
slide 1

CS540
Uninformed Search

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

slide 2

Main messages

• Many AI problems can be formulated as search.

• Iterative deepening is good when you don’t know
much.

slide 3

slide 4

http://xkcd.com/1134/

slide 5

The search problem

• State space S : all valid configurations

• Initial states (nodes) I={(CSDF,)}  S
 Where’s the boat?

• Goal states G={(,CSDF)}  S

• Successor function succs(s) S : states reachable in
one step (one arc) from s
 succs((CSDF,)) = {(CD, SF)}
 succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all arcs. (weighted later)

• The search problem: find a solution path from a state
in I to a state in G.
 Optionally minimize the cost of the solution.

C S D F

slide 6

Search examples

• 8-puzzle

• States = configurations

• successor function = up to 4 kinds of movement

• Cost = 1 for each move

slide 7

Search examples

• Water jugs: how to get 1?

• Goal? (How many goal states?)

• Successor function: fill up (from tap or other jug),
empty (to ground or other jug)

7 5

slide 8

Search examples

• Route finding (state? Successors? Cost weighted)

slide 9

8-queens

• State: complete configuration vs. column-by-column

• Tree instead of graph

slide 10

A directed graph in state space

• In general there will be many generated, but un-
expanded states at any given time

• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

slide 11

Different search strategies

• The generated, but not yet expanded states form the
fringe (OPEN).

• The essential difference is which one to expand first.

• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

start goal

slide 12

Uninformed search on trees

• Uninformed means we only know:

– The goal test

– The succs() function

• But not which non-goal states are better: that would
be informed search (next lecture).

• For now, we also assume succs() graph is a tree.
 Won’t encounter repeated states.
 We will relax it later.

• Search strategies: BFS, UCS, DFS, IDS, BIBFS

• Differ by what un-expanded nodes to expand

slide 13

Breadth-first search (BFS)

Expand the shallowest node first

• Examine states one step away from the initial states

• Examine states two steps away from the initial states

• and so on…

ripple

g
o
a
l

slide 14

Breadth-first search (BFS)

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

slide 15

Breadth-first search (BFS)

queue (fringe, OPEN)
 [A] 

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

slide 16

Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB]  A

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

slide 17

Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC]  B

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

slide 18

Breadth-first search (BFS)

queue (fringe , OPEN)
[GFED]  C

If G is a goal, we've seen it, but
we don't stop!

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

slide 19

Breadth-first search (BFS)

Use a queue (First-in First-out)

• en_queue(Initial states)

• While (queue not empty)

• s = de_queue()

• if (s==goal) success!

• T = succs(s)

• for t in T: t.prev=s

• en_queue(T)

• endWhile

queue
[] G

... until much later we pop G.

We need back pointers to
recover the solution path.

Looking stupid?
Indeed. But let’s be
consistent…

slide 20

Performance of BFS

• Assume:
 the graph may be infinite.
 Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?

• Will BFS find the least cost goal?

• Time complexity?
 # states generated
 Goal d edges away
 Branching factor b

• Space complexity?
 # states stored g

o
a
l

slide 21

Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will
find a goal.

• Optimality: yes if edges cost 1 (more generally
positive non-decreasing in depth), no otherwise.

• Time complexity (worst case): goal is the last node at
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
 Back pointers for all generated nodes O(bd)
 The queue / fringe (smaller, but still O(bd))

slide 22

What’s in the fringe (queue) for BFS?

• Convince yourself this is O(bd)

g
o
a
l

slide 23

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

slide 24

Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will
find a goal.

• Optimality: yes if edges cost 1 (more generally
positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
 Back points for all generated nodes O(bd)
 The queue (smaller, but still O(bd))

Solution:
Uniform-cost

search

slide 25

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge
costs along the path). Expand the least cost node
first.

• Use a priority queue instead of a normal queue
 Always take out the least cost item
 Remember heap? time O(log(#items in heap))

That’s it*

* Complications on graphs (instead of trees). Later.

slide 26

Uniform-cost search (UCS)

• Complete and optimal (if edge costs   > 0)

• Time and space: can be much worse than BFS
 Let C* be the cost of the least-cost goal
 O(bC*/ ), possibly C*/  >> d

all edges 
except this one

g
o
a
l

C*

slide 27

Performance of search algorithms on trees

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

slide 28

General State-Space Search Algorithm
function general-search(problem, QUEUEING-FUNCTION)
 ;; problem describes the start state, operators, goal test, and
 ;; operator costs
 ;; queueing-function is a comparator function that ranks two states
 ;; general-search returns either a goal node or "failure"

 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds

then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

 problem.OPERATORS))
 ;; succ(s)=EXPAND(s, OPERATORS)
 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops
 end

slide 29

Recall the bad space complexity of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will
find a goal.

