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Terminator 2 (1991)

JOHN: Can you learn? So you can be... you know. More human. Not such a
dork all the time.

TERMINATOR: My CPU is a neural-net processor... a learning computer.
But Skynet presets the switch to "read-only" when we are sent out alone.
\[ We'll learn how to set the neural net ]
TERMINATOR Basically. (starting the engine, backing out) The Skynet
funding bill is passed. The system goes on-line August 4th, 1997. Human
decisions are removed from strategic defense. Skynet begins to learn, at a

geometric rate. It becomes self-aware at 2:14 a.m. eastern time, August 29.
In a panic, they try to pull the plug.

SARAH: And Skynet fights back.
TERMINATOR: Yes. It launches its ICBMSs against their targets in Russia.
SARAH: Why attack Russia?

TERMINATOR: Because Skynet knows the Russian counter-strike will
remove its enemies here.
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Outline

A single neuron
= Linear perceptron
= Non-linear perceptron
= |_earning of a single perceptron
= The power of a single perceptron
Neural network: a network of neurons
= Layers, hidden units
= Learning of neural network: backpropagation
= The power of neural network
" |ssues
Everything revolves around gradient descent
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Biological neurons

¢ Human brain: 100, 000, 000, 000 neurons

¢ Each neuron receives input from 1,000 others

® Impulses arrive simultaneously S

® Added together* /
Ve

Myelin sheath

= animpulse can either
Increase or decrease the
possibility of nerve pulse firing °* e
¢ If sufficiently strong, a nerve pulse is generated
® The pulse forms the input to other neurons.
® The interface of two neurons is called a synapse

http://www.bris.ac.uk/synaptic/public/brainbasic.html slide 4



Example: ALVINN

[Pomerleau, 1995]
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Linear perceptron

Perceptron = a math model for a single neuron
Input: x1, ..., XD (signal from other neurons)
Weights: w1, ..., wD (dendrites, can be negative)

We sneak in a constant (bias term) x0=1, with some
weight w0

Activation function: linear (for the time being)
a=w0*x0 +w1*x1 + ... + wD*xD

This is theloutput of a linear perceptron

w
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Learning in linear perceptron

Regression. Training data {(X1, y1), ..., (XN, yN)}
X1 is a vector: (x11, ..., x1D), so are X2...XN
y1lis a real-valued output

Goal: learn the weights w0...wD, so that given input
Xi, the output of the perceptron ai is close to yi

Define “close”:

E =% 2ig v (ai-yi)?
E is the “error”. Given the training set, E is a function
of w0...wD.

Minimize E: unconstrained optimization. Variables
wO...wD.
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Learning in linear perceptron

Gradient descent: W € W - aVE(W)
o is @ small constant, “learning rate” = step size
The gradient descent rule:

E(W) =% 2y (ai-yi)?
OE/ owd = 2., , (ai-yi) xid

wd € wd - o 2., y (ai-yi) xid
Repeat until E converges.
E is convex in W: there is a unique global minimum
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The (limited) power of linear perceptron

Linear perceptron is just
a=W'X
where X iIs the input vector, augmented by x0=1

It can represent any linear function in D+1
dimensional space... but that’s it

In particular, it won’t be a nice fit to binary
classification (y=0 or y=1)

1r O O O O

O-0—

/
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Non-linear perceptron

Change the activation function: use a step function
a=g(w0*x0 + w1*x1 + ... + wD*xD)
g(h)=0, if h < 0; g(h)=1if h>0

1
w

wl

x1

g(2d=0...D wd*xd)

xD —wD

Can you see how to make logic AND, OR, NOT with
such a perceptron?
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Linear Threshold Unit (LTU):

Our first non-linear perceptron
Change the activation function: use a step function

a=9g(w0*x0 +w1*x1 + ... + wD*xD)
g(h)=0, if h < 0; g(h)=1 if h>0

1
w

wl

x1

g(2d=0...D wd*xd)

xD —wD

AND: wl=w2=1, w0=-1.5 Now we see the reason
OR: wl=w2=1, wO= -0.5 for bias terms

NOT: wl=-1, wO= 0.5
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Sigmod activation function:

Our second non-linear perceptron

® The problem with LTU: step function is discontinuous,
cannot use gradient descent

¢ Change the activation function (again): use a sigmoid
function

g(h) =1/ (1 + exp(-h))
® Exercise: g'(h)="
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Sigmod activation function:

Our second non-linear perceptron
The problem with LTU: step function is discontinuous,
cannot use gradient descent

Change the activation function (again): use a sigmoid
function

g(h)=1/(1 + exp(-h))
Exercise: g'(h)= g(h) (1-g(h))

|’}
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Learning in non-linear perceptron
Again we will minimize the error:
E(W) = ¥ 2.y y (ai-yi)2
Now ai = g(XZ4 wd*xid)
OE/ owd = 2., \ (ai-yi) ai (1-ai) xid
The sigmoid perceptron update rule

wd € wd - o 2., y (ai-yi) ai (1-ai) xid
o is a small constant, “learning rate” = step size
Repeat until E converges
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The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

AND, OR, NOT revisited

How about XOR?
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The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

AND, OR, NOT revisited

How about XOR?

