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1 Probability Measure

A sample space € is the set of all possible outcomes. Elements w € ) are called sample outcomes, while
subsets A C Q are called events. For example, for a die roll, Q = {1,2,3,4,5,6}, w = 5 is an outcome,
Ay = {5} is the event that the outcome is 5, and A = {1, 3,5} is the event that the outcome is odd. Ideally,
one would like to be able to assign probabilities to all As. This is trivial for finite Q2. However, when 2 = R
strange things happen: it is no longer possible to consistently assign probabilities to all subsets of R.
Instead, we will restrict ourselves to only some of the events. A o-algebra B is a set of €2 subsets satisfying:

1. 0eB
2. if A € B then A° € B (complementarity)
3. if Ay, Ag, ... € B then U2, A; € B (countable unions)

The sets in B are called measurable. The pair (€2, B) is called a measurable space. For Q = R, we take the
smallest o-algebra that contains all the open subsets and call it the Borel o-algebra.
A measure is a function P : B +— R satisfying:

1. P(A)>0forall AeB
2. If Ay, A,, ... are disjoint then P(U2,A;) = oo, P(4;)

Note these imply P(@) = 0. The triple (Q,B, P) is called a measure space. The Lebesgue measure is a
uniform measure over the Borel o-algebra with the usual meaning of length, area or volume, depending on
dimensionality. For example, for R the Lebesgue measure of the interval (a,b) is b — a.

A probability measure is a measure satisfying additionally the normalization constraint:

3 P(Q)=1.
Such a triple (2, B, P) is called a probability space.

2 Random Variables

Let (2, B, P) be a probability space. Let (R,R) be the usual measurable space of reals and its Borel o-
algebra. A random variable is a function X : ) — R such that the preimage of any set A € R is measurable
inB: X71(A) ={w: X(w) € A} € B. This allows us to define the following (the first P is the new definition,
while the 2nd and 3rd Ps are the already-defined probability measure on B):

P(X € A) = P(X"Y(A)) = P({w : X(w) € A}) (1)
P(X =2) = P(X"'(x)) = P({w: X(w) = }) (2)

Example 1 Let Q = {(z,y) : 22 + y? < 1} be the unit disk. Consider drawing a point at random from §).
The outcome is of the form w = (z,y). Some example random variables are X (w) = 2, Y (w) =y, Z(w) = xy,

and W(w) = /a2 + y2.
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Example 2 Let X = w be a uniform random variable (to be defined later) with the sample space Q = [0,1].
A sequence of different random variables {X,,}22 ; can be defined as follows, where 1{z} =1 if z is true, and
0 otherwise:

X1 (w) =w+1{w e [0,1]} (3)
Xo(w) =w+1{w e |0, %]} (4)
Xo(w) = w+ 1w € [3,1]) (5)
Xi(w)=w+1{welo, %]} (6)
Xs(w) =w+ Mo € [5,2]) ™
Xo(w) = w + Hw € [5,1]} (8)

3

Given a random variable X, the cumulative distribution function (CDF) is the function Fx : R — [0, 1]
Fx () = P(X < 2) = P(X € (—00,1]) = P({w: X(w) € (~00,2]}). (9)

A random variable X is discrete if it takes countably many values. We define the probability mass
function fx(z) = P(X = ).
A random variable X is continuous if there exists a function fx such that

1. fx(z)>0foral x e R
2. [Z fx(x)de =1
3. for every a < b, P(X € [a,b]) = f; Ix(z)dz.
The function fx is called the probability density function (PDF) of X. CDF and PDF are related by

F(x) [Enww (10)

fx(x) = F%(z) at all points z at which F is differentiable. (11)

3 Some Random Variables

3.1 Discrete

Dirac or point mass distribution X ~ §, if P(X =a) =1 with CDF F(z) =0if 2 < a and 1 if x > a.
Binomial. A random variable X has a binomial distribution with parameters n (number of trials) and
p (head probability) X ~ Binomial(n,p) with probability mass function

