Neural Networks

Xiaojin Zhu
jerryzhulcs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

slide 1

SCHWARTENEGGER
bl g

Terminator 2 (1991)

JOHN: Can you learn? So you can be... you know. More human. Not such a
dork all the time.

TERMINATOR: My CPU is a neural-net processor... a learning computer.
But Skynet presets the switch to "read-only" when we are sent out alone.
\[We'll learn how to set the neural net]
TERMINATOR Basically. (starting the engine, backing out) The Skynet
funding bill is passed. The system goes on-line August 4th, 1997. Human
decisions are removed from strategic defense. Skynet begins to learn, at a

geometric rate. It becomes self-aware at 2:14 a.m. eastern time, August 29.
In a panic, they try to pull the plug.

SARAH: And Skynet fights back.
TERMINATOR: Yes. It launches its ICBMSs against their targets in Russia.
SARAH: Why attack Russia?

TERMINATOR: Because Skynet knows the Russian counter-strike will
remove its enemies here.

slide 2

http://images.google.com/imgres?imgurl=http://library.sdsmt.edu/friendsvideos/terminator%25202%2520f.jpg&imgrefurl=http://library.sdsmt.edu/AV/hugo_p.htm&h=1485&w=834&sz=1411&tbnid=Hr-8i-6AaWEJ:&tbnh=150&tbnw=84&hl=en&ei=vQlgQ9mnHMmOFrfWmegJ&sig2=y77wSmDQdDo34BvjjuH0DQ&start=8&prev=/images%3Fq%3Dterminator%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-36,RNWE:en%26sa%3DN

Outline

A single neuron
= Linear perceptron
= Non-linear perceptron
= |_earning of a single perceptron
= The power of a single perceptron
Neural network: a network of neurons
= Layers, hidden units
= Learning of neural network: backpropagation
= The power of neural network
" |ssues
Everything revolves around gradient descent

slide 3

Biological neurons

¢ Human brain: 100, 000, 000, 000 neurons

¢ Each neuron receives input from 1,000 others

® Impulses arrive simultaneously S

® Added together* /
Ve

Myelin sheath

= animpulse can either
Increase or decrease the
possibility of nerve pulse firing °* e
¢ If sufficiently strong, a nerve pulse is generated
® The pulse forms the input to other neurons.
® The interface of two neurons is called a synapse

http://www.bris.ac.uk/synaptic/public/brainbasic.html slide 4

Example: ALVINN

[Pomerleau, 1995]

slide 5

Linear perceptron

Perceptron = a math model for a single neuron
Input: x1, ..., XD (signal from other neurons)
Weights: w1, ..., wD (dendrites, can be negative)

We sneak in a constant (bias term) x0=1, with some
weight w0

Activation function: linear (for the time being)
a=w0*x0 +w1*x1 + ... + wD*xD

This is theloutput of a linear perceptron

w

slide 6

Learning in linear perceptron

Regression. Training data {(X1, y1), ..., (XN, yN)}
X1 is a vector: (x11, ..., x1D), so are X2...XN
y1lis a real-valued output

Goal: learn the weights w0...wD, so that given input
Xi, the output of the perceptron ai is close to yi

Define “close”:

E =% 2ig v (ai-yi)?
E is the “error”. Given the training set, E is a function
of w0...wD.

Minimize E: unconstrained optimization. Variables
wO...wD.

slide 7

Learning in linear perceptron

Gradient descent: W € W - aVE(W)
o is @ small constant, “learning rate” = step size
The gradient descent rule:

E(W) =% 2y (ai-yi)?
OE/ owd = 2., , (ai-yi) xid

wd € wd - o 2., y (ai-yi) xid
Repeat until E converges.
E is convex in W: there is a unique global minimum

slide 8

The (limited) power of linear perceptron

Linear perceptron is just
a=W'X
where X iIs the input vector, augmented by x0=1

It can represent any linear function in D+1
dimensional space... but that’s it

In particular, it won’t be a nice fit to binary
classification (y=0 or y=1)

