A Short Introduction to Propositional Logic and First-Order Logic

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Logic

- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Several types of logic:
 - propositional logic (Boolean logic)
 - first order logic (first order predicate calculus)
- A logic includes:
 - syntax: what is a correctly formed sentence
 - semantics: what is the meaning of a sentence
 - Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

```
Sentence
                      → AtomicSentence | ComplexSentence
AtomicSentence
                  \rightarrow True | False | Symbol
                    \rightarrow P | Q | R | \dots
Symbol
ComplexSentence \rightarrow \neg Sentence
                      (Sentence \ Sentence)
                       (Sentence V Sentence)
                       (Sentence \Rightarrow Sentence)
                       ( Sentence ⇔ Sentence )
BNF (Backus-Naur Form) grammar in propositional logic
```

$$((\neg P \lor ((True \land R) \Leftrightarrow Q)) \Rightarrow S$$
 well formed $(\neg (P \lor Q) \land \Rightarrow S)$ not well formed

Propositional logic syntax

Propositional logic syntax

Precedence (from highest to lowest):

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

If the order is clear, you can leave off parenthesis.

$$\neg P \lor True \land R \Leftrightarrow Q \Rightarrow S$$
 ok
 $P \Rightarrow Q \Rightarrow S$ not ok

Semantics

- An interpretation is a complete True / False assignment to propositional symbols
 - Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
 - There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True.
- Example: the semantics of the sentence PvQ is the set of 6 interpretations
 - P=True, Q=True, R=True or False
 - P=True, Q=False, R=True or False
 - P=False, Q=True, R=True or False
- A model of a set of sentences is an interpretation in which all the sentences are true.

Evaluating a sentence under an interpretation

 Calculated using the meaning of connectives, recursively.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Pay attention to ⇒
 - "5 is even implies 6 is odd" is True!
 - If P is False, regardless of Q, P⇒Q is True
 - No causality needed: "5 is odd implies the Sun is a star" is True.

$$\neg P \vee Q \wedge R \Rightarrow Q$$

$$\neg P \vee Q \wedge R \Rightarrow Q$$

P	Q	R	~P	Q^R	~PvQ^R	~PvQ^R->Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1
	1	0 1 1 0 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0	Q IX 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0	Q IX I Q IX 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0	0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 <

Satisfiable: the sentence is true under some interpretations

Deciding satisfiability of a sentence is NP-complete

$$(P \land R \Rightarrow Q) \land P \land R \land \neg \ Q$$

$$(P \land R \Rightarrow Q) \land P \land R \land \neg Q$$

P	Q	R	~Q	R^~Q	P^R^~Q	P^R	P^R->Q	final
0	0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1 1	0
0	1	0	0	0	0	0	1 1	0
0	1	1	0	0	0	0	1 1	0
1	0	0	1	0	0	0	1 1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	1	0
1	1	1	0	0	0	1	1	0

Unsatisfiable: the sentence is false under all interpretations.

$$(P \Rightarrow Q) \lor P \land \neg Q$$

$$(P \Rightarrow Q) \lor P \land \neg Q$$

Р	Q	R	~Q	P->Q	P^~Q	$(P->Q)vP^\sim Q$
0	0	0	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	1	0	1	0	1

Tautology: the sentence is true under all interpretations

Knowledge base

- A knowledge base KB is a set of sentences.
 Example KB:
 - TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
 - ¬ TomGivingLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
 - (TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)) ∧ ¬ TomGivingLecture
- The model of a KB is the interpretations in which all sentences in the KB are true.

Entailment

• Entailment is the relation of a sentence β logically follows from other sentences α (i.e. the KB).

$$\alpha = \beta$$

• $\alpha \models \beta$ if and only if, in every interpretation in which α is true, β is also true

All interpretations					
	β is true				
	α is true				

Logical equivalences

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land$$

You can use these equivalences to modify sentences.

