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Terminator 2 (1991) 

JOHN: Can you learn? So you can be... you know. More human. Not such a 

dork all the time.  

TERMINATOR: My CPU is a neural-net processor... a learning computer. 

But Skynet presets the switch to "read-only" when we are sent out alone.  

… 

TERMINATOR Basically. (starting the engine, backing out) The Skynet 

funding bill is passed. The system goes on-line August 4th, 1997. Human 

decisions are removed from strategic defense. Skynet begins to learn, at a 

geometric rate. It becomes self-aware at 2:14 a.m. eastern time, August 29. 

In a panic, they try to pull the plug.  

SARAH: And Skynet fights back. 

TERMINATOR: Yes. It launches its ICBMs against their targets in Russia.  

SARAH: Why attack Russia?  

TERMINATOR: Because Skynet knows the Russian counter-strike will 

remove its enemies here.  

We’ll learn how to set the neural net 

http://images.google.com/imgres?imgurl=http://library.sdsmt.edu/friendsvideos/terminator%25202%2520f.jpg&imgrefurl=http://library.sdsmt.edu/AV/hugo_p.htm&h=1485&w=834&sz=1411&tbnid=Hr-8i-6AaWEJ:&tbnh=150&tbnw=84&hl=en&ei=vQlgQ9mnHMmOFrfWmegJ&sig2=y77wSmDQdDo34BvjjuH0DQ&start=8&prev=/images%3Fq%3Dterminator%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-36,RNWE:en%26sa%3DN
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Outline 

• A single neuron 

 Linear perceptron 

 Non-linear perceptron 

 Learning of a single perceptron 

 The power of a single perceptron 

• Neural network: a network of neurons 

 Layers, hidden units 

 Learning of neural network: backpropagation 

 The power of neural network 

 Issues 

• Everything revolves around gradient descent 
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Biological neurons 

• Human brain: 100, 000, 000, 000 neurons 

• Each neuron receives input from 1,000 others 

• Impulses arrive simultaneously 

• Added together* 

  an impulse can either  

increase or decrease the  

possibility of nerve pulse firing 

• If sufficiently strong, a nerve pulse is generated 

• The pulse forms the input to other neurons.   

• The interface of two neurons is called a synapse 

 

 

http://www.bris.ac.uk/synaptic/public/brainbasic.html 
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Example: ALVINN 

[Pomerleau, 1995] 

steering direction 
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Linear perceptron 

• Perceptron = a math model for a single neuron 

• Input: x1, …, xD (signal from other neurons) 

• Weights: w1, …, wD (dendrites, can be negative) 

• We sneak in a constant (bias term) x0=1, with some 

weight w0 

• Activation function: linear (for the time being) 

a = w0*x0 + w1*x1 + … + wD*xD 

• This is the output of a linear perceptron 

 

d=0…D wd*xd … 
w1 

wD 

w0 
1 

x1 

xD 

a 
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Learning in linear perceptron 

• Regression.  Training data {(X1, y1), …, (XN, yN)} 

• X1 is a vector: (x11, …, x1D), so are X2…XN 

• y1 is a real-valued output 

 

• Goal: learn the weights w0…wD, so that given input 

Xi, the output of the perceptron ai is close to yi 

• Define “close”: 

E = ½ i=1..N (ai-yi)2 

• E is the “error”.  Given the training set, E is a function 

of w0…wD. 

• Minimize E: unconstrained optimization.  Variables 

w0…wD.   
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Learning in linear perceptron 

• Gradient descent: W  W - E(W) 

•  is a small constant, “learning rate” = step size 

• The gradient descent rule: 

E(W) = ½ i=1..N (ai-yi)2 

E/ wd = i=1..N (ai-yi) xid 

wd  wd -  i=1..N (ai-yi) xid 

• Repeat until E converges.   

• E is convex in W: there is a unique global minimum 
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The (limited) power of linear perceptron 

• Linear perceptron is just 

a=W’X 

• where X is the input vector, augmented by x0=1 

• It can represent any linear function in D+1 

dimensional space… but that’s it 

• In particular, it won’t be a nice fit to binary 

classification (y=0 or y=1) 

1 
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Non-linear perceptron 

• Change the activation function: use a step function 

a = g(w0*x0 + w1*x1 + … + wD*xD) 

• g(h)=0, if h < 0; g(h)=1 if h0 

 

 

 

 

 

 

• Can you see how to make logic AND, OR, NOT with 

such a perceptron? 

g(d=0…D wd*xd) … 
w1 

wD 

w0 
1 

x1 

xD 

a 
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Linear Threshold Unit (LTU): 

Our first non-linear perceptron 
• Change the activation function: use a step function 

a = g(w0*x0 + w1*x1 + … + wD*xD) 

• g(h)=0, if h < 0; g(h)=1 if h0 

 

 

 

 

 

 

• AND: w1=w2=1, w0= -1.5 

• OR: w1=w2=1, w0= -0.5 

• NOT: w1= -1, w0= 0.5 

g(d=0…D wd*xd) … 
w1 

wD 

w0 
1 

x1 

xD 

a 

Now we see the reason 

for bias terms 



slide 12 

Sigmod activation function: 

Our second non-linear perceptron 
• The problem with LTU: step function is discontinuous, 

cannot use gradient descent 

• Change the activation function (again): use a sigmoid 

function  

g(h) = 1 / (1 + exp(-h)) 

• Exercise: g’(h)=? 
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• The problem with LTU: step function is discontinuous, 

cannot use gradient descent 

• Change the activation function (again): use a sigmoid 

function  

g(h) = 1 / (1 + exp(-h)) 

