CS731 Spring 2011 Advanced Artificial Intelligence

Background

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

1 Probability Measure

A sample space Ω is the set of all possible outcomes. Elements $\omega \in \Omega$ are called sample outcomes, while subsets $A \subseteq \Omega$ are called events. For example, for a die roll, $\Omega = \{1, 2, 3, 4, 5, 6\}$, $\omega = 5$ is an outcome, $A_1 = \{5\}$ is the event that the outcome is 5, and $A_2 = \{1, 3, 5\}$ is the event that the outcome is odd. Ideally, one would like to be able to assign probabilities to all As. This is trivial for finite Ω . However, when $\Omega = \mathbb{R}$ strange things happen: it is no longer possible to consistently assign probabilities to all subsets of \mathbb{R} .

Instead, we will restrict ourselves to only some of the events. A σ -algebra \mathcal{B} is a set of Ω subsets satisfying:

- 1. $\emptyset \in \mathcal{B}$
- 2. if $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$ (complementarity)
- 3. if $A_1, A_2, \ldots \in \mathcal{B}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$ (countable unions)

The sets in \mathcal{B} are called *measurable*. The pair (Ω, \mathcal{B}) is called a *measurable space*. For $\Omega = \mathbb{R}$, we take the smallest σ -algebra that contains all the open subsets and call it the *Borel* σ -algebra.

A measure is a function $P: \mathcal{B} \mapsto \mathbb{R}$ satisfying:

- 1. P(A) > 0 for all $A \in \mathcal{B}$
- 2. If A_1, A_2, \ldots are disjoint then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Note these imply $P(\emptyset) = 0$. The triple (Ω, \mathcal{B}, P) is called a measure space. The Lebesgue measure is a uniform measure over the Borel σ -algebra with the usual meaning of length, area or volume, depending on dimensionality. For example, for \mathbb{R} the Lebesgue measure of the interval (a, b) is b - a.

A probability measure is a measure satisfying additionally the normalization constraint:

$$3 P(\Omega) = 1.$$

Such a triple (Ω, \mathcal{B}, P) is called a *probability space*.

2 Random Variables

Let (Ω, \mathcal{B}, P) be a probability space. Let $(\mathbb{R}, \mathcal{R})$ be the usual measurable space of reals and its Borel σ -algebra. A random variable is a function $X : \Omega \to \mathbb{R}$ such that the preimage of any set $A \in \mathcal{R}$ is measurable in $\mathcal{B}: X^{-1}(A) = \{\omega : X(\omega) \in A\} \in \mathcal{B}$. This allows us to define the following (the first P is the new definition, while the 2nd and 3rd Ps are the already-defined probability measure on \mathcal{B}):

$$P(X \in A) = P(X^{-1}(A)) = P(\{\omega : X(\omega) \in A\})$$
(1)

$$P(X = x) = P(X^{-1}(x)) = P(\{\omega : X(\omega) = x\})$$
(2)

Example 1 Let $\Omega = \{(x,y) : x^2 + y^2 \le 1\}$ be the unit disk. Consider drawing a point at random from Ω . The outcome is of the form $\omega = (x,y)$. Some example random variables are $X(\omega) = x, Y(\omega) = y, Z(\omega) = xy$, and $W(\omega) = \sqrt{x^2 + y^2}$.

Example 2 Let $X = \omega$ be a uniform random variable (to be defined later) with the sample space $\Omega = [0, 1]$. A sequence of different random variables $\{X_n\}_{n=1}^{\infty}$ can be defined as follows, where $1\{z\}=1$ if z is true, and 0 otherwise:

$$X_1(\omega) = \omega + 1\{\omega \in [0,1]\} \tag{3}$$

$$X_2(\omega) = \omega + 1\{\omega \in [0, \frac{1}{2}]\}$$
 (4)

$$X_3(\omega) = \omega + 1\{\omega \in [\frac{1}{2}, 1]\}$$
 (5)

