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1 Probability Measure

A sample space Ω is the set of all possible outcomes. Elements ω ∈ Ω are called sample outcomes, while
subsets A ⊆ Ω are called events. For example, for a die roll, Ω = {1, 2, 3, 4, 5, 6}, ω = 5 is an outcome,
A1 = {5} is the event that the outcome is 5, and A2 = {1, 3, 5} is the event that the outcome is odd. Ideally,
one would like to be able to assign probabilities to all As. This is trivial for finite Ω. However, when Ω = R
strange things happen: it is no longer possible to consistently assign probabilities to all subsets of R.

Instead, we will restrict ourselves to only some of the events. A σ-algebra B is a set of Ω subsets satisfying:

1. ∅ ∈ B

2. if A ∈ B then Ac ∈ B (complementarity)

3. if A1, A2, . . . ∈ B then ∪∞i=1Ai ∈ B (countable unions)

The sets in B are called measurable. The pair (Ω,B) is called a measurable space. For Ω = R, we take the
smallest σ-algebra that contains all the open subsets and call it the Borel σ-algebra.

A measure is a function P : B 7→ R satisfying:

1. P (A) ≥ 0 for all A ∈ B

2. If A1, A2, . . . are disjoint then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai)

Note these imply P (∅) = 0. The triple (Ω,B, P ) is called a measure space. The Lebesgue measure is a
uniform measure over the Borel σ-algebra with the usual meaning of length, area or volume, depending on
dimensionality. For example, for R the Lebesgue measure of the interval (a, b) is b− a.

A probability measure is a measure satisfying additionally the normalization constraint:

3 P (Ω) = 1.

Such a triple (Ω,B, P ) is called a probability space.

2 Random Variables

Let (Ω,B, P ) be a probability space. Let (R,R) be the usual measurable space of reals and its Borel σ-
algebra. A random variable is a function X : Ω 7→ R such that the preimage of any set A ∈ R is measurable
in B: X−1(A) = {ω : X(ω) ∈ A} ∈ B. This allows us to define the following (the first P is the new definition,
while the 2nd and 3rd P s are the already-defined probability measure on B):

P (X ∈ A) = P (X−1(A)) = P ({ω : X(ω) ∈ A}) (1)
P (X = x) = P (X−1(x)) = P ({ω : X(ω) = x}) (2)

Example 1 Let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Consider drawing a point at random from Ω.
The outcome is of the form ω = (x, y). Some example random variables are X(ω) = x, Y (ω) = y, Z(ω) = xy,
and W (ω) =

√
x2 + y2.
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Example 2 Let X = ω be a uniform random variable (to be defined later) with the sample space Ω = [0, 1].
A sequence of different random variables {Xn}∞n=1 can be defined as follows, where 1{z} = 1 if z is true, and
0 otherwise:

X1(ω) = ω + 1{ω ∈ [0, 1]} (3)

X2(ω) = ω + 1{ω ∈ [0,
1
2
]} (4)

X3(ω) = ω + 1{ω ∈ [
1
2
, 1]} (5)

X4(ω) = ω + 1{ω ∈ [0,
1
3
]} (6)

X5(ω) = ω + 1{ω ∈ [
1
3
,
2
3
]} (7)

X6(ω) = ω + 1{ω ∈ [
2
3
, 1]} (8)
. . .

Given a random variable X, the cumulative distribution function (CDF) is the function FX : R 7→ [0, 1]

FX(x) = P (X ≤ x) = P (X ∈ (−∞, x]) = P ({ω : X(ω) ∈ (−∞, x]}). (9)

A random variable X is discrete if it takes countably many values. We define the probability mass
function fX(x) = P (X = x).

A random variable X is continuous if there exists a function fX such that

1. fX(x) ≥ 0 for all x ∈ R

2.
∫∞
−∞ fX(x)dx = 1

3. for every a ≤ b, P (X ∈ [a, b]) =
∫ b

a
fX(x)dx.

