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Bayesian nonparametrics are Bayesian models where the underlying finite-dimensional random variable is
replaced by a stochastic process. This replacement allows much richer nonparametric modeling (recall
nonparametric regression methods such as Nadaraya-Watson, which is a “point estimate”) but still in a
Bayesian framework. Like nonparametric models, the model complexity generally is unlimited and grows
with training data size, hence the name “infinite” models. But critically, the computation on any given
training set is finite. A stochastic process is a (infinite) collection of random variables indexed by a set {x}.
The name originates from x ≡ t ∈ R being “time,” though in machine learning we generally have x ∈ Rd.

1 Gaussian Processes

A Gaussian process is a stochastic process where any finite number of random variables have a joint Gaussian
distribution. Gaussian process is equivalent to kriging in some natural sciences. We will use x ∈ Rd to denote
the index, and f(x) ∈ R the particular random variable indexed by x. Thus f is the stochastic process. A
Gaussian process is specified by a mean function

m(x) = E[f(x)] (1)

and a covariance function (positive definite, a.k.a. kernel function)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2)

We write the Gaussian process as
f(x) ∼ GP (m(x), k(x,x′)). (3)

A draw from a GP is a function f(). A common choice of the mean function is m(x) = 0,∀x and we will
follow it, though this is by no means necessary. A common choice of the covariance function is k(x,x′) =
exp

(
− 1

2σ2 ‖x− x′‖2
)
, though other covariance functions might be more appropriate for specific tasks.

By the definition of Gaussian process, for any finite set x1, . . . ,xn, we have

(f(x1), . . . , f(xn)) ∼ N(µ,Σ) (4)

where
µ = (m(x1), . . . ,m(xn)) (5)

and

Σ =

k(x1,x1) . . . k(x1,xn)
. . .

k(xn,x1) . . . k(xn,xn)

 . (6)

That is, any finite subset of those random variables follow a Gaussian distribution with the mean vector and
the covariance matrix determined pointwise by m and k, respectively. Therefore, GP can be thought of as
an infinite-dimensional Gaussian distribution.

Bayesian nonparametric modeling with GP is basically the following realization: for the infinite set of
random variables indexed by x, the prior is a GP, and the posterior upon observing some finite subset of
the random variables is another GP. We will start with regression, in which this relationship is the easiest
to see.
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1.1 Gaussian Process for Regression without Noise

Consider the standard regression setting where we are given a training set {(xi, yi)}i=1...n where xi ∈ Rd

and yi ∈ R. We want to predict y∗ on a test set x∗.
The key assumption we will make is that yx = f(x),∀x (noiseless), and f ∼ GP (0, k) for some covariance

function k. This is the prior. This implies that the finite set of training and test outputs follow a (prior)
Gaussian distribution: (

f1:n

f∗

)
∼ N

(
0,

(
Knn Kn∗
K∗n K∗∗

))
. (7)

Here, Knn is the n×n covariance matrix defined on the training set as in (6), Kn∗ is the n×|test| covariance
matrix, and so on.

Now we observe the noiseless values f1 = y1, . . . , fn = yn, the posterior on f is another slightly degenerate
GP. For the purpose of regression, however, it is important to realize that all we need to do is to compute
the finite-dimensional conditional distribution p(f∗ | x∗,x1:n, f1:n). This follows from the property of the
Gaussian distribution:

p(f∗ | x∗,x1:n, f1:n) = N(K∗nK−1
nn f1:n,K∗∗ −K∗nK−1

nn Kn∗). (8)

In particular, we have the Bayesian prediction for f∗, i.e., the mean in (8). We also have the uncertainty
encoded in the covariance matrix above.

1.2 Gaussian Process for Regression with Noise

Most often, we assume that the observed output is noisy:

yi = fi + ε, (9)

where ε ∼ N(0, σ2
n). However, we still assume that the underlying f is a GP. In this case,

cov(yi, yj) = k(xi,xj) + σ2
nδij . (10)

We now focus on the joint distribution between y1:n and f∗:(
y1:n

f∗

)
∼ N

(
0,

(
Knn + σ2

nI Kn∗
K∗n K∗∗

))
. (11)

A similar conditioning results in

p(f∗ | x∗,x1:n, y1:n) = N(K∗n(Knn + σ2
nI)−1y1:n,K∗∗ −K∗n(Knn + σ2

nI)−1Kn∗). (12)

