
CS731 Homework 2

Due 4/4/2011 before class

What to hand in: the .pdf file, the .tex source file, and any other files required
in the questions. You do not need to handin any code. See course webpage for
hand-in instructions. This homework involves programming – you are free to
choose the language, but Matlab or R is recommended. Please use the class
mailing list to ask questions (and answer them if you can).

1. (10 points) Suppose we run a ridge regression with regularization parame-
ter λ on a single variable X, and get coefficient β. We now include an exact
copy X∗ = X, and refit our ridge regression. Show that both coefficients
are identical, and derive their value.

2. (30 points) Consider the 1D Gaussian distribution p(x) = N(x;µ, σ2) with
mean µ and variance σ2. Define sufficient statistics φ(x) = (x, x2)>. Show
key derivation steps when answering the following questions.

(a) Express p(x) in exponential form with parameters θ = (θ1, θ2)>. In
particular, derive θ1, θ2, A(θ) in terms of µ, σ.

(b) Define Ω.

(c) Given parameter θ, derive the corresponding mean parameter (sug-
gestion: call the mean parameter m = (m1,m2)> to avoid confusion
with the mean of the Gaussian).

(d) Derive the set of realizable mean parameters M.

(e) Derive the conjugate dual function A∗.

3. (30 points) You will implement a Metropolis-Hastings sampler in this ques-
tion. The target distribution p(θ) is a Mixture-of-Dirichlet:

p(θ) =
1
2
Dir(θ;α1 . . . αd) +

1
2
Dir(θ;β1 . . . βd) (1)

where d is the dimensionality, and the α’s and β’s are positive Dirichlet
parameters.

(a) Derive Ep[θ] in the general case.

(b) Let d = 3. Describe how you generate a particular set of α’s and β’s
in (0,+∞). These are going to specify your target distribution p(θ).
Show your α’s and β’s, as well as the value of Ep[θ].
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(c) Your Metropolis-Hastings sampler can evaluate p(θ) (or an unnor-
malized version of it) for any θ. However, do not give the proposal
distribution any knowledge of your α’s and β’s (i.e., it should not
know where the true modes are, etc.). Instead, use a d-dimensional
Gaussian distribution centered on the previous sample:

q(θ′ | θ) = N(θ′; θ,
1
10

I) (2)

where I is the d-dimensional identity matrix.
Explain the mismatch between the domains of the Mixture-of-Dirichlet
distribution, and the Gaussian proposal distribution. Explain how
you handle the mismatch.

(d) Generate 5,000 samples with your Metropolis-Hastings sampler, dis-
card the first 1,000 for burn-in. Plot the remaining 4,000 samples as
a 2D scatter plot: Each θ = (θ1, θ2, θ3) can be plotted as a 2D point
(θ1, θ2).

(e) Estimate Ep[θ] with your 4,000 samples.

(f) Repeat the question but with d = 10. Specifically, show the α’s and
β’s, the true Ep[θ], and your estimated Ep[θ] from 4,000 samples.
You do not need to visualize them.

4. (30 point)

MendotaIce.txt lists x ∈ [0, 1] the fraction of time (per year) that Lake
Mendota was covered by ice. Each row is for a single year (not necessarily
in the correct order). This data comes from the Wisconsin State Clima-
tology Office and dates back to 1855. The article DETERMINING THE
ICE COVER ON MADISON LAKES at
http://www.aos.wisc.edu/~sco/lakes/msn-lakes_instruc.html
serves as a fine example of the Wisconsin tradition to integrate scientific
research and beer.

Let us estimate the density distribution p(x) with a kernel density esti-
mator. Use the kernel K = N(0, 1). Do not worry about probability mass
“leaking” outside [0,1].

(a) Plot the cross-validation estimator of risk Ĵ(h) on a dense grid of h.
Give the value of the optimal h you use.

(b) Plot the density using your optimal h.

(c) Plot the densities using h/10 (under-smoothing) and 10h (over-smoothing),
respectively.
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