Resolution

- Resolution: a single inference rule
 - Sound: only derives entailed sentences
 - Complete: can derive any entailed sentence
 - Resolution is only refutation complete: if KB $|= \beta$, then KB $\land \neg \beta$ |= empty. It cannot derive empty $|= (P \lor \neg P)$
 - But the sentences need to be preprocessed into a special form
 - But all sentences can be converted into this form

Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all ⇔ using biconditional elimination
- Replace all ⇒ using implication elimination
- Move all negations inward using
 - -double-negation elimination
 - -de Morgan's rule
- Apply distributivity of vover

Convert example sentence into CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
 starting sentence

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

biconditional elimination

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$
 implication elimination

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$
 move negations inward

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$
 distribute \lor over \land

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $\bullet \quad \mathsf{B}_{1,1} \Leftrightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})$
 - ¬B_{1,1}
- Example query: ¬P_{1,2}

Resolution preprocessing

Add ¬ β to KB, convert to CNF:

```
a1: (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})
a2: (\neg P_{1,2} \lor B_{1,1})
a3: (\neg P_{2,1} \lor B_{1,1})
b: \neg B_{1,1}
c: P_{1,2}
```

Want to reach goal: empty

Resolution

 Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$P \lor Q \lor R$$
 $\neg Q \lor S \lor T$

 Merge (resolve) them, throw away the symbol and its complement

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB |= β
- If no new clauses can be added, KB does not entail β

Resolution example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2:
$$(\neg P_{1,2} \vee B_{1,1})$$

a3:
$$(\neg P_{2,1} \vee B_{1,1})$$

Resolution example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2:
$$(\neg P_{1,2} \vee B_{1,1})$$

a3:
$$(\neg P_{2,1} \vee B_{1,1})$$

Step 1: resolve a2, c: $B_{1,1}$

Step 2: resolve above and b: *empty*

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
 - Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

$$P \lor R \lor P \lor T \rightarrow P \lor R \lor T$$

 If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2:
$$(\neg P_{1.2} \lor B_{1.1})$$

$$\rightarrow$$
 $P_{1,2} \vee P_{2,1} \vee \neg P_{1,2}$ (tautology, throw away)

Problems with propositional logic

Consider the game "minesweeper" on a 10x10 field with only one landmine.

 How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?

Problems with propositional logic

Consider the game "minesweeper" on a 10x10 field with only one landmine.

- How do you express the knowledge, with propositional logic, that the squares adjacent to the landmine will display the number 1?
- Intuitively with a rule like landmine(x,y) ⇒ number1(neighbors(x,y)) but propositional logic cannot do this...

Problems with propositional logic

- Propositional logic has to say, e.g. for cell (3,4):
 - Landmine_3_4 ⇒ number1_2_3
 - Landmine_3_4 ⇒ number1_2_4
 - Landmine_3_4 ⇒ number1_2_5
 - Landmine_3_4 ⇒ number1_3_3
 - Landmine_3_4 ⇒ number1_3_5
 - Landmine_3_4 ⇒ number1_4_3
 - Landmine_3_4 ⇒ number1_4_4
 - Landmine_3_4 ⇒ number1_4_5
 - And similarly for each of Landmine_1_1,
 Landmine_1_2, Landmine_1_3, ..., Landmine_10_10!
- Difficult to express large domains concisely
- Don't have objects and relations
- First Order Logic is a powerful upgrade

Ontological commitment

 Logics are characterized by what they consider to be 'primitives'

Logic	Primitives	Available Knowledge
Propositional	facts	true/false/unknown
First-Order	facts, objects, relations	true/false/unknown
Temporal	facts, objects, relations, times	true/false/unknown
Probability Theory	facts	degree of belief 01
Fuzzy	degree of truth	degree of belief 01

First Order Logic syntax

- Term: an object in the world
 - Constant: Jerry, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.

