
slide 1

Basic
Probability and Statistics

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison



slide 2

Reasoning with Uncertainty

• There are two identical-looking envelopes

 one has a red ball (worth $100) and a black ball

 one has two black balls.  Black balls worth nothing

• You randomly grabbed an envelope, randomly took 

out one ball – it‟s black.

• At this point you‟re given the option to switch the 

envelope.  To switch or not to switch?
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Outline

• Probability 

 random variable

 Axioms of probability

 Conditional probability

 Probabilistic inference: Bayes rule

 Independence

 Conditional independence
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Uncertainty

• Randomness

 Is our world random?

• Uncertainty

 Ignorance (practical and theoretical)‏

• Will my coin flip ends in head?

• Will bird flu strike tomorrow?

• Probability is the language of uncertainty

 Central pillar of modern day artificial intelligence
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Sample space

• A space of events that we assign probabilities to

• Events can be binary, multi-valued, or continuous

• Events are mutually exclusive

• Examples

 Coin flip: {head, tail}

 Die roll: {1,2,3,4,5,6}

 English words: a dictionary

 Temperature tomorrow: R+ (kelvin)‏
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Random variable

• A variable, x, whose domain is the sample space, 

and whose value is somewhat uncertain

• Examples:

 x = coin flip outcome

 x = first word in tomorrow‟s headline news

 x = tomorrow‟s temperature 

• Kind of like x = rand() 
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Probability for discrete events

• Probability P(x=a) is the fraction of times x takes 

value a

• Often we write it as P(a)‏

• There are other definitions of probability, and 

philosophical debates… but we‟ll not go there

• Examples

 P(head)=P(tail)=0.5 fair coin

 P(head)=0.51, P(tail)=0.49 slightly biased coin

 P(head)=1, P(tail)=0 Jerry‟s coin

 P(first word = “the” when flipping to a random 

page in R&N)=?

• Demo: http://www.bookofodds.com/
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Probability table

• Weather

• P(Weather = sunny) = P(sunny) = 200/365

• P(Weather) = {200/365, 100/365, 65/365}

• For now we‟ll be satisfied with obtaining the 

probabilities by counting frequency from data…

65/365100/365200/365

RainyCloudySunny
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Probability for discrete events

• Probability for more complex events A

 P(A=“head or tail”)=? fair coin

 P(A=“even number”)=? fair 6-sided die

 P(A=“two dice rolls sum to 2”)=?
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Probability for discrete events

• Probability for more complex events A

 P(A=“head or tail”)=0.5 + 0.5 = 1 fair coin

 P(A=“even number”)=1/6 + 1/6 + 1/6 = 0.5 fair 6-

sided die

 P(A=“two dice rolls sum to 2”)=1/6 * 1/6 = 1/36
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏

Sample

space
The fraction of A can‟t

be smaller than 0
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏

Sample

space

The fraction of A can‟t

be bigger than 1
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏

Sample

space
Valid sentence: e.g. “x=head or x=tail”
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏

Sample

space

Invalid sentence: 

e.g. “x=head AND x=tail”
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The axioms of probability

 P(A)  [0,1]

 P(true)=1, P(false)=0

 P(A  B) = P(A) + P(B) – P(A  B)‏

Sample

spaceA

B
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Some theorems derived from the axioms

• P(A) = 1 – P(A) picture?

• If A can take k different values a1… ak:

P(A=a1) + … P(A=ak) = 1

• P(B) = P(B A) + P(B  A), if A is a binary event

• P(B) = i=1…kP(B  A=ai), if A can take k values
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Joint probability

• The joint probability P(A=a, B=b) is a shorthand for 

P(A=a  B=b), the probability of both A=a and B=b 

happen

A

P(A=a,B=b), e.g. P(1st =“San”,2nd =“Francisco”)=0.0007

P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001
(possibly:‏San‏Francisco,‏San‏Diego,‏…)‏

(possibly:‏San‏Francisco,‏Don‏Francisco,‏Pablo‏Francisco‏…)‏
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Joint probability table

• P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365

• The full joint probability table between N variables, 

each taking k values, has kN entries (that‟s a lot!)‏

cold

hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny

weather

temp
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Marginal probability

• Sum over other variables

• The name comes from the old days when the sums 

are written on the margin of a page

cold

hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny

weather

temp

 200/365     100/365      65/365

P(Weather)={200/365, 100/365, 65/365}
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Marginal probability

• Sum over other variables

• This is nothing but P(B) = i=1…kP(B  A=ai), if A can 

take k values

cold

hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny

weather

temp

P(temp)={195/365, 170/365}



195/365 

170/365
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Conditional probability

• The conditional probability P(A=a | B=b) is the 

fraction of times A=a, within the region that B=b

A
P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001

P(A=a | B=b), e.g. P(1st=“San” | 2nd =“Francisco”)=0.875

Although‏“San”‏is‏rare‏and‏“Francisco”‏is‏rare,‏

given‏“Francisco”‏then‏“San”‏is‏quite‏likely!

(possibly:‏San,‏Don,‏Pablo‏…)‏
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Conditional probability

• P(San | Francisco) 

= #(1st=S and 2nd=F) / #(2nd=F)‏

= P(San  Francisco) / P(Francisco)‏

= 0.0007 / 0.0008

= 0.875

P(S)=0.001

P(F)=0.0008

P(S,F)=0.0007

A
P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a | B=b), e.g. P(1st=“San” | 2nd =“Francisco”)=0.875
(possibly:‏San,‏Don,‏Pablo‏…)‏
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Conditional probability

• In general, the conditional probability is 

• We can have everything conditioned on some other 

events C, to get a conditional version of conditional 

probability

„|‟ has low precedence.  