Fa) = <Z>p‘”(1p)"m forz=0,1,...,n 12)

0 otherwise

If X; ~ Binomial(nq,p) and X5 ~ Binomial(ng,p) then X; + X5 ~ Binomial(n; 4+ ng,p). Think this as
merging two coin flip experiments on the same coin.
Bernoulli. Binomial with n = 1.
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Multinomial. The d-dimensional version of binomial. The parameter p = (p1,...,pq)" is now the
probabilities of a d-sided die, and = = (x1,...,74)" is the counts of each face.
n d T . d _
f((E) = < T1y...,2g > Hk:lpk if Zkil L ="n (].3)
0 otherwise

Poisson. X ~ Poisson()\) if f(z) = e_)‘% forz =0,1,2,.... If X; ~ Poisson(A;) and X5 ~ Poisson(\z)
then X; + X5 ~ Poisson(A1 + A2).
Geometric. X ~ Geom(p) if f(z) =p(1 —p)*~!forz=1,2,...

3.2 Continuous
Gaussian (also called Normal distribution). X ~ N(u,0?) with parameters ;1 € R (the mean) and o2

(the variance) if
T — )2
f(z) = ﬁexp <_(202ﬂ)) . (14)

The square root of variance o > 0 is called the standard deviation. If 4 = 0,0 = 1, X has a standard normal
distribution. In this case, X is usually written as Z. Some useful properties:

e (Scaling) If X ~ N(u,0?), then Z = (X — u)/o ~ N(0,1)
e (Independent sum) If X; ~ N(u;,0?) are independent, then Y, X; ~ N (3, ps, >, 02)
x? distribution. If Z;,..., Z; are independent standard normal random variables, then ¥ = Zf Z?

2
has a x? distribution with k degrees of freedom. If X; ~ N(u;,0?) are independent, then >, (@) has
a x?2 distribution with k& degrees of freedom. The PDF for the x? distribution with k& degrees of freedom is

_ 1 k/2—-1_—x/2

Multivariate Gaussian. Let =, € R?, ¥ € Si a symmetric, positive definite matrix of size d X d.
Then X ~ N(u,X) with PDF

1) = 7 o (3o = 0= =0 ) (16)

Here, p is the mean vector, Y is the covariance matrix, |¥| its determinant, and Y1 its inverse (exists
because ¥ is positive definite).
If we have two (groups of) variables that are jointly Gaussian:

R (AR E) an
then we have:
e (Marginal) z ~ N(p,, A)
e (Conditional) y|z ~ N(uy + CTA 2z — p,), B— CTA7LO)

Exponential. X ~ Exp(8) with parameter 8 > 0, if f(z) = %e‘x/ﬁ.

Gamma. The Gamma function (not distribution) is defined as I'(ar) = [~ y*~'e~¥dy with o > 0. The
Gamma function is an extension to the factorial function: I'(n) = (n — 1)! when n is a positive integer. It
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also satisfies I'(a + 1) = oI'(«) for o > 0. X has a Gamma distribution with shape parameter o > 0 and
scale parameter 5 > 0, denoted by X ~ Gamma(a, 3), if

1

= e /B 1> 0. 18
T (a) %)

f(x)
Gamma(1, 8) is the same as Exp(0).
Beta. X ~ Beta(a, ) with parameters «, 8 > 0, if

F(a + ﬁ) xafl
I'(a)L(B)

Beta(1, 1) is uniform in [0, 1]. Beta(a < 1,8 < 1) has a U-shape. Beta(a > 1,8 > 1) is unimodal with mean
af(a+ f) and mode (o — 1)/(a + 3 — 2).