FOL syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - $term_1 = term_2$
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- Sentence: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ ∨ ¬ ⇒ ⇔
 - Spouse(Jerry, Jing) ⇒ Spouse(Jing, Jerry)
 - Less(11,22) ∧ Less(22,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.
- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

Means if x is a human, then x is a mammal

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

 It's a big AND: Equivalent to the conjunction of all the instantiations of variable x:

```
(human(Jerry) ⇒ mammal(Jerry)) ∧
    (human(Jing) ⇒ mammal(Jing)) ∧
(human(laptop) ⇒ mammal(laptop)) ∧ ...
```

Common mistake is to use A as main connective

```
\forall x \text{ human}(x) \land \text{mammal}(x)
```

This means everything is human and a mammal!

```
(human(Jerry) ∧ mammal(Jerry)) ∧
     (human(Jing) ∧ mammal(Jing)) ∧
(human(laptop) ∧ mammal(laptop)) ∧ ...
```

- Existential quantifier: Э
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is
 - "some humans are male"

```
\exists x \text{ human}(x) \land \text{male}(x)
```

Means there is an x who is a human and is a male

```
\exists x \text{ human}(x) \land \text{male}(x)
```

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

```
(human(Jerry) ∧ male(Jerry)) ∨
    (human(Jing) ∧ male(Jing)) ∨
(human(laptop) ∧ male(laptop)) ∨ ...
```

- Common mistake is to use ⇒ as main connective
 - "Some pig can fly"

```
\exists x \text{ pig}(x) \Rightarrow \text{fly}(x) \quad (\text{wrong})
```

```
\exists x \text{ human}(x) \land \text{male}(x)
```

 It's a big OR: Equivalent to the disjunction of all the instantiations of variable x:

```
(human(Jerry) ∧ male(Jerry)) ∨
    (human(Jing) ∧ male(Jing)) ∨
(human(laptop) ∧ male(laptop)) ∨ ...
```

- Common mistake is to use ⇒ as main connective
 - "Some pig can fly"

```
\exists x \text{ pig}(x) \Rightarrow \text{fly}(x) \text{ (wrong)}
```

This is true if there is something not a pig!

```
(pig(Jerry) ⇒ fly(Jerry)) ∨
(pig(laptop) ⇒ fly(laptop)) ∨ ...
```

- Properties of quantifiers:
 - $\forall x \forall y$ is the same as $\forall y \forall x$
 - ∃x ∃y is the same as ∃y ∃x
- Example:
 - ∀x ∀y likes(x,y)
 Everyone likes everyone.
 - ∀y ∀x likes(x,y)
 Everyone is liked by everyone.

- Properties of quantifiers:
 - $\forall x \exists y \text{ is not the same as } \exists y \forall x$
 - ∃x ∀y is not the same as ∀y ∃x
- Example:
 - ∀x∃y likes(x,y)
 Everyone likes someone (can be different).
 - ∃y ∀x likes(x,y)
 There is someone who is liked by everyone.

- Properties of quantifiers:
 - $\forall x P(x)$ when negated becomes $\exists x \neg P(x)$
 - $\exists x P(x)$ when negated becomes $\forall x \neg P(x)$
- Example:
 - $\forall x \text{ sleep}(x)$

Everybody sleeps.

■ ∃x ¬sleep(x)

Somebody does not sleep.

- Properties of quantifiers:
 - $\forall x P(x)$ is the same as $\neg \exists x \neg P(x)$
 - $\exists x P(x)$ is the same as $\neg \forall x \neg P(x)$
- Example:
 - $\forall x \text{ sleep}(x)$

Everybody sleeps.

 $\neg \exists x \neg sleep(x)$

There does not exist someone who does not sleep.


```
1. \exists x \ A(x) \land (\forall y \ A(y) \Rightarrow x=y)
2. \exists x \ B(x) \land (\forall y \ B(y) \Rightarrow x=y)
3. \exists x \exists y \ W(x) \land W(y) \land \neg (x=y) \land (\forall z \ W(z) \Rightarrow z=x \lor z=y)
4. \forall x \neg (A(x) \lor B(x) \lor W(x)) \Rightarrow P(x)
5. \forall x \forall y \ W(x) \land L(y,x) \Rightarrow P(y)
6. \neg (P(b1) \land P(b7))
7. \neg (W(b1) \wedge W(b7))
8. \neg A (b1)
9. \neg A (b7)
10. - P(b3)
11. \neg P(b6)
12. (P(b2) \land P(b6)) \lor (W(b2) \land W(b6))
```