$$X_4(\omega) = \omega + 1\{\omega \in [0, \frac{1}{3}]\}$$
 (6)

$$X_5(\omega) = \omega + 1\{\omega \in [\frac{1}{3}, \frac{2}{3}]\}$$
 (7)

$$X_6(\omega) = \omega + 1\{\omega \in \left[\frac{2}{3}, 1\right]\}\tag{8}$$

Given a random variable X, the cumulative distribution function (CDF) is the function $F_X: \mathbb{R} \mapsto [0,1]$

$$F_X(x) = P(X \le x) = P(X \in (-\infty, x]) = P(\{\omega : X(\omega) \in (-\infty, x]\}).$$
 (9)

A random variable X is discrete if it takes countably many values. We define the probability mass function $f_X(x) = P(X = x)$.

A random variable X is continuous if there exists a function f_X such that

- 1. $f_X(x) \geq 0$ for all $x \in \mathbb{R}$
- $2. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 3. for every $a \leq b$, $P(X \in [a,b]) = \int_a^b f_X(x) dx$.

The function f_X is called the probability density function (PDF) of X. CDF and PDF are related by

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \tag{10}$$

$$f_X(x) = F'_X(x)$$
 at all points x at which F_X is differentiable. (11)

Some Random Variables 3

Discrete

Dirac or point mass distribution $X \sim \delta_a$ if P(X = a) = 1 with CDF F(x) = 0 if x < a and 1 if $x \ge a$.

Binomial. A random variable X has a binomial distribution with parameters n (number of trials) and p (head probability) $X \sim \text{Binomial}(n, p)$ with probability mass function

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{for } x = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$
 (12)

If $X_1 \sim \text{Binomial}(n_1, p)$ and $X_2 \sim \text{Binomial}(n_2, p)$ then $X_1 + X_2 \sim \text{Binomial}(n_1 + n_2, p)$. Think this as merging two coin flip experiments on the same coin.

Bernoulli. Binomial with n = 1.

Multinomial. The d-dimensional version of binomial. The parameter $p = (p_1, \ldots, p_d)^{\top}$ is now the probabilities of a d-sided die, and $x = (x_1, \ldots, x_d)^{\top}$ is the counts of each face.

$$f(x) = \begin{cases} \binom{n}{x_1, \dots, x_d} \prod_{k=1}^d p_k^{x_k} & \text{if } \sum_{k=1}^d x_k = n \\ 0 & \text{otherwise} \end{cases}$$
 (13)

Poisson. $X \sim \text{Poisson}(\lambda)$ if $f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$ for $x = 0, 1, 2, \dots$ If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

Geometric. $X \sim \widetilde{\text{Geom}}(p)$ if $f(x) = p(1-p)^{x-1}$ for x = 1, 2, ...

3.2 Continuous

Gaussian (also called Normal distribution). $X \sim N(\mu, \sigma^2)$ with parameters $\mu \in \mathbb{R}$ (the mean) and σ^2 (the variance) if

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \tag{14}$$

The square root of variance $\sigma > 0$ is called the standard deviation. If $\mu = 0, \sigma = 1, X$ has a standard normal distribution. In this case, X is usually written as Z. Some useful properties:

- (Scaling) If $X \sim N(\mu, \sigma^2)$, then $Z = (X \mu)/\sigma \sim N(0, 1)$
- (Independent sum) If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then $\sum_i X_i \sim N\left(\sum_i \mu_i, \sum_i \sigma_i^2\right)$

 χ^2 distribution. If Z_1, \ldots, Z_k are independent standard normal random variables, then $Y = \sum_i^k Z_i^2$ has a χ^2 distribution with k degrees of freedom. If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then $\sum_i \left(\frac{X_i - \mu_i}{\sigma_i}\right)^2$ has a χ^2 distribution with k degrees of freedom. The PDF for the χ^2 distribution with k degrees of freedom is

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}, \ x > 0.$$
 (15)

Multivariate Gaussian. Let $x, \mu \in \mathbb{R}^d$, $\Sigma \in S^d_+$ a symmetric, positive definite matrix of size $d \times d$. Then $X \sim N(\mu, \Sigma)$ with PDF

$$f(x) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{d/2}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right).$$
 (16)

Here, μ is the mean vector, Σ is the covariance matrix, $|\Sigma|$ its determinant, and Σ^{-1} its inverse (exists because Σ is positive definite).

