
slide 1

Neural Networks

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

slide 2

Terminator 2 (1991)

JOHN: Can you learn? So you can be... you know. More human. Not such a

dork all the time.

TERMINATOR: My CPU is a neural-net processor... a learning computer.

But Skynet presets the switch to "read-only" when we are sent out alone.

…

TERMINATOR Basically. (starting the engine, backing out) The Skynet

funding bill is passed. The system goes on-line August 4th, 1997. Human

decisions are removed from strategic defense. Skynet begins to learn, at a

geometric rate. It becomes self-aware at 2:14 a.m. eastern time, August 29.

In a panic, they try to pull the plug.

SARAH: And Skynet fights back.

TERMINATOR: Yes. It launches its ICBMs against their targets in Russia.

SARAH: Why attack Russia?

TERMINATOR: Because Skynet knows the Russian counter-strike will

remove its enemies here.

We’ll learn how to set the neural net

http://images.google.com/imgres?imgurl=http://library.sdsmt.edu/friendsvideos/terminator%25202%2520f.jpg&imgrefurl=http://library.sdsmt.edu/AV/hugo_p.htm&h=1485&w=834&sz=1411&tbnid=Hr-8i-6AaWEJ:&tbnh=150&tbnw=84&hl=en&ei=vQlgQ9mnHMmOFrfWmegJ&sig2=y77wSmDQdDo34BvjjuH0DQ&start=8&prev=/images%3Fq%3Dterminator%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-36,RNWE:en%26sa%3DN

slide 3

Outline

• A single neuron

 Linear perceptron

 Non-linear perceptron

 Learning of a single perceptron

 The power of a single perceptron

• Neural network: a network of neurons

 Layers, hidden units

 Learning of neural network: backpropagation

 The power of neural network

 Issues

• Everything revolves around gradient descent

slide 4

Biological neurons

• Human brain: 100, 000, 000, 000 neurons

• Each neuron receives input from 1,000 others

• Impulses arrive simultaneously

• Added together*

 an impulse can either

increase or decrease the

possibility of nerve pulse firing

• If sufficiently strong, a nerve pulse is generated

• The pulse forms the input to other neurons.

• The interface of two neurons is called a synapse

http://www.bris.ac.uk/synaptic/public/brainbasic.html

slide 5

Example: ALVINN

[Pomerleau, 1995]

steering direction

slide 6

Linear perceptron

• Perceptron = a math model for a single neuron

• Input: x1, …, xD (signal from other neurons)

• Weights: w1, …, wD (dendrites, can be negative)

• We sneak in a constant (bias term) x0=1, with some

weight w0

• Activation function: linear (for the time being)

a = w0*x0 + w1*x1 + … + wD*xD

• This is the output of a linear perceptron

d=0…D wd*xd …
w1

wD

w0
1

x1

xD

a

slide 7

Learning in linear perceptron

• Regression. Training data {(X1, y1), …, (XN, yN)}

• X1 is a vector: (x11, …, x1D), so are X2…XN

• y1 is a real-valued output

• Goal: learn the weights w0…wD, so that given input

Xi, the output of the perceptron ai is close to yi

• Define “close”:

E = ½ i=1..N (ai-yi)2

• E is the “error”. Given the training set, E is a function

of w0…wD.

• Minimize E: unconstrained optimization. Variables

w0…wD.

slide 8

Learning in linear perceptron

• Gradient descent: W  W - E(W)

•  is a small constant, “learning rate” = step size

• The gradient descent rule:

E(W) = ½ i=1..N (ai-yi)2

E/ wd = i=1..N (ai-yi) xid

wd  wd -  i=1..N (ai-yi) xid

• Repeat until E converges.