This should read P(A | (B,C))  

 





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BP
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BaAP
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The chain rule

• From the definition of conditional probability we have the 

chain rule

P(A, B) = P(B) * P(A | B)‏

• It works the other way around

P(A, B) = P(A) * P(B | A)‏

• It works with more than 2 events too

P(A1, A2, …, An) = 

P(A1) * P(A2 | A1) * P(A3| A1, A2) * … * P(An | A1,A2…An-1)‏
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Reasoning

How do we use probabilities in AI?

• You wake up with a headache (D‟oh!).  

• Do you have the flu? 

• H = headache, F = flu

Logical Inference: if (H) then F. (but the world is often not this 
clear cut)‏

Statistical Inference: compute the probability of a query given 
(conditioned on) evidence, i.e. P(F|H)‏

[Example from Andrew Moore]
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Inference with Bayes’ rule: Example 1

Inference: compute the probability of a query given evidence

(H = headache, F = flu)‏

You know that

• P(H) = 0.1 “one in ten people has headache”

• P(F) = 0.01 “one in 100 people has flu”

• P(H|F) = 0.9 “90% of people who have flu have headache”

• How likely do you have the flu? 

 0.9?

 0.01?

 …?

[Example from Andrew Moore]
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Inference with Bayes’ rule

• P(H) = 0.1 “one in ten people has headache”

• P(F) = 0.01     “one in 100 people has flu”

• P(H|F) = 0.9   “90% of people who have flu have 

headache”

• P(F|H) = 0.9 * 0.01 / 0.1 = 0.09

• So there‟s a 9% chance you have flu – much less 

than 90%

• But it‟s higher than P(F)=1%, since you have the 

headache

Bayes rule Essay Towards Solving a Problem 

in the Doctrine of Chances (1764)‏
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Inference with Bayes’ rule

• P(A|B) = P(B|A)P(A) / P(B) Bayes‟ rule

• Why do we make things this complicated?

 Often P(B|A), P(A), P(B) are easier to get

 Some names:

• Prior P(A): probability before any evidence

• Likelihood P(B|A): assuming A, how likely is the evidence

• Posterior P(A|B): conditional prob. after knowing evidence

• Inference: deriving unknown probability from known ones

• In general, if we have the full joint probability table, we 

can simply do P(A|B)=P(A, B) / P(B) – more on this 

later…
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Inference with Bayes’ rule: Example 2

• In a bag there are two envelopes

 one has a red ball (worth $100) and a black ball

 one has two black balls.  Black balls worth nothing

• You randomly grabbed an envelope, randomly took 

out one ball – it‟s black.

• At this point you‟re given the option to switch the 

envelope.  To switch or not to switch?
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Inference with Bayes’ rule: Example 2

• E: envelope, 1=(R,B), 2=(B,B)‏

• B: the event of drawing a black ball

• P(E|B) = P(B|E)*P(E) / P(B)‏

• We want to compare P(E=1|B) vs. P(E=2|B)‏

• P(B|E=1) = 0.5, P(B|E=2) = 1

• P(E=1)=P(E=2)=0.5

• P(B)=3/4 (it in fact doesn‟t matter for the comparison)‏

• P(E=1|B)=1/3, P(E=2|B)=2/3

• After seeing a black ball, the posterior probability of 

this envelope being 1 (thus worth $100) is smaller 

than it being 2

• Thus you should switch



slide 32

Independence

• Two events A, B are independent, if (the following are 

equivalent)‏

 P(A, B) = P(A) * P(B)‏

 P(A | B) = P(A)‏

 P(B | A) = P(B)‏

• For a 4-sided die, let

 A=outcome is small

 B=outcome is even

 Are A and B independent?

• How about a 6-sided die?
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Independence

• Independence is a domain knowledge

• If A, B are independent, the joint probability table 

between A, B is simple: 

 it has k2 cells, but only 2k-2 parameters.  This is 

good news – more on this later…

• Example: P(burglary)=0.001, P(earthquake)=0.002. 

Let‟s say they are independent.  The full joint 

probability table=?



slide 34

Independence misused

A famous statistician would never travel by airplane, because he had studied 

air travel and estimated that the probability of there being a bomb on any given 

flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you 

get here, by train?"

"No, I flew"

"What about the possibility of a bomb?"

"Well, I began thinking that if the odds of one bomb are 1:million, then the 

odds of two bombs are (1/1,000,000) x (1/1,000,000). This is a very, very 

small probability, which I can accept. So now I bring my own bomb along!"

An innocent old math joke
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Conditional independence

• Random variables can be dependent, but 

conditionally independent

• Your house has an alarm

 Neighbor John will call when he hears the alarm

 Neighbor Mary will call when she hears the alarm

 Assume John and Mary don‟t talk to each other

• JohnCall independent of MaryCall?  

 No – If John called, likely the alarm went off, which 

increases the probability of Mary calling

 P(MaryCall | JohnCall)  P(MaryCall) 
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Conditional independence

• If we know the status of the alarm, JohnCall won‟t 

affect Mary at all

P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)‏

• We say JohnCall and MaryCall are conditionally 

independent, given Alarm

• In general A, B are conditionally independent given C

 if P(A | B, C) = P(A | C), or

 P(B | A, C) = P(B | C), or

 P(A, B | C) = P(A | C) * P(B | C)‏


