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Reasoning with Uncertainty

There are two identical-looking envelopes
= one has a red ball (worth $100) and a black ball
= one has two black balls. Black balls worth nothing

You randomly grabbed an envelope, randomly took
out one ball — it's black.

At this point you're given the option to switch the
envelope. To switch or not to switch?
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Outline

Probabllity

= random variable

= Axioms of probability

= Conditional probability

= Probabillistic inference: Bayes rule
* Independence

= Conditional independence
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Uncertainty

Randomness
= |s our world random?

Uncertainty

= |gnorance (practical and theoretical)
* Will my coin flip ends in head?
« Will bird flu strike tomorrow?

Probability is the language of uncertainty
= Central pillar of modern day artificial intelligence
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Sample space

A space of events that we assign probabilities to
Events can be binary, multi-valued, or continuous
Events are mutually exclusive

Examples

= Coin flip: {head, tail}

= Dieroll: {1,2,3,4,5,6}

= English words: a dictionary

= Temperature tomorrow: R, (kelvin)
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Random variable

A variable, x, whose domain is the sample space,
and whose value is somewhat uncertain

Examples:
= X = coin flip outcome

= X = first word in tomorrow’s headline news
= X =tomorrow’s temperature
Kind of like x = rand()
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Probability for discrete events

Probability P(x=a) is the fraction of times x takes
value a

Often we write it as P(a)

There are other definitions of probability, and
philosophical debates... but we’'ll not go there

Examples

= P(head)=P(tail)=0.5 fair coin

= P(head)=0.51, P(tail)=0.49 slightly biased coin

» P(head)=1, P(tail)=0 Jerry’s coin

= P(first word = “the” when flipping to a random
page in R&N)="

Demo: http://www.bookofodds.com/
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Probability table
Weather

Sunny Cloudy Rainy
200/365 | 100/365 65/365

P(Weather = sunny) = P(sunny) = 200/365

P(Weather) = {200/365, 100/365, 65/365}

For now we’ll be satisfied with obtaining the
probabilities by counting frequency from data...
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Probability for discrete events

Probability for more complex events A
* P(A="head or tail”)=? fair coin
= P(A="even number’)=7? fair 6-sided die

= P(A="two dice rolls sum to 27)="7
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Probability for discrete events

Probability for more complex events A
= P(A="head or tail’)=0.5 + 0.5 = 1 fair coin

= P(A="even number”)=1/6 + 1/6 + 1/6 = 0.5 fair 6-
sided die

= P(A="two dice rolls sum to 2")=1/6 * 1/6 = 1/36
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The axioms of probability

= P(A) € [0,1]
= P(true)=1, P(false)=0
= P(AvB)=P(A)+PB)-PAAB)
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The axioms of probability
* P(A) € [0,1]
= P(true)=1, P(false)=0
= P(AvB)=P(A) + P(B) — P(A A B)

Sample
space

The fraction of A can’t

/ be smaller than O

(@)
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The axioms of probability

= P(A) € [0,1] The fraction of A can’t
= P(true)=1, P(false)=0 be bigger than 1

= P(Av B)=P(A) + P(B) — P(A A B) /

Sample
space
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The axioms of probability
= P(A) € [0,1]
= P(true)=1, P(false)=0
= P(AvB)=P(A) + P(B)— P(A A B)

Sample
space

Valid sentence: e.g. “"x=head or x=tail”
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The axioms of probability
= P(A) € [0,1]

= P(true)=1, P(false)=0
= P(AvB)=PA) +P(B)-P(AAB)

Sample
space

Invalid sentence:
e.g. "x=head AND x=tail”
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The axioms of probability
= P(A) € [0,1]

= P(true)=1, P(false)=0
= P(AvB)=P(A) + P(B) - P(AAB)

Sample
space
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Some theorems derived from the axioms
P(-A)=1-P(A) picture?