The function fX is called the probability density function (PDF) of X. CDF and PDF are related by

FX(x) =
∫ x

−∞
fX(t)dt (10)

fX(x) = F ′X(x) at all points x at which FX is differentiable. (11)

3 Some Random Variables

3.1 Discrete

Dirac or point mass distribution X ∼ δa if P (X = a) = 1 with CDF F (x) = 0 if x < a and 1 if x ≥ a.
Binomial. A random variable X has a binomial distribution with parameters n (number of trials) and

p (head probability) X ∼ Binomial(n, p) with probability mass function

f(x) =


(

n
x

)
px(1− p)n−x for x = 0, 1, . . . , n

0 otherwise
(12)

If X1 ∼ Binomial(n1, p) and X2 ∼ Binomial(n2, p) then X1 + X2 ∼ Binomial(n1 + n2, p). Think this as
merging two coin flip experiments on the same coin.

Bernoulli. Binomial with n = 1.
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Multinomial. The d-dimensional version of binomial. The parameter p = (p1, . . . , pd)> is now the
probabilities of a d-sided die, and x = (x1, . . . , xd)> is the counts of each face.

f(x) =


(

n
x1, . . . , xd

) ∏d
k=1 pxk

k if
∑d

k=1 xk = n

0 otherwise
(13)

Poisson. X ∼ Poisson(λ) if f(x) = e−λ λx

x! for x = 0, 1, 2, . . .. If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2)
then X1 + X2 ∼ Poisson(λ1 + λ2).

Geometric. X ∼ Geom(p) if f(x) = p(1− p)x−1 for x = 1, 2, . . .

3.2 Continuous

Gaussian (also called Normal distribution). X ∼ N(µ, σ2) with parameters µ ∈ R (the mean) and σ2

(the variance) if

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
. (14)

The square root of variance σ > 0 is called the standard deviation. If µ = 0, σ = 1, X has a standard normal
distribution. In this case, X is usually written as Z. Some useful properties:

• (Scaling) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1)

• (Independent sum) If Xi ∼ N(µi, σ
2
i ) are independent, then

∑
i Xi ∼ N

(∑
i µi,

∑
i σ2

i

)
χ2 distribution. If Z1, . . . , Zk are independent standard normal random variables, then Y =

∑k
i Z2

i

has a χ2 distribution with k degrees of freedom. If Xi ∼ N(µi, σ
2
i ) are independent, then

∑
i

(
Xi−µi

σi

)2

has

a χ2 distribution with k degrees of freedom. The PDF for the χ2 distribution with k degrees of freedom is

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0. (15)

Multivariate Gaussian. Let x, µ ∈ Rd, Σ ∈ Sd
+ a symmetric, positive definite matrix of size d × d.

Then X ∼ N(µ,Σ) with PDF

f(x) =
1

|Σ|1/2(2π)d/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
. (16)

Here, µ is the mean vector, Σ is the covariance matrix, |Σ| its determinant, and Σ−1 its inverse (exists
because Σ is positive definite).

If we have two (groups of) variables that are jointly Gaussian:[
x
y

]
∼ N

([
µx

µy

]
,

[
A C

C> B

])
(17)

then we have:

• (Marginal) x ∼ N(µx, A)

• (Conditional) y|x ∼ N(µy + C>A−1(x− µx), B − C>A−1C)

Exponential. X ∼ Exp(β) with parameter β > 0, if f(x) = 1
β e−x/β .

Gamma. The Gamma function (not distribution) is defined as Γ(α) =
∫∞
0

yα−1e−ydy with α > 0. The
Gamma function is an extension to the factorial function: Γ(n) = (n − 1)! when n is a positive integer. It
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also satisfies Γ(α + 1) = αΓ(α) for α > 0. X has a Gamma distribution with shape parameter α > 0 and
scale parameter β > 0, denoted by X ∼ Gamma(α, β), if

f(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0. (18)

Gamma(1, β) is the same as Exp(β).
Beta. X ∼ Beta(α, β) with parameters α, β > 0, if

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1, x ∈ (0, 1). (19)

Beta(1, 1) is uniform in [0, 1]. Beta(α < 1, β < 1) has a U-shape. Beta(α > 1, β > 1) is unimodal with mean
α/(α + β) and mode (α− 1)/(α + β − 2).

