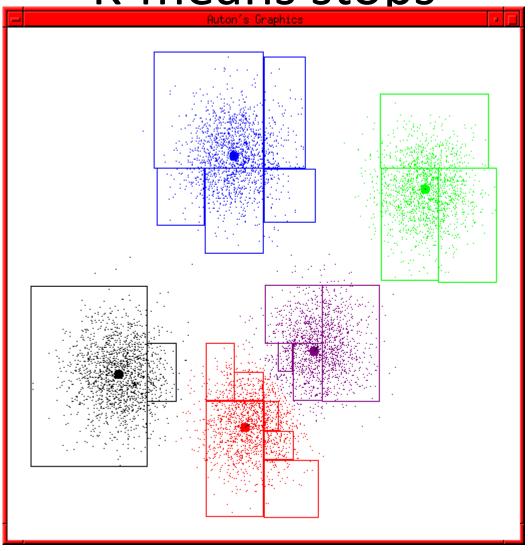








K-means stops



K-means algorithm

- Input: $x_1...x_n$, k
- **Step 1**: select k cluster centers $c_1 \dots c_k$
- **Step 2**: for each point x, determine its cluster: find the closest center in Euclidean space
- Step 3: update all cluster centers as the centroids

$$c_i = \sum_{\{x \text{ in cluster } i\}} x / SizeOf(cluster i)$$

 Repeat step 2, 3 until cluster centers no longer change

Questions on k-means

- What is k-means trying to optimize?
- Will k-means stop (converge)?
- Will it find a global or local optimum?
- How to pick starting cluster centers?
- How many clusters should we use?

Distortion

- Suppose for a point x, you replace its coordinates by the cluster center $c_{(x)}$ it belongs to (lossy compression)
- How far are you off? Measure it with squared Euclidean distance: x(d) is the d-th feature dimension, y(x) is the cluster ID that x is in.

$$\Sigma_{d=1...D} [x(d) - c_{v(x)}(d)]^2$$

 This is the distortion of a single point x. For the whole dataset, the distortion is

$$\Sigma_{x} \Sigma_{d=1...D} [x(d) - c_{y(x)}(d)]^{2}$$

The minimization problem

$$\min \Sigma_{x} \Sigma_{d=1...D} [x(d) - c_{y(x)}(d)]^{2}$$

```
y(x_1)...y(x_n)

c_1(1)...c_1(D)

...

c_k(1)...c_k(D)
```

 For fixed cluster centers, if all you can do is to assign x to some cluster, then assigning x to its closest cluster center y(x) minimizes distortion

$$\Sigma_{d=1...D} [x(d) - c_{y(x)}(d)]^2$$

Why? Try any other cluster z≠y(x)

$$\sum_{d=1...D} [x(d) - c_z(d)]^2$$

- If the assignment of x to clusters are fixed, and all you can do is to change the location of cluster centers
- Then this is a continuous optimization problem!

$$\sum_{x} \sum_{d=1...D} [x(d) - c_{y(x)}(d)]^2$$

Variables?

- If the assignment of x to clusters are fixed, and all you can do is to change the location of cluster centers
- Then this is an optimization problem!
- Variables? $c_1(1), ..., c_1(D), ..., c_k(1), ..., c_k(D)$

min
$$\sum_{x} \sum_{d=1...D} [x(d) - c_{y(x)}(d)]^2$$

= min
$$\sum_{z=1..k} \sum_{y(x)=z} \sum_{d=1...D} [x(d) - c_z(d)]^2$$

• Unconstrained. What do we do?

- If the assignment of x to clusters are fixed, and all you can do is to change the location of cluster centers
- Then this is an optimization problem!
- Variables? c₁(1), ..., c₁(D), ..., c_k(1), ..., c_k(D)

min
$$\sum_{x} \sum_{d=1...D} [x(d) - c_{y(x)}(d)]^2$$

= min
$$\sum_{z=1..k} \sum_{y(x)=z} \sum_{d=1...D} [x(d) - c_z(d)]^2$$

Unconstrained.

$$\partial/\partial c_z(d) \sum_{z=1..k} \sum_{y(x)=z} \sum_{d=1...D} [x(d) - c_z(d)]^2 = 0$$

The solution is

$$c_z(d) = \sum_{y(x)=z} x(d) / |n_z|$$

- The d-th dimension of cluster z is the average of the d-th dimension of points assigned to cluster z
- Or, update cluster z to be the centroid of its points. This is exact what we did
 in step 2.