If we have two (groups of) variables that are jointly Gaussian:

then we have:

- (Marginal) $x \sim N(\mu_x, A)$
- (Conditional) $y|x \sim N(\mu_y + C^{\top}A^{-1}(x \mu_x), B C^{\top}A^{-1}C)$

Exponential. $X \sim \text{Exp}(\beta)$ with parameter $\beta > 0$, if $f(x) = \frac{1}{\beta}e^{-x/\beta}$.

Gamma. The Gamma function (not distribution) is defined as $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$ with $\alpha > 0$. The Gamma function is an extension to the factorial function: $\Gamma(n) = (n-1)!$ when n is a positive integer. It

also satisfies $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$ for $\alpha > 0$. X has a Gamma distribution with shape parameter $\alpha > 0$ and scale parameter $\beta > 0$, denoted by $X \sim \text{Gamma}(\alpha, \beta)$, if

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, \ x > 0.$$
(18)

 $Gamma(1, \beta)$ is the same as $Exp(\beta)$.

Beta. $X \sim \text{Beta}(\alpha, \beta)$ with parameters $\alpha, \beta > 0$, if

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ x \in (0, 1).$$

$$\tag{19}$$

Beta(1,1) is uniform in [0,1]. Beta($\alpha < 1, \beta < 1$) has a U-shape. Beta($\alpha > 1, \beta > 1$) is unimodal with mean $\alpha/(\alpha+\beta)$ and mode $(\alpha-1)/(\alpha+\beta-2)$.

Dirichlet. The Dirichlet distribution is the multivariate version of the beta distribution. $X \sim \text{Dir}(\alpha_1, \dots, \alpha_d)$ with parameters $\alpha_i > 0$, if

$$f(x) = \frac{\Gamma(\sum_{i}^{d} \alpha_{i})}{\prod_{i}^{d} \Gamma(\alpha_{i})} \prod_{i}^{d} x_{i}^{\alpha_{i}-1}, \tag{20}$$

where $x = (x_1, \dots, x_d)$ with $x_i > 0, \sum_i^d x_i = 1$. This support is called the open (d-1) dimensional simplex. t (or Student's t) Distribution $X \sim t_{\nu}$ has a t distribution with ν degrees of freedom, if

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2} \tag{21}$$

It is similar to a Gaussian distribution, but with heavier tails (more likely to produce extreme values). When $\nu = \infty$, it becomes a standard Gaussian distribution.

Cauchy. The Cauchy distribution is a special case of t-distribution with $\nu=1$. The PDF is

$$f(x) = \frac{1}{\pi \gamma \left(1 + \left(\frac{x - x_0}{\gamma}\right)^2\right)} \tag{22}$$

where x_0 is the location parameter for the mode, and γ is the scale parameter. It is notable for the lack of mean: $\mathbb{E}(X)$ does not exist because $\int_x |x| dF_X(x) = \infty$. Similarly, it has no variance or higher moments. However, the mode and median are both x_0 .

4 Convergence of Random Variables

Let $X_1, X_2, ..., X_n, ...$ be a sequence of random variables, and X be another random variable. X_n converges to X in distribution, written $X_n \rightsquigarrow X$, if

$$\lim_{n \to \infty} F_{X_n}(t) = F(t) \tag{23}$$

at all t where F is continuous. Here, F_{X_n} is the CDF of X_n , and F is the CDF of X. We expect to see the next outcome in a sequence of random experiments becoming better and better modeled by the probability distribution of X. In other words, the probability for X_n to be in a given interval is approximately equal to the probability for X to be in the same interval, as n grows.