• Exercise: g’(h)= g(h) (1-g(h)) 

 

 

 

Sigmod activation function: 

Our second non-linear perceptron 
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Learning in non-linear perceptron 

• Again we will minimize the error: 

E(W) = ½ i=1..N (ai-yi)2 

• Now ai = g(d wd*xid) 

E/ wd = i=1..N (ai-yi) ai (1-ai) xid 

• The sigmoid perceptron update rule 

wd  wd -  i=1..N (ai-yi) ai (1-ai) xid 

•  is a small constant, “learning rate” = step size 

• Repeat until E converges 
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The (limited) power of non-linear perceptron 

• Even with a non-linear sigmoid function, the decision 

boundary a perceptron can produce is still linear 

 

• AND, OR, NOT revisited 

 

 

• How about XOR? 
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The (limited) power of non-linear perceptron 

• Even with a non-linear sigmoid function, the decision 

boundary a perceptron can produce is still linear 

 

• AND, OR, NOT revisited 

 

 

• How about XOR? 

 

 

• This contributed to the first AI winter 
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(Multi-layer) neural network 

• Given sigmoid perceptrons 

 

 

 

 

• Can you produce output like  

 

 

 

• which had non-linear decision boundarys 

 

0                1                    0                     1               0 
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Multi-layer neural network 

• There are many ways to connect perceptrons into a 

network.  One standard way is multi-layer neural nets 

• 1 Hidden layer: we can’t see the output; 1 output 

layer 
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The (unlimited) power of neural network 

• In theory 

 we don’t need too many layers: 

 1-hidden-layer net with enough hidden units can 

represent any continuous function of the inputs 

with arbitrary accuracy 

 2-hidden-layer net can even represent 

discontinuous functions 
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Neural net for K-way classification 

• Use K output units.  During training, encode a label y 

by an indicator vector with K entries:  

 class1=(1,0,0,…,0), class2=(0,1,0,…,0) etc. 

• During test (decoding), choose the class 

corresponding to the largest output unit 
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Example Y encoding 

[Pomerleau, 1995] 
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Obtaining training data 

[Pomerleau, 1995] 
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Learning in neural network 

• Again we will minimize the error (K outputs): 

E(W) = ½ i=1..N c=1..K (oic-Yic)
2 

• i: the i-th training point 

• oic: the c-th output for the i-th training point 

• Yic: the c-th element of the i-th label indicator vector 

• Our variables are all the weights w on all the edges 

 Apparent difficulty: we don’t know the ‘correct’ 

output of hidden units 

 It turns out to be OK: we can still do gradient 

descent.  The trick you need is the chain rule 

 The algorithm is known as back-propagation 
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Backpropagation algorithm (page 1) 

BACKPROPAGATION(training set, , D, nhidden, K) 

 Training set: {(X1, Y1), …, (Xn, Yn)}, Xi is a 

feature vector of size D, Yi is an output vector of 

size K,  is the learning rate (step size in gradient 

descent), nhidden is the number of hidden units 

• Create a neural network with D inputs, nhidden hidden 

units, and K outputs.  Connect each layer. 

• Initialize all weights to some small random numbers 

(e.g. between –0.05 and 0.05) 

• Repeat next page until the termination condition is 

met… 
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Backpropagation algorithm (page 2) 

For each training example (X, Y): 

• Propagate the input forward through the network 

Input X to the network, compute output ou for every unit u in the network 

• Propagate the errors backward through the network 

 for each output unit c, compute its error term c 

 

 for each hidden unit h, compute its error term h 

 

 

 update each weight wji 

 

• where xji is the input from unit i into unit j (oi if i is a hidden 
unit; Xi if i is an input) 

• wji is the weight from unit i to unit j 
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Derivation of backpropagation 

• For simplicity we assume online learning (as oppose 

to batch learning): 1-step gradient descent after 

seeing each training example (X,Y) 

• For each (X,Y), the error is 

E(W) = ½ c=1..K (oc-Yc)
2 

 oc: the c-th output unit (when input is X) 

 Yc: the c-th element of the label indicator vector 

• Use gradient descent to change all the weights wji to 

minimize the error.  Separate two cases: 

 Case 1: wji when j is an output unit 

 Case 2: wji when j is a hidden unit 
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Case 1: weights of an output unit 
 

 

 

 

 

 

 

 oc: the c-th output unit (when input is X) 

 Yc: the c-th element of the label indicator vector 

• gradient descent: to minimize error, run away from 

the partial derivative 
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Case 2: weights of a hidden unit 
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Neural network weight learning issues 

• When to terminate backpropagation? Overfitting and 

early stopping 

 After fixed number of iterations (ok) 

 When training error less than a threshold (wrong) 

 When holdout set error starts to go up (ok) 

• Local optima 

 The weights will converge to a local minimum 

• Learning rate 

 Convergence sensitive to learning rate 

 Weight learning can be rather slow 
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Sensitivity to learning rate 

From J. Hertz, A. Krogh, and R. 
G. Palmer. Introduction to the 
Theory of Neural Computation. 
Addison-Wesley, 1994. 
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Neural network weight learning issues 

• Use ‘momentum’ (a heuristic?) to dampen gradient 

descent 

w(t-1) = last time’s change to w 

w(t) = -  E(W) / w +  w(t-1)  

w  w + w(t)  

 

 

 

 

 

• Alternatives to gradient descent: Newton-Raphson, 

Conjugate gradient 
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Neural network structure learning issues 

• How many hidden units?  

• How many layers? 

• How to connect units? 

 

 

• Cross validation 