1r O O O O

O-0—

/

slide 9

Non-linear perceptron

Change the activation function: use a step function
a=g(w0*x0 + w1*x1 + ... + wD*xD)
g(h)=0, if h < 0; g(h)=1if h>0

1
w

wl

x1

g(2d=0...D wd*xd)

xD —wD

Can you see how to make logic AND, OR, NOT with
such a perceptron?

slide 10

Linear Threshold Unit (LTU):

Our first non-linear perceptron
Change the activation function: use a step function

a=9g(w0*x0 +w1*x1 + ... + wD*xD)
g(h)=0, if h < 0; g(h)=1 if h>0

1
w

wl

x1

g(2d=0...D wd*xd)

xD —wD

AND: wl=w2=1, w0=-1.5 Now we see the reason
OR: wl=w2=1, wO= -0.5 for bias terms

NOT: wl=-1, wO= 0.5

slide 11

Sigmod activation function:

Our second non-linear perceptron

® The problem with LTU: step function is discontinuous,
cannot use gradient descent

¢ Change the activation function (again): use a sigmoid
function

g(h) =1/ (1 + exp(-h))
® Exercise: g'(h)="

slide 12

Sigmod activation function:

Our second non-linear perceptron
The problem with LTU: step function is discontinuous,
cannot use gradient descent

Change the activation function (again): use a sigmoid
function

g(h)=1/(1 + exp(-h))
Exercise: g'(h)= g(h) (1-g(h))

|’}

slide 13

Learning in non-linear perceptron
Again we will minimize the error:
E(W) = ¥ 2.y y (ai-yi)2
Now ai = g(XZ4 wd*xid)
OE/ owd = 2., \ (ai-yi) ai (1-ai) xid
The sigmoid perceptron update rule

wd € wd - o 2., y (ai-yi) ai (1-ai) xid
o is a small constant, “learning rate” = step size
Repeat until E converges

slide 14

The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

AND, OR, NOT revisited

How about XOR?

slide 15

The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

AND, OR, NOT revisited

How about XOR?

This contributed to the first Al winter

slide 16

(Multi-layer) neural network

¢ Given sigmoid perceptrons

— = F

— ==

—e o=

—= _ =3

— =

¢ Can you produce output like

N

¢ which had non-linear decision boundarys

0 1 0 1 0

slide 17

Multi-layer neural network

There are many ways to connect perceptrons into a
network. One standard way is multi-layer neural nets

1 Hidden layer: we can’t see the output; 1 output

[from Andrew Moore] slide 18

The (unlimited) power of neural network

In theory
= we don’t need too many layers:

= 1-hidden-layer net with enough hidden units can

represent any continuous function of the inputs
with arbitrary accuracy

= 2-hidden-layer net can even represent
discontinuous functions

slide 19

Neural net for K-way classification

Use K output units. During training, encode a label y
by an indicator vector with K entries:

= class1=(1,0,0,...,0), class2=(0,1,0,...,0) etc.

During test (decoding), choose the class
corresponding to the largest output unit

slide 20

Example Y encoding

soe (r’:l 30 Output

ﬂ Units
TR 4 Hidden

30x32 Sensor
Input Retina

[Pomerleau, 1995]

slide 21

Obtaining training data

Output Units

Person’'s
Steering
Direction

[Pomerleau, 1995]

slide 22

Learning in neural network
Again we will minimize the error (K outputs):

E(W) =Y Zi:1..N Zc:1..K (Oic'Yic)2
I. the i-th training point
0,.. the c-th output for the i-th training point
Y,.: the c-th element of the i-th label indicator vector
Our variables are all the weights w on all the edges

= Apparent difficulty: we don’t know the ‘correct’
output of hidden units

= |t turns out to be OK: we can still do gradient
descent. The trick you need is the chain rule

= The algorithm is known as back-propagation

slide 23

Backpropagation algorithm (page 1)

BACKPROPAGATION(training set, o, D, N,iygen, K)

= Training set: {(X1, Y1), ..., (Xn, Yn)}, Xiis a
feature vector of size D, Yi is an output vector of
size K, a Is the learning rate (step size in gradient
descent), Ny,4q4en IS the number of hidden units

Create a neural network with D inputs, n,y4e, hidden
units, and K outputs. Connect each layer.

