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Main messages

• Many AI problems can be formulated as search.

• Iterative deepening is good when you don’t know 
much.
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http://xkcd.com/1134/



slide 5

The search problem

• State space S : all valid configurations

• Initial states (nodes) I={(CSDF,)}  S 
 Where’s the boat?

• Goal states G={(,CSDF)}  S

• Successor function succs(s) S : states reachable in 
one step (one arc) from s
 succs((CSDF,)) = {(CD, SF)}
 succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all arcs. (weighted later)

• The search problem: find a solution path from a state 
in I to a state in G.
 Optionally minimize the cost of the solution.

C    S       D       F
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Search examples

• 8-puzzle 

• States = configurations

• successor function = up to 4 kinds of movement

• Cost = 1 for each move
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Search examples

• Water jugs: how to get 1?

• Goal? (How many goal states?)

• Successor function: fill up (from tap or other jug), 
empty (to ground or other jug)

7 5
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Search examples

• Route finding (state? Successors? Cost weighted)
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8-queens

• State: complete configuration vs. column-by-column

• Tree instead of graph
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A directed graph in state space

• In general there will be many generated, but un-
expanded states at any given time

• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF

C    S       D       F

start goal
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Different search strategies

• The generated, but not yet expanded states form the 
fringe (OPEN).

• The essential difference is which one to expand first.

• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF

start goal
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Uninformed search on trees

• Uninformed means we only know:

– The goal test

– The succs() function

• But not which non-goal states are better: that would 
be informed search (next lecture).

• For now, we also assume succs() graph is a tree.
 Won’t encounter repeated states.
 We will relax it later.

• Search strategies: BFS, UCS, DFS, IDS, BIBFS

• Differ by what un-expanded nodes to expand
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Breadth-first search (BFS)

Expand the shallowest node first

• Examine states one step away from the initial states

• Examine states two steps away from the initial states

• and so on…

ripple

g
o
a
l
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Breadth-first search (BFS)

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile
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Breadth-first search (BFS)

queue (fringe, OPEN)
 [A] 

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile
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Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB]  A

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile
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Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC]  B

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile
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Breadth-first search (BFS)

queue (fringe , OPEN)
[GFED]  C

If G is a goal, we've seen it, but 
we don't stop!

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile
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Breadth-first search (BFS)

Use a queue (First-in First-out)

• en_queue(Initial states)

• While (queue not empty)

•     s = de_queue()

•     if (s==goal) success!

•     T = succs(s)

•     for t in T: t.prev=s

•     en_queue(T)

• endWhile

queue
[] G 

... until much later we pop G.

We need back pointers to 
recover the solution path.

Looking stupid? 
Indeed.  But let’s be 
consistent…



slide 20

Performance of BFS

• Assume: 
 the graph may be infinite. 
 Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?

• Will BFS find the least cost goal?

• Time complexity?
 # states generated
 Goal d edges away
 Branching factor b

• Space complexity?
 # states stored g

o
a
l
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Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will 
find a goal.

• Optimality: yes if edges cost 1 (more generally 
positive non-decreasing in depth), no otherwise.

• Time complexity (worst case): goal is the last node at 
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
 Back pointers for all generated nodes O(bd)
 The queue / fringe (smaller, but still O(bd))
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What’s in the fringe (queue) for BFS?

• Convince yourself this is O(bd)

g
o
a
l
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Performance of search algorithms on trees

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

spacetimeoptimalComplete

1.   Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth
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Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will 
find a goal.

• Optimality: yes if edges cost 1 (more generally 
positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at 
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
 Back points for all generated nodes O(bd)
 The queue (smaller, but still O(bd))

Solution:
Uniform-cost

search
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Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge 
costs along the path).   Expand the least cost node 
first.

• Use a priority queue instead of a normal queue
 Always take out the least cost item
 Remember heap? time O(log(#items in heap))

That’s it*

* Complications on graphs (instead of trees). Later.
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Uniform-cost search (UCS)

• Complete and optimal (if edge costs   > 0)

• Time and space: can be much worse than BFS
 Let C* be the cost of the least-cost goal
 O(bC*/ ), possibly C*/   >> d

all edges 
except this one

g
o
a
l

C*
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Performance of search algorithms on trees

O(bC*/)O(bC*/)YY
Uniform-cost 
search2

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth
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General State-Space Search Algorithm
function general-search(problem, QUEUEING-FUNCTION)
  ;; problem describes the start state, operators, goal test, and
  ;;   operator costs
  ;; queueing-function is a comparator function that ranks two states
  ;; general-search returns either a goal node or "failure"

  nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
  loop
     if EMPTY(nodes) then return "failure"
     node = REMOVE-FRONT(nodes)
     if problem.GOAL-TEST(node.STATE) succeeds

then return node
     nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

                  problem.OPERATORS))
     ;; succ(s)=EXPAND(s, OPERATORS)
     ;; Note: The goal test is NOT done when nodes are generated
     ;; Note: This algorithm does not detect loops
  end
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Recall the bad space complexity of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will 
find a goal.