• Optimality: yes if edges cost 1 (more generally
positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at
radius d.
 Have to generate all nodes at radius d.
 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
 Back points for all generated nodes O(bd)
 The queue (smaller, but still O(bd))

Solution:
Depth-first

search

Solution:
Uniform-cost

search

slide 30

Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

fan

g
o
a
l

slide 31

Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3. s = pop()

4. if (s==goal) success!

5. T = succs(s)

6. push(T)

7. endWhile stack (fringe)
[] 

slide 32

What’s in the fringe for DFS?

• m = maximum depth of graph from start

• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
 generate siblings (if applicable)

g
o
a
l

c.f. BFS O(bd)

slide 33

What’s wrong with DFS?

• Infinite tree: may not find goal (incomplete)

• May not be optimal

• Finite tree: may visit almost all nodes, time
complexity O(bm)

g
o
a
l

c.f. BFS O(bd)g
o
a
l

g
o
a
l

slide 34

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 35

How about this?

1. DFS, but stop if path length > 1.

2. If goal not found, repeat DFS, stop if path length >2.

3. And so on…

fan within ripple

g
o
a
l

g
o
a
l

g
o
a
l

slide 36

Iterative deepening

• Search proceeds like BFS, but fringe is like DFS
 Complete, optimal like BFS
 Small space complexity like DFS

• A huge waste?
 Each deepening repeats DFS from the beginning
 No! db+(d-1)b2+(d-2)b3+…+bd ~ O(bd)
 Time complexity like BFS

• Preferred uninformed search method

slide 37

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 38

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

How to reduce the number of

states we have to generate?

slide 39

Bidirectional search

s
t
a
r
t

• Breadth-first search from both start and goal

• Fringes meet

• Generates O(bd/2) instead of O(bd) nodes

g
o
a
l

slide 40

Bidirectional search

s
t
a
r
t

g
o
a
l

• But
 The fringes are O(bd/2)
 How do you start from the 8-queens goals?

slide 41

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

O(bd/2)O(bd/2)Y, if 1YBidirectional
search3

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
• edge costs   > 0. C* is the best goal path cost.
• both directions BFS; not always feasible.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 42

If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

slide 43

If state space graph is not a tree

• We have to remember already-expanded states
(CLOSED).

• When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).
 If yes, throw it away.
 If no, expand it (add successors to OPEN), and

move it to CLOSED.

slide 44

If state space graph is not a tree

• BFS:
 Still O(bd) space complexity, not worse

• DFS:
 Known as Memorizing DFS (MEMDFS)

• Space and time now O(min(N, bM)) – much worse!
• N: number of states in problem
• M: length of longest cycle-free path from start to

anywhere

 Alternative: Path Check DFS (PCDFS): remember
only expanded states on current path (from start to
the current node)

• Space O(M)
• Time O(bM)

slide 45

Path Checking DFS

1.Maintain a “prefix” path from root to current node,
initially empty.

2.Pop a state s. If s in prefix, skip to next pop

3.Goal-checking s.

4.s comes with a backpointer to its parent p. The prefix
should contain p somewhere as in initial, ..., p, ...

5.Remove everything after p and put s there, so prefix is
now initial, ..., p, s.

6.When you generate a successor t of s, check if t is in
prefix or stack. If no, push t to the stack; if yes, do not
push it.

slide 46

Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

slide 47

Nodes expanded by:

• Depth-First Search: S A D E G

Solution found: S A G

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed
search that worries about costs.)

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

slide 48

Depth-First Search

slide 49

Breadth-First Search

slide 50

Uniform-Cost Search

slide 51

What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search
 Breadth-first search

• Uniform-cost search

 Depth-first search
 Iterative deepening
 Bidirectional search

• Can you unify them (except bidirectional) using the
same algorithm, with different priority functions?

• Performance measures
 Completeness, optimality, time complexity, space

complexity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