Dirichlet. The Dirichlet distribution is the multivariate version of the beta distribution. X ~ Dir(ay, ..., aq)
with parameters «; > 0, if

fa) = (1-2)", 2 € (0,1). (19)

oy POS ) 1 e %
f(z) Iﬁrmagl’ : (20)

where z = (21, ...,24) with z; > 0, Zf x; = 1. This support is called the open (d — 1) dimensional simplex.
t (or Student’s t) Distribution X ~ t, has a t distribution with v degrees of freedom, if
D(Y) (22 e
p)=—2) (142 21
0= (4 7) 2y

It is similar to a Gaussian distribution, but with heavier tails (more likely to produce extreme values). When
v = 00, it becomes a standard Gaussian distribution.
Cauchy. The Cauchy distribution is a special case of ¢t-distribution with v = 1. The PDF is

1
r—x 2
—&xo
Ty (1 + ( 5 ) )
where z( is the location parameter for the mode, and v is the scale parameter. It is notable for the lack

of mean: E(X) does not exist because [ |z|dFx(x) = oc. Similarly, it has no variance or higher moments.
However, the mode and median are both xg.

fz) = (22)

4 Convergence of Random Variables

Let X3, X5,...,X,,,... be a sequence of random variables, and X be another random variable.
X,, converges to X in distribution, written X, ~» X, if
lim Fx, (t) = F(t) (23)
n—oo
at all ¢ where F' is continuous. Here, Fx, is the CDF of X,,, and F' is the CDF of X. We expect to see the
next outcome in a sequence of random experiments becoming better and better modeled by the probability
distribution of X. In other words, the probability for X, to be in a given interval is approximately equal to
the probability for X to be in the same interval, as n grows.

Example 3 Let X1, ..., X, be iid continuous random variables. Then trivially X,, ~ X;1. But note P(X; =
X,)=0.

Example 4 Let Xo,..., X, be identical (but not independent) copies of X1 ~ N(0,1). Then X,, ~Y =
—X,.
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Example 5 Let X, ~ uniform[0,1/n]. Then X,, ~ dy. This is often written as X, ~> 0.

Example 6 Let X,, has the PDF f,(x) = (1 — cos(2mnx)), = € (0,1). Then X, ~» uniform(0,1).
Theorem 1 (The Central Limit Theorem). Let Xy, ..., X, be iid with finite mean p and finite variance
02>0. Let X,, = %Z:’ X;. Then

_Xn—p
 o/vn

Example 7 Let X; ~ uniform(—1,1) fori =1,... Note u = 0,02 = 1/3. Then Z, = \/gzl X ~ N(0,1).

Zn

~ N(0,1). (24)

Example 8 Let X; ~ beta(3,3). Note p= 3,02 =3%. Then Z, = 8n (LY, X; —1/2) ~ N(0,1).

X, converges to X in probability, written X,, Kt X, if for any € > 0

lim P (|X, — X|>¢€) =0. (25)

n—oo

Convergence in probability implies convergence in distribution. The reverse is not true in general. How-
ever, convergence in distribution to a point mass distribution implies convergence in probability.

Example 9 Ezample[d converges in probability to X there.

X,, converges almost surely to X, written X,, =3 X, if

P({w: lim X, (w) :X(w)}) =1 (26)

n—oo
Example 10 Ezample @ does not converge almost surely to X there. This is because lim,_, X, (w) does
not exist for any w. Pointwise convergence is central to =>.

as . . P . . . .
— implies —, which in turn implies ~>.

Example 11 X,, 23 0 (and hence X, L0 and X, ~ 0) does not imply convergence in expectation E(X,,) —
0. To see this, let
1/n, if Xp =n?

P(X")_{ 1-1/n, ifX,=0 @7
Then X, 5 0. However, E(X,) = 1n? =n does not converge.
X, converges in rth mean where r > 1, written as X,, 2N X, if
lim E(|X, — X|") = 0. (28)

L. .. P
= implies —.
Theorem 2 (The Weak Law of Large Numbers). If X1,...,X, are id, then X,, = L 31" | X; Kt w(X1).

Theorem 3 (The Strong Law of Large Numbers). If Xi,...,X, are iid, and E(|X1]) < oo, then X,, =
% Y Xi = (X))
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