Initialize all weights to some small random numbers
(e.g. between —0.05 and 0.05)

Repeat next page until the termination condition is
met...

slide 24

Backpropagation algorithm (page 2)

For each training example (X, Y):

® Propagate the input forward through the network
Input X to the network, compute output o, for every unit u in the network

® Propagate the errors backward through the network

= for each output unit c, compute its error term o,
0, < (0, - Y.)0, (1—oc)_
= for each hidden unit h, compute its error term §,,

Oy = Zwlhé‘i joh (1-0,)

|esucc(h)

= update each weight w
W;; <— w —Qo0;X;
* where x; Is the mput from unit i into unit j (o; if i is a hidden

unit; X, |f | IS an input)
* W Is the weight from unit i to unit |

slide 25

Derivation of backpropagation

For simplicity we assume online learning (as oppose
to batch learning): 1-step gradient descent after
seeing each training example (X,Y)

For each (X,Y), the error is

E(W) =2 Zc:1..K (OC'YC)2
= 0. the c-th output unit (when input is X)
= Y. the c-th element of the label indicator vector

Use gradient descent to change all the weights w;; to
minimize the error. Separate two cases:

= Case 1: w; when | is an output unit
= Case 2: w; when | is a hidden unit

slide 26

Case 1: weights of an output unit

1 1 2
OError 55(01 -¥;) } 55(9(;W,—mx,-m)— y;)

n n n

— (Oj _yj)oj(l_oj)xji

= 0. the c-th output unit (when input is X)
= Y. the c-th element of the label indicator vector
gradient descent: to minimize error, run away from

the partial derivative

OError
Wj < W;; — v =W;; —a(0; —¥;)0;(1-0,)X;

Ji

slide 27

Case 2: weights of a hidden unit

OError 3 OE, 0o, 0
OW . c—suoe(j) 00, 00; OW;

ag(z cm cm) 6g(ZWJn Jn

— Z(Oc _ yc S
c=succ(j) aXcm aWji
— Z(Oc o yc) -0, (1_Oc)Wcj) Oj (1_Oj)xji
c=succ(j)

slide 28

Neural network weight learning issues

When to terminate backpropagation? Overfitting and
early stopping

= After fixed number of iterations (ok)
= When training error less than a threshold (wrong)

= When holdout set error starts to go up (ok)
Local optima

= The weights will converge to a local minimum
Learning rate

= Convergence sensitive to learning rate
= Weight learning can be rather slow

slide 29

Sensitivity to learning rate

0 ' -
i
1

,/H’

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the
Theory of Neural Computation.
Addison-Wesley, 1994.

FIGURE 5.10 Gradie
- nt descent on g g !
parts are ecopi simple quadratic syrface)
opies of the same sur face}. Four trajectories arr: zn:(ntnh: I:i!?l;d Iﬂlght
* Gar

steps from the o ;
Pen cirele, The min; :

stant error co ° HUIIMAMm i8 4t Lhe + and + -
value of p wh?zﬁu;: Tge only significant difference betw@ﬂhfhzlimﬂ} shows 2 con.
’ % 0.02, 0.0476, 0.049, and 0.0505 from lofy mr;";hc:gnes ' the

slide 30

Neural network weight learning issues

Use ‘momentum’ (a heuristic?) to dampen gradient
descent

Aw(tD) = |ast time’s change to w
Aw® = - oo OE(W) / ow + B Aw(tD)
w < w + Aw®

FIGURE 6.3 Gradient descent on the
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with

n = 0.0476, the best value in the absence
of momentum. On the left there is no me-
mentum (@ = 0), while a = 0.5 on the
right.

Alternatives to gradient descent: Newton-Raphson,
Conjugate gradient

slide 31

Neural network structure learning issues

How many hidden units?
How many layers?
How to connect units?

Cross validation

slide 32