Dirichlet. The Dirichlet distribution is the multivariate version of the beta distribution. X ∼ Dir(α1, . . . , αd)
with parameters αi > 0, if

f(x) =
Γ(

∑d
i αi)∏d

i Γ(αi)

d∏
i

xαi−1
i , (20)

where x = (x1, . . . , xd) with xi > 0,
∑d

i xi = 1. This support is called the open (d− 1) dimensional simplex.
t (or Student’s t) Distribution X ∼ tν has a t distribution with ν degrees of freedom, if

f(x) =
Γ

(
ν+1
2

)
√

νπΓ
(

ν
2

) (
1 +

x2

ν

)−(ν+1)/2

(21)

It is similar to a Gaussian distribution, but with heavier tails (more likely to produce extreme values). When
ν = ∞, it becomes a standard Gaussian distribution.

Cauchy. The Cauchy distribution is a special case of t-distribution with ν = 1. The PDF is

f(x) =
1

πγ

(
1 +

(
x−x0

γ

)2
) (22)

where x0 is the location parameter for the mode, and γ is the scale parameter. It is notable for the lack
of mean: E(X) does not exist because

∫
x
|x|dFX(x) = ∞. Similarly, it has no variance or higher moments.

However, the mode and median are both x0.

4 Convergence of Random Variables

Let X1, X2, . . . , Xn, . . . be a sequence of random variables, and X be another random variable.
Xn converges to X in distribution, written Xn  X, if

lim
n→∞

FXn(t) = F (t) (23)

at all t where F is continuous. Here, FXn is the CDF of Xn, and F is the CDF of X. We expect to see the
next outcome in a sequence of random experiments becoming better and better modeled by the probability
distribution of X. In other words, the probability for Xn to be in a given interval is approximately equal to
the probability for X to be in the same interval, as n grows.

Example 3 Let X1, . . . , Xn be iid continuous random variables. Then trivially Xn  X1. But note P (X1 =
Xn) = 0.

Example 4 Let X2, . . . , Xn be identical (but not independent) copies of X1 ∼ N(0, 1). Then Xn  Y =
−X1.
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Example 5 Let Xn ∼ uniform[0, 1/n]. Then Xn  δ0. This is often written as Xn  0.

Example 6 Let Xn has the PDF fn(x) = (1− cos(2πnx)), x ∈ (0, 1). Then Xn  uniform(0, 1).

Theorem 1 (The Central Limit Theorem). Let X1, . . . , Xn be iid with finite mean µ and finite variance
σ2 > 0. Let X̄n = 1

n

∑n
i Xi. Then

Zn =
X̄n − µ

σ/
√

n
 N(0, 1). (24)

Example 7 Let Xi ∼ uniform(−1, 1) for i = 1, . . . Note µ = 0, σ2 = 1/3. Then Zn =
√

3
n

∑
i Xi  N(0, 1).

Example 8 Let Xi ∼ beta( 1
2 , 1

2 ). Note µ = 1
2 , σ2 = 1

8 . Then Zn =
√

8n
(

1
n

∑
i Xi − 1/2

)
 N(0, 1).

Xn converges to X in probability, written Xn
P→ X, if for any ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0. (25)

Convergence in probability implies convergence in distribution. The reverse is not true in general. How-
ever, convergence in distribution to a point mass distribution implies convergence in probability.

Example 9 Example 2 converges in probability to X there.

Xn converges almost surely to X, written Xn
as→ X, if

P
({

ω : lim
n→∞

Xn(ω) = X(ω)
})

= 1 (26)

Example 10 Example 2 does not converge almost surely to X there. This is because limn→∞Xn(ω) does
not exist for any ω. Pointwise convergence is central to as→.

as→ implies P→, which in turn implies  .

Example 11 Xn
as→ 0 (and hence Xn

P→ 0 and Xn  0) does not imply convergence in expectation E(Xn) →
0. To see this, let

P (Xn) =
{

1/n, if Xn = n2

1− 1/n, if Xn = 0 (27)

Then Xn
as→ 0. However, E(Xn) = 1

nn2 = n does not converge.

Xn converges in rth mean where r ≥ 1, written as Xn
Lr

→ X, if

lim
n→∞

E(|Xn −X|r) = 0. (28)

Lr

→ implies P→.

Theorem 2 (The Weak Law of Large Numbers). If X1, . . . , Xn are iid, then X̄n = 1
n

∑n
i=1 Xi

P→ µ(X1).

Theorem 3 (The Strong Law of Large Numbers). If X1, . . . , Xn are iid, and E(|X1|) < ∞, then X̄n =
1
n

∑n
i=1 Xi

as→ µ(X1).
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