Repeat (step1, step2)

Both step1 and step2 minimizes the distortion

$$\sum_{x} \sum_{d=1...D} [x(d) - c_{y(x)}(d)]^2$$

- Step1 changes x assignments y(x)
- Step2 changes c(d) the cluster centers
- However there is no guarantee the distortion is minimized over all... need to repeat
- This is hill climbing (coordinate descent)
- Will it stop?

Repeat (stan1 stan2)

- Both step1 and step2
- There are finite number of points

- Step1 changes x assig
- Finite ways of assigning points to clusters
- Step2 changes c(d) th
- In step1, an assignment that reduces distortion has to be a new assignment not used before
- However there is no g repeat
- Step1 will terminate
- This is hill climbing (co
- So will step 2

Will it stop?

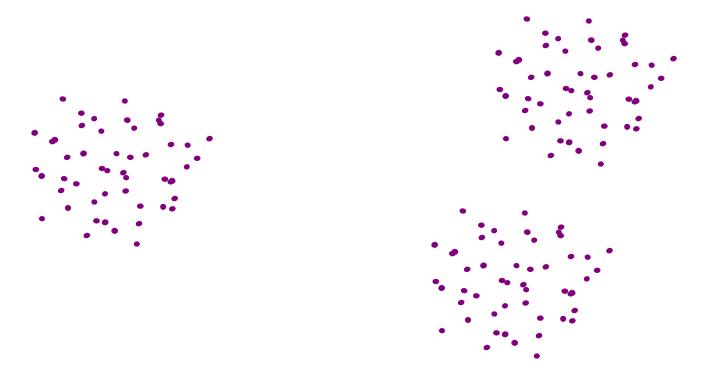
So k-means terminates

What optimum does K-means find

- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example?

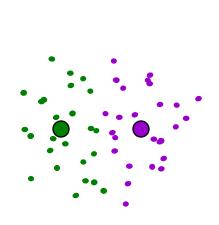
What optimum does K-means find

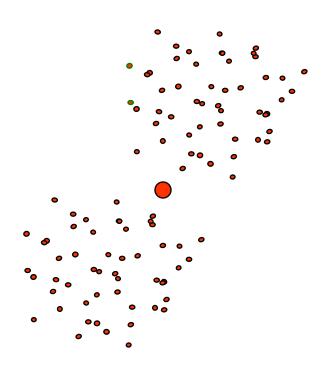
- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example? (Hint: try k=3)



What optimum does K-means find

- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example? (Hint: try k=3)





Picking starting cluster centers

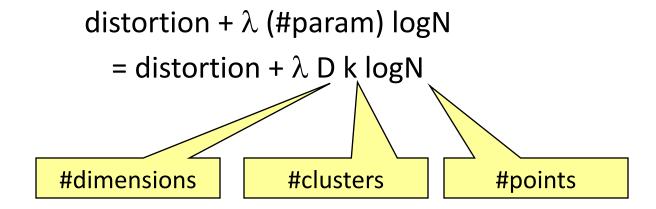
- Which local optimum k-means goes to is determined solely by the starting cluster centers
 - Be careful how to pick the starting cluster centers.
 Many ideas. Here's one neat trick:
 - 1. Pick a random point x1 from dataset
 - 2. Find the point x2 farthest from x1 in the dataset
 - 3. Find x3 farthest from the closer of x1, x2
 - 4. ... pick k points like this, use them as starting cluster centers for the k clusters
 - Run k-means multiple times with different starting cluster centers (hill climbing with random restarts)

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion?