• E is convex in W: there is a unique global minimum

slide 9

The (limited) power of linear perceptron

• Linear perceptron is just

a=W’X

• where X is the input vector, augmented by x0=1

• It can represent any linear function in D+1

dimensional space… but that’s it

• In particular, it won’t be a nice fit to binary

classification (y=0 or y=1)

1

slide 10

Non-linear perceptron

• Change the activation function: use a step function

a = g(w0*x0 + w1*x1 + … + wD*xD)

• g(h)=0, if h < 0; g(h)=1 if h0

• Can you see how to make logic AND, OR, NOT with

such a perceptron?

g(d=0…D wd*xd) …
w1

wD

w0
1

x1

xD

a

slide 11

Linear Threshold Unit (LTU):

Our first non-linear perceptron
• Change the activation function: use a step function

a = g(w0*x0 + w1*x1 + … + wD*xD)

• g(h)=0, if h < 0; g(h)=1 if h0

• AND: w1=w2=1, w0= -1.5

• OR: w1=w2=1, w0= -0.5

• NOT: w1= -1, w0= 0.5

g(d=0…D wd*xd) …
w1

wD

w0
1

x1

xD

a

Now we see the reason

for bias terms

slide 12

Sigmod activation function:

Our second non-linear perceptron
• The problem with LTU: step function is discontinuous,

cannot use gradient descent

• Change the activation function (again): use a sigmoid

function

g(h) = 1 / (1 + exp(-h))

• Exercise: g’(h)=?

slide 13

• The problem with LTU: step function is discontinuous,

cannot use gradient descent

• Change the activation function (again): use a sigmoid

function

g(h) = 1 / (1 + exp(-h))

• Exercise: g’(h)= g(h) (1-g(h))

Sigmod activation function:

Our second non-linear perceptron

slide 14

Learning in non-linear perceptron

• Again we will minimize the error:

E(W) = ½ i=1..N (ai-yi)2

• Now ai = g(d wd*xid)

E/ wd = i=1..N (ai-yi) ai (1-ai) xid

• The sigmoid perceptron update rule

wd  wd -  i=1..N (ai-yi) ai (1-ai) xid

•  is a small constant, “learning rate” = step size

• Repeat until E converges

slide 15

The (limited) power of non-linear perceptron

• Even with a non-linear sigmoid function, the decision

boundary a perceptron can produce is still linear

• AND, OR, NOT revisited

• How about XOR?

slide 16

The (limited) power of non-linear perceptron

• Even with a non-linear sigmoid function, the decision

boundary a perceptron can produce is still linear

• AND, OR, NOT revisited

• How about XOR?

• This contributed to the first AI winter

slide 17

(Multi-layer) neural network

• Given sigmoid perceptrons

• Can you produce output like

• which had non-linear decision boundarys

0 1 0 1 0

slide 18

Multi-layer neural network

• There are many ways to connect perceptrons into a

network. One standard way is multi-layer neural nets

• 1 Hidden layer: we can’t see the output; 1 output

layer









 



HIDN

k

kkvWg
1

Out











































INS

INS

INS

N

k

kk

N

k

kk

N

k

kk

xwgv

xwgv

xwgv

1

33

1

22

1

11

x1

x2

w11

w21

w31

w1

w2

w3

w32

w22

w12

[from Andrew Moore]

slide 19

The (unlimited) power of neural network

• In theory

 we don’t need too many layers:

 1-hidden-layer net with enough hidden units can

represent any continuous function of the inputs

with arbitrary accuracy

 2-hidden-layer net can even represent

discontinuous functions

slide 20

Neural net for K-way classification

• Use K output units. During training, encode a label y

by an indicator vector with K entries:

 class1=(1,0,0,…,0), class2=(0,1,0,…,0) etc.