• Optimality: yes if edges cost 1 (more generally 
positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at 
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
 Back points for all generated nodes O(bd)
 The queue (smaller, but still O(bd))

Solution: 
Depth-first

search

Solution:
Uniform-cost

search
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Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

fan 

g
o
a
l
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Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3.     s = pop()

4.     if (s==goal) success!

5.     T = succs(s)

6.     push(T)

7. endWhile stack (fringe)
[]  
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What’s in the fringe for DFS?

• m = maximum depth of graph from start

• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
 generate siblings (if applicable)

g
o
a
l

c.f. BFS O(bd)
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What’s wrong with DFS?

• Infinite tree: may      not find goal (incomplete)

• May not be optimal

• Finite tree: may visit almost all nodes, time 
complexity O(bm)

g
o
a
l

c.f. BFS O(bd)g
o
a
l

g
o
a
l
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 
search

O(bC*/)O(bC*/)YY
Uniform-cost 
search2

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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How about this?

1. DFS, but stop if path length > 1. 

2. If goal not found, repeat DFS, stop if path length >2.

3. And so on…

fan within ripple

g
o
a
l

g
o
a
l

g
o
a
l
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Iterative deepening

• Search proceeds like BFS, but fringe is like DFS
 Complete, optimal like BFS
 Small space complexity like DFS

• A huge waste?
 Each deepening repeats DFS from the beginning
 No! db+(d-1)b2+(d-2)b3+…+bd ~ O(bd)
 Time complexity like BFS

• Preferred uninformed search method
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 
search

O(bC*/)O(bC*/)YY
Uniform-cost 
search2

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

O(bd)O(bd)Y, if 1Y
Iterative 
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 
search

O(bC*/)O(bC*/)YY
Uniform-cost 
search2

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

O(bd)O(bd)Y, if 1Y
Iterative 
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

How to reduce the number of 

states we have to generate?
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Bidirectional search

s
t
a
r
t

• Breadth-first search from both start and goal

• Fringes meet

• Generates O(bd/2) instead of O(bd) nodes

g
o
a
l
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Bidirectional search

s
t
a
r
t

g
o
a
l

• But
 The fringes are O(bd/2)
 How do you start from the 8-queens goals?
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 
search

O(bC*/)O(bC*/)YY
Uniform-cost 
search2

O(bd)O(bd)Y, if 1Y
Breadth-first 
search

O(bd)O(bd)Y, if 1Y
Iterative 
deepening

O(bd/2)O(bd/2)Y, if 1YBidirectional 
search3

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0.  C* is the best goal path cost.
• both directions BFS; not always feasible.

b: branching factor (assume finite) d: goal depth m: graph depth
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If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS) 
or impossible (DFS).   Can you see why?

• How to prevent it?  

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF
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If state space graph is not a tree

• We have to remember already-expanded states 
(CLOSED).

• When we take out a state from the fringe (OPEN), 
check whether it is in CLOSED (already expanded). 
 If yes, throw it away.
 If no, expand it (add successors to OPEN), and 

move it to CLOSED.
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If state space graph is not a tree

• BFS: 
 Still O(bd) space complexity, not worse

• DFS:
 Known as Memorizing DFS (MEMDFS)

• Space and time now O(min(N, bM)) – much worse!
• N: number of states in problem
• M: length of longest cycle-free path from start to 

anywhere

 Alternative: Path Check DFS (PCDFS): remember 
only expanded states on current path (from start to 
the current node)

• Space O(M)
• Time O(bM)
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Path Checking DFS

1.Maintain a “prefix” path from root to current node, 
initially empty.

2.Pop a state s.  If s in prefix, skip to next pop

3.Goal-checking s.

4.s comes with a backpointer to its parent p.  The prefix 
should contain p somewhere as in initial, ..., p, ...

5.Remove everything after p and put s there, so prefix is 
now initial, ..., p, s.

6.When you generate a successor t of s, check if t is in 
prefix or stack.  If no, push t to the stack; if yes, do not 
push it.
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Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)
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Nodes expanded by:

• Depth-First Search: S A D E G

Solution found: S A G

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed 
search that worries about costs.)

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G 
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Depth-First Search 
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Breadth-First Search 
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Uniform-Cost Search 
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What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search
 Breadth-first search

• Uniform-cost search

 Depth-first search
 Iterative deepening 
 Bidirectional search

• Can you unify them (except bidirectional) using the 
same algorithm, with different priority functions?

• Performance measures
 Completeness, optimality, time complexity, space 

complexity
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