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion? k =
 N, distortion = 0
- Need to regularize. A common approach is to minimize the Schwarz criterion

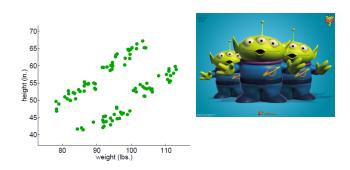


Beyond k-means

- In k-means, each point belongs to one cluster
- What if one point can belong to more than one cluster?
- What if the degree of belonging depends on the distance to the centers?
- This will lead to the famous EM algorithm, or expectation-maximization
- K-means is a discrete version of EM algorithm with Gaussian mixture models with infinitely small covariances... (not covered in this class)

Teacher shows labels

SUPERVISED LEARNING



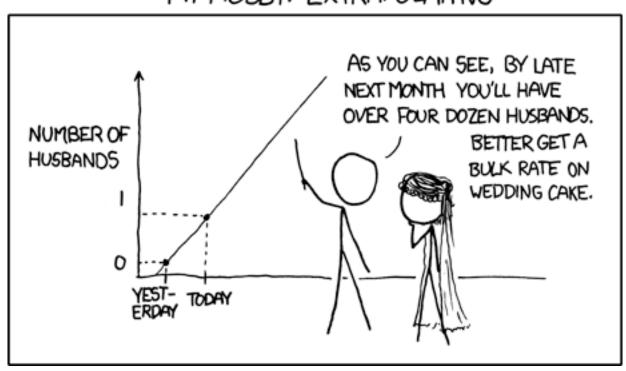
Label

- Little green men:
 - Predict gender (M,F) from weight, height?
 - Predict adult, juvenile from weight, height?
- A label y is the desired prediction on an instance
 x
- Discrete label: classes
 - M,F; A,J: often encode as 0,1 or -1,1
 - Multiple classes: 1,2,3,...,C. No class order implied.
- Continuous label: e.g., blood pressure

Supervised learning

- A labeled training sample is a collection of instances $(\mathbf{x}_1, \mathbf{y}_1) \dots (\mathbf{x}_n, \mathbf{y}_n)$
- Assume $(x_i, y_i)^{i.i.d.} P(x,y)$. Again, P(x,y) is unknown
- Supervised learning learns a function $f: X \to Y$ in some function family F, such that f(x) predicts the true label y on future data x, where $(x,y) \sim P(x,y)$
 - Classification: if y discrete
 - Regression: if y continuous

MY HOBBY: EXTRAPOLATING



Evaluation

- Training set error

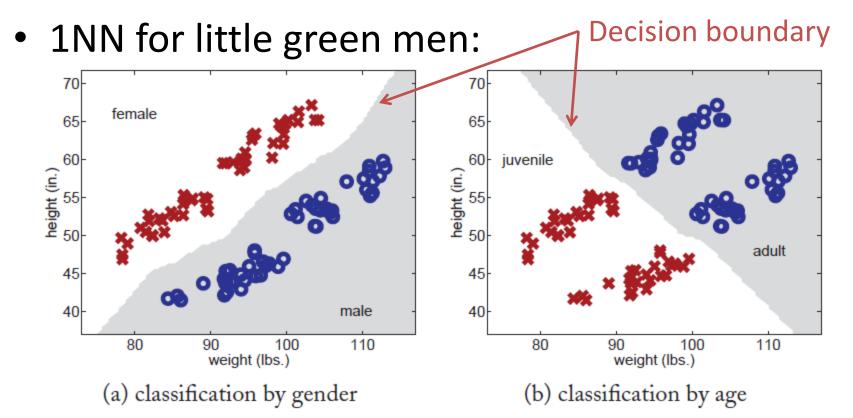
 - 0-1 loss for classification $\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) \neq y_i),$ squared loss for regression $\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) y_i)^2$
 - overfitting
- Test set error: use a separate test set
- True error of f: $\mathbb{E}_{(x,y)\sim P}[c(x,y,f(x))]$, where c() is an appropriate loss function
- Goal of supervised learning is to find

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{(\mathbf{x}, y) \sim P} \left[c(\mathbf{x}, y, f(\mathbf{x})) \right]$$

k-nearest-neighbor (kNN)

Input: Training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$; distance function d(); number of neighbors k; test instance \mathbf{x}^*

- 1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under distance d().
- 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.



kNN

- Demo
- What if we want regression?
 - Instead of majority vote, take average of neighbors' y
- How to pick *k*?
 - Split data into training and tuning sets
 - Classify tuning set with different k
 - Pick k that produces least tuning-set error

Summary

- Feature representation
- Unsupervised learning / Clustering
 - Hierarchical Agglomerative Clustering
 - K-means clustering
- Supervised learning / Classification
 - k-nearest-neighbor