• During test (decoding), choose the class

corresponding to the largest output unit









 



HIDN

k

kkvWg
1

Out











































INS

INS

INS

N

k

kk

N

k

kk

N

k

kk

xwgv

xwgv

xwgv

1

33

1

22

1

11

x1

x2









 



HIDN

k

kkvWg
1

Out

…

out 1

out K

slide 21

Example Y encoding

[Pomerleau, 1995]

slide 22

Obtaining training data

[Pomerleau, 1995]

slide 23

Learning in neural network

• Again we will minimize the error (K outputs):

E(W) = ½ i=1..N c=1..K (oic-Yic)
2

• i: the i-th training point

• oic: the c-th output for the i-th training point

• Yic: the c-th element of the i-th label indicator vector

• Our variables are all the weights w on all the edges

 Apparent difficulty: we don’t know the ‘correct’

output of hidden units

 It turns out to be OK: we can still do gradient

descent. The trick you need is the chain rule

 The algorithm is known as back-propagation

slide 24

Backpropagation algorithm (page 1)

BACKPROPAGATION(training set, , D, nhidden, K)

 Training set: {(X1, Y1), …, (Xn, Yn)}, Xi is a

feature vector of size D, Yi is an output vector of

size K,  is the learning rate (step size in gradient

descent), nhidden is the number of hidden units

• Create a neural network with D inputs, nhidden hidden

units, and K outputs. Connect each layer.

• Initialize all weights to some small random numbers

(e.g. between –0.05 and 0.05)

• Repeat next page until the termination condition is

met…

slide 25

Backpropagation algorithm (page 2)

For each training example (X, Y):

• Propagate the input forward through the network

Input X to the network, compute output ou for every unit u in the network

• Propagate the errors backward through the network

 for each output unit c, compute its error term c

 for each hidden unit h, compute its error term h

 update each weight wji

• where xji is the input from unit i into unit j (oi if i is a hidden
unit; Xi if i is an input)

• wji is the weight from unit i to unit j

)1()(ccccc ooyo 

)1(
)(

hh

hsucci

iihh oow 












 





jijjiji xww 

slide 26

Derivation of backpropagation

• For simplicity we assume online learning (as oppose

to batch learning): 1-step gradient descent after

seeing each training example (X,Y)

• For each (X,Y), the error is

E(W) = ½ c=1..K (oc-Yc)
2

 oc: the c-th output unit (when input is X)

 Yc: the c-th element of the label indicator vector

• Use gradient descent to change all the weights wji to

minimize the error. Separate two cases:

 Case 1: wji when j is an output unit

 Case 2: wji when j is a hidden unit

slide 27

Case 1: weights of an output unit

 oc: the c-th output unit (when input is X)

 Yc: the c-th element of the label indicator vector

• gradient descent: to minimize error, run away from

the partial derivative

j

oj

i

yj

wji

xji jijjjj

ji

j

m

jmjm

ji

jj

ji

xooyo

w

yxwg

w

yo

w

Error

)1()(

))((
2

1
)(

2

1 22


















jijjjjji

ji

jiji xooyow
w

Error
ww)1()(




 

slide 28

Case 2: weights of a hidden unit

j

oj

c

yc

wji

xji

oc

jijjcjcc

jsuccc

cc

ji

n

jnjn

cm

m

cmcm

jsuccc

cc

ji

j

j

c

jsuccc c

c

ji

xoowooyo

w

xwg

x

xwg

yo

w

o

o

o

o

E

w

Error

)1()1()(

)()(

)(

)(

)(

)(














































slide 29

Neural network weight learning issues

• When to terminate backpropagation? Overfitting and

early stopping

 After fixed number of iterations (ok)

 When training error less than a threshold (wrong)

 When holdout set error starts to go up (ok)

• Local optima

 The weights will converge to a local minimum

• Learning rate

 Convergence sensitive to learning rate

 Weight learning can be rather slow

slide 30

Sensitivity to learning rate

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the
Theory of Neural Computation.
Addison-Wesley, 1994.

slide 31

Neural network weight learning issues

• Use ‘momentum’ (a heuristic?) to dampen gradient

descent

w(t-1) = last time’s change to w

w(t) = -  E(W) / w +  w(t-1)

w  w + w(t)

• Alternatives to gradient descent: Newton-Raphson,

Conjugate gradient

slide 32

Neural network structure learning issues

• How many hidden units?

• How many layers?

• How to connect units?

• Cross validation