If A can take k different values a;.. ak'
P(A=a;) + ... P(A=a,) =

P(B) =P(B A—A) + P(B A A), if Alis a binary event

P(B) = 2., P(B A A=a), if A can take k values
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Joint probability

® The joint probability P(A=a, B=Db) is a shorthand for
P(A=a A B=Db), the probability of both A=a and B=Db
happen

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001

| (possibly: San Francisco, San Diego, ...)

l

P(B=b), e.g. P(2" word = “Francisco”) = 0.0008
— (possibly: San Francisco, Don Francisco, Pablo Francisco|...)

P(A=a,B=b), e.g. P(1st=“San”,2"d =“Francisco”)=0.0007

slide 18



Joint probability table

weather
Sunny | Cloudy | Rainy
temp hot 150/365 | 40/365 | 5/365
cold | 50/365 | 60/365 | 60/365

P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365

The full joint probability table between N variables,
each taking k values, has kN entries (that’s a lot!)
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Marginal probability

Sum over other variables
weather

Sunny | Cloudy | Rainy
hot 150/365 | 40/365 | 5/365

cold | 50/365 | 60/365 | 60/365
s 200/365 100/365  65/365

temp

P(Weather)={200/365, 100/365, 65/365}

The name comes from the old days when the sums
are written on the margin of a page
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Marginal probability

Sum over other variables
weather

Ssunny | Cloudy | Rainy |5
hot | 150/365 | 40/365 | 5/365 |195/365
cold | 50/365 | 60/365 | 60/365 |* /0365

temp

P(temp)={195/365, 170/365}

This is nothing but P(B) = 2.._, P(B A A=a), if A can
take k values
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Conditional probability

® The conditional probability P(A=a | B=Db) is the
fraction of times A=a, within the region that B=b

F(A:a), e.g. P(1stword on a random page = “San”) = 0.001

l

P(B=b), e.g. P(2" word = “Francisco”) = 0.0008
—

P(A=a | B=b), e.g. P(1s="San” | 2" =“Francisco”)=0.875
(possibly: San, Don, Pablo ...)

Although “San” 1s rare and “Francisco” 1s rare,
given “Francisco” then “San” is quite likely!
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Conditional probability

® P(San | Francisco) P(S)=0.001
= #(15'=S and 2"I=F) / #(2"I=F) P(F)=0.0008
= P(San A Francisco) / P(Francisco) P(S,F)=0.0007

= 0.0007 /0.0008
=0.875

P(B=b), e.g. P(2" word = “Francisco”) = 0.0008
—

P(A=a | B=b), e.g. P(1s="San” | 2" =“Francisco”)=0.875
(possibly: San, Don, Pablo ...)
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Conditional probability

In general, the conditional probability is
P(A=a,B) P(A=a,B)
P(B) > P(A=4,,B)

all g

P(A=a|B)=

We can have everything conditioned on some other
events C, to get a conditional version of conditional
probability

P(A,B|C)
P(B|C)

P(A|B,C) =

‘I has low precedence.
This should read P(A | (B,C))
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The chain rule

From the definition of conditional probability we have the
chain rule

P(A, B) = P(B) * P(A | B)
It works the other way around
P(A, B)=P(A) *P(B | A)
It works with more than 2 events too
P(A;, A, ..., Ay =
P(A) *P(A, | A) *P(As] Ay, A) ™ .. " P(AL | ALAS. ALY
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Reasoning

How do we use probabilities in Al?
You wake up with a headache (D’oh!).
Do you have the flu?
H = headache, F =flu

Logical Inference: if (H) then F. (but the world is often not this
clear cut)

Statistical Inference: compute the probability of a query given
(conditioned on) evidence, i.e. P(F|H)

[Example from Andrew Moore] slide 26



Inference with Bayes’ rule: Example 1

Inference: compute the probability of a query given evidence
(H = headache, F = flu)

You know that
P(H)=0.1 “one in ten people has headache”
P(F) =0.01 “onein 100 people has flu”
P(H|F) = 0.9 “90% of people who have flu have headache”

How likely do you have the flu?
= 0.9?