Example 3 Let $X_1, ..., X_n$ be iid continuous random variables. Then trivially $X_n \rightsquigarrow X_1$. But note $P(X_1 = X_n) = 0$.

Example 4 Let $X_2, ..., X_n$ be identical (but not independent) copies of $X_1 \sim N(0,1)$. Then $X_n \rightsquigarrow Y = -X_1$.

Example 5 Let $X_n \sim \text{uniform}[0, 1/n]$. Then $X_n \leadsto \delta_0$. This is often written as $X_n \leadsto 0$.

Example 6 Let X_n has the PDF $f_n(x) = (1 - \cos(2\pi nx)), x \in (0,1)$. Then $X_n \leadsto \text{uniform}(0,1)$.

Theorem 1 (The Central Limit Theorem). Let X_1, \ldots, X_n be iid with finite mean μ and finite variance $\sigma^2 > 0$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \rightsquigarrow N(0, 1). \tag{24}$$

Example 7 Let $X_i \sim \text{uniform}(-1,1)$ for $i=1,\ldots$ Note $\mu=0,\sigma^2=1/3$. Then $Z_n=\sqrt{\frac{3}{n}}\sum_i X_i \rightsquigarrow N(0,1)$.

Example 8 Let $X_i \sim \text{beta}(\frac{1}{2}, \frac{1}{2})$. Note $\mu = \frac{1}{2}, \sigma^2 = \frac{1}{8}$. Then $Z_n = \sqrt{8n} \left(\frac{1}{n} \sum_i X_i - 1/2 \right) \rightsquigarrow N(0, 1)$.

 X_n converges to X in probability, written $X_n \stackrel{P}{\rightarrow} X$, if for any $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0. \tag{25}$$

Convergence in probability implies convergence in distribution. The reverse is not true in general. However, convergence in distribution to a point mass distribution implies convergence in probability.

Example 9 Example 2 converges in probability to X there.

 X_n converges almost surely to X, written $X_n \stackrel{as}{\to} X$, if

$$P\left(\left\{\omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1 \tag{26}$$

Example 10 Example 2 does not converge almost surely to X there. This is because $\lim_{n\to\infty} X_n(\omega)$ does not exist for any ω . Pointwise convergence is central to $\stackrel{as}{\to}$.

 $\stackrel{as}{\rightarrow}$ implies $\stackrel{P}{\rightarrow}$, which in turn implies \leadsto .

Example 11 $X_n \stackrel{as}{\to} 0$ (and hence $X_n \stackrel{P}{\to} 0$ and $X_n \leadsto 0$) does not imply convergence in expectation $\mathbb{E}(X_n) \to 0$. To see this, let

$$P(X_n) = \begin{cases} 1/n, & \text{if } X_n = n^2 \\ 1 - 1/n, & \text{if } X_n = 0 \end{cases}$$
 (27)

Then $X_n \stackrel{as}{\to} 0$. However, $\mathbb{E}(X_n) = \frac{1}{n}n^2 = n$ does not converge.

 X_n converges in rth mean where $r \ge 1$, written as $X_n \xrightarrow{L'} X$, if

$$\lim_{n \to \infty} \mathbb{E}(|X_n - X|^r) = 0. \tag{28}$$

 $\stackrel{L^r}{\rightarrow}$ implies $\stackrel{P}{\rightarrow}$.

Theorem 2 (The Weak Law of Large Numbers). If X_1, \ldots, X_n are iid, then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu(X_1)$.

Theorem 3 (The Strong Law of Large Numbers). If X_1, \ldots, X_n are iid, and $E(|X_1|) < \infty$, then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{as}{\to} \mu(X_1)$.