This contributed to the first Al winter
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(Multi-layer) neural network

¢ Given sigmoid perceptrons

— = F

— ==

—e o=

—= _ =3

— =

¢ Can you produce output like

N

¢ which had non-linear decision boundarys

0 1 0 1 0
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Multi-layer neural network

There are many ways to connect perceptrons into a
network. One standard way is multi-layer neural nets

1 Hidden layer: we can’t see the output; 1 output

[from Andrew Moore] slide 18



The (unlimited) power of neural network

In theory
= we don’t need too many layers:

= 1-hidden-layer net with enough hidden units can

represent any continuous function of the inputs
with arbitrary accuracy

= 2-hidden-layer net can even represent
discontinuous functions

slide 19



Neural net for K-way classification

Use K output units. During training, encode a label y
by an indicator vector with K entries:

= class1=(1,0,0,...,0), class2=(0,1,0,...,0) etc.

During test (decoding), choose the class
corresponding to the largest output unit
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Example Y encoding

soe ( r’:l 30 Output

ﬂ Units
TR 4 Hidden

30x32 Sensor
Input Retina

[Pomerleau, 1995]
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Obtaining training data

Output Units

Person’'s
Steering
Direction

[Pomerleau, 1995]
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Learning in neural network
Again we will minimize the error (K outputs):

E(W) =Y Zi:1..N Zc:1..K (Oic'Yic)2
I. the i-th training point
0,.. the c-th output for the i-th training point
Y,.: the c-th element of the i-th label indicator vector
Our variables are all the weights w on all the edges

= Apparent difficulty: we don’t know the ‘correct’
output of hidden units

= |t turns out to be OK: we can still do gradient
descent. The trick you need is the chain rule

= The algorithm is known as back-propagation
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Backpropagation algorithm (page 1)

BACKPROPAGATION(training set, o, D, N,iygen, K)

= Training set: {(X1, Y1), ..., (Xn, Yn)}, Xiis a
feature vector of size D, Yi is an output vector of
size K, a Is the learning rate (step size in gradient
descent), Ny,4q4en IS the number of hidden units

Create a neural network with D inputs, n,y4e, hidden
units, and K outputs. Connect each layer.

Initialize all weights to some small random numbers
(e.g. between —0.05 and 0.05)

Repeat next page until the termination condition is
met...
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Backpropagation algorithm (page 2)

For each training example (X, Y):

® Propagate the input forward through the network
Input X to the network, compute output o, for every unit u in the network

® Propagate the errors backward through the network

= for each output unit c, compute its error term o,
0, < (0, - Y. )0, (1—oc)_
= for each hidden unit h, compute its error term §,,

Oy = Zwlhé‘i joh (1-0,)

|esucc(h)

= update each weight w
W;; <— w  —Qo0;X;
* where x; Is the mput from unit i into unit j (o; if i is a hidden

unit; X, |f | IS an input)
* W Is the weight from unit i to unit |
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Derivation of backpropagation

For simplicity we assume online learning (as oppose
to batch learning): 1-step gradient descent after
seeing each training example (X,Y)

For each (X,Y), the error is

E(W) =2 Zc:1..K (OC'YC)2
= 0. the c-th output unit (when input is X)
= Y. the c-th element of the label indicator vector

Use gradient descent to change all the weights w;; to
minimize the error. Separate two cases:

= Case 1: w; when | is an output unit
= Case 2: w; when | is a hidden unit
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Case 1: weights of an output unit

1 1 2
OError 55(01 -¥;) } 55(9(;W,—mx,-m)— y;)

n n n

— (Oj _yj)oj(l_oj)xji

= 0. the c-th output unit (when input is X)
= Y. the c-th element of the label indicator vector
gradient descent: to minimize error, run away from

the partial derivative

OError
Wj < W;; — v =W;; —a(0; —¥;)0;(1-0,)X;

Ji
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Case 2: weights of a hidden unit

OError 3 OE, 0o, 0
OW . c—suoe(j) 00, 00; OW;

ag(z cm cm) 6g(ZWJn Jn

— Z(Oc _ yc S
c=succ( j) aXcm aWji
— Z(Oc o yc) -0, (1_Oc)Wcj ) Oj (1_Oj)xji
c=succ(j)
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Neural network weight learning issues

When to terminate backpropagation? Overfitting and
early stopping

= After fixed number of iterations (ok)
= When training error less than a threshold (wrong)

= When holdout set error starts to go up (ok)
Local optima

= The weights will converge to a local minimum
Learning rate

= Convergence sensitive to learning rate
= Weight learning can be rather slow
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Sensitivity to learning rate

0 ' -
i
1

,/H’

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the
Theory of Neural Computation.
Addison-Wesley, 1994.
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Neural network weight learning issues

Use ‘momentum’ (a heuristic?) to dampen gradient
descent

Aw(tD) = |ast time’s change to w
Aw® = - oo OE(W) / ow + B Aw(tD)
w < w + Aw®

FIGURE 6.3 Gradient descent on the
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with

n = 0.0476, the best value in the absence
of momentum. On the left there is no me-
mentum (@ = 0), while a = 0.5 on the
right.

Alternatives to gradient descent: Newton-Raphson,
Conjugate gradient
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Neural network structure learning issues

How many hidden units?
How many layers?
How to connect units?

Cross validation
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