= 0.017

= .7

[Example from Andrew Moore] slide 27



Inference with Bayes’ rule

Essay Towards Solving a Problem
in the Doctrine of Chances (1764)

o(F [H) = P(EH) _ P(HIF)P(F)
P(H) P(H)

P(H)=0.1 “‘one in ten people has headache
P(F) =0.01 “one in 100 people has flu”

P(H|F) =0.9 “90% of people who have flu have
headache”

P(F|[H)=0.9*0.01/0.12=0.09

So there’s a 9% chance you have flu — much less
than 90%

But it's higher than P(F)=1%, since you have the
headache
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Inference with Bayes’ rule

P(AIB) = P(B|A)P(A) / P(B) Bayes’ rule
Why do we make things this complicated?
= Often P(B|A), P(A), P(B) are easier to get

= S0ome nhames.:
* Prior P(A): probability before any evidence
* Likelihood P(B|A): assuming A, how likely is the evidence
« Posterior P(A|B): conditional prob. after knowing evidence
 Inference: deriving unknown probability from known ones

In general, if we have the full joint probability table, we
can simply do P(A|B)=P(A, B) / P(B) — more on this
later...
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Inference with Bayes’ rule: Example 2

In a bag there are two envelopes
= one has a red ball (worth $100) and a black ball
= one has two black balls. Black balls worth nothing

You randomly grabbed an envelope, randomly took
out one ball — it's black.

At this point you're given the option to switch the
envelope. To switch or not to switch?
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Inference with Bayes’ rule: Example 2

E: envelope, 1=(R,B), 2=(B,B)

B: the event of drawing a black ball

P(E|B) = P(B|E)*P(E) / P(B)

We want to compare P(E=1|B) vs. P(E=2|B)
P(B|E=1) = 0.5, P(B|IE=2) =1

P(E=1)=P(E=2)=0.5

P(B)=3/4 (it in fact doesn’t matter for the comparison)
P(E=1|B)=1/3, P(E=2|B)=2/3

After seeing a black ball, the posterior probability of

this envelope being 1 (thus worth $100) is smaller
than it being 2

Thus you should switch
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Independence

Two events A, B are independent, if (the following are
equivalent)

= P(A, B) =P(A) * P(B)

* P(A|B)=P(A)

" P(B|A)=P(B)

For a 4-sided die, let

= A=outcome is small

= B=outcome Is even

= Are A and B independent?
How about a 6-sided die?
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Independence

Independence is a domain knowledge

If A, B are independent, the joint probability table
between A, B is simple:

= it has k? cells, but only 2k-2 parameters. This is
good news — more on this later...

Example: P(burglary)=0.001, P(earthquake)=0.002.
Let’s say they are independent. The full joint
probability table="
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Independence misused
A famous statistician would never travel by airplane, because he had studied
air travel and estimated that the probability of there being a bomb on any given

flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you
get here, by train?"

"No, I flew"
"What about the possibility of a bomb?"
"Well, | began thinking that if the odds of one bomb are 1:million, then the

odds of two bombs are (1/1,000,000) x (1/1,000,000). This is a very, very
small probability, which | can accept. So now | bring my own bomb along!"

An innocent old math joke
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Conditional independence

Random variables can be dependent, but
conditionally independent

Your house has an alarm
= Neighbor John will call when he hears the alarm

= Neighbor Mary will call when she hears the alarm
= Assume John and Mary don’t talk to each other

JohnCall independent of MaryCall?
= No — If John called, likely the alarm went off, which
Increases the probability of Mary calling

= P(MaryCall | JohnCall) # P(MaryCall)
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Conditional independence

® If we know the status of the alarm, JohnCall won'’t
affect Mary at all

P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)

® We say JohnCall and MaryCall are conditionally
iIndependent, given Alarm

® In general A, B are conditionally independent given C
= fP(A|B,C)=P(A]|C),or
= PB|A C)=P(B|C),or
= PALB|C)=PA|C)*P(B|C)
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