Note the above is the predictive distribution for f∗. The predictive distribution for y∗ has the same mean
but wider spread: its covariance can be obtained by adding σ2

nI to the covariance in (12).
A quantity of interest is the marginal likelihood (or evidence)

p(y1:n | x1:n) =
∫

p(y1:n | f1:n)p(f1:n | x1:n)df1:n, (13)

where we integrate out (marginalize over) the function values f1:n. Using the fact that y1:n ∼ N(0,Knn +
σ2

nI), we have

log p(y1:n | x1:n) = −1
2
y>1:n(Knn + σ2

nI)−1y1:n −
1
2

log |Knn + σ2
nI| − n

2
log 2π. (14)

The marginal likelihood is used for model selection, e.g., tuning the kernel bandwidth σ in k.
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1.3 Gaussian Process for Classification

For simplicity, let y ∈ {0, 1}. The idea is similar to regression with noise, where we assume an underlying
GP for f . Instead of a Gaussian noise model, we have a sigmoid function which converts f(xi) ∈ R into

p(yi = 1 | xi) = s(f(xi)). (15)

A sigmoid function is a monotonically increasing function mapping from R to [0, 1]. Two common choices
of the sigmoid function are the logistic function

s(z) =
1

1 + exp(−z)
(16)

and the cumulative Gaussian
s(z) = Φ(z). (17)

Inference is carried out in two steps. First, one computes the latent f∗:

p(f∗ | x∗,x1:n, y1:n) =
∫

p(f∗ | x∗,x1:n, f1:n)p(f1:n | x1:n, y1:n)df1:n. (18)

Second, the test labels are obtained by

p(y∗ = 1 | x∗,x1:n, y1:n) =
∫

s(f∗)p(f∗ | x∗,x1:n, y1:n)df∗. (19)

The computation in (19) factors into individual test points. Unfortunately, unlike the regression case, the
non-Gaussian likelihood in (18) and (19) makes the integrals analytically intractable. Much effort on GP
classification has been on efficient approximations of these two integrals, see Rasmussen & Williams 3.4-3.6.

2 Dirichlet Processes

A Dirichlet process is a stochastic process where any finite partitions follow a Dirichlet distribution. Let Θ
be a probability space. Let H be a base distribution over Θ.

Example 1 Let Θ = Rd, which is a probability space. An element θ ∈ Rd serves as an index to the
stochastic process we are going to define. H = N(0,Σ) is a base distribution over Θ. Note, however, that
H(θ) = N(θ; 0,Σ) is not a random variable (it is a fixed value for a given θ). H does not define a stochastic
process.

Consider the following stick-breaking construction:

βk ∼ Beta(1, α) (20)

πk = βk

k−1∏
i=1

(1− βi) (21)

θ∗k ∼ H (22)

G =
∞∑

k=1

πkδθ∗k
. (23)

Here δz is the point mass function on z. Note π1, π2, . . . are the sequence of stick fragments, which tend to
(but not necessarily) get smaller, and they sum to length 1 (the whole stick). For each fragment, we associate
an index θ∗k and this is where the base distribution H comes in. Now, G is a sample from a stochastic process.
Here, the random variables are indexed by θ ∈ Θ. G(θ) is the value of the random variable indexed by θ: if
we were “lucky” in that θ∗k = θ for a (let’s assume) single k then G(θ) = πk otherwise G(θ) = 0. If we were
to repeat the stick-breaking construction from scratch, G(θ) might take a different value.
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F Contrast this with H(θ).

The stochastic process that we are drawing G from is called the Dirichlet Process:

G ∼ DP (α, H). (24)

Note the concentration parameter α appeared in the Beta distribution in stick-breaking. This sample G has
the same status as a sample (a random function) f to a Gaussian Process. However, there are important
differences:

• G is a probability measure on Θ. That is, it is naturally normalized. This makes G similar to H in the
sense that both are probability measures on Θ. Therefore, one can draw samples θ ∼ G. In contrast,
the sample f ∼ GP is a random function and not normalized.

• With probability one, G is a discrete measure. This is true even if H is a continuous measure (e.g.,
when H is Gaussian). This has the important consequence that θ’s drawn from G have repeats. This
is the basis for using DP to model (infinite) clustering. In contrast, f ∼ GP is a continuous function.

The Dirichlet Process has several interesting properties:

• For a random measure G to be distributed according to DP (α, H), its marginals have to be Dirichlet
distributed in the following sense. Let A1, . . . , Ar be any finite measurable partition of Θ, then

(G(A1), . . . , G(Ar)) ∼ Dirichlet(αH(A1), . . . , αH(Ar)). (25)

This is where Dirichlet Process gets its name.

• For any measurable A ⊆ Θ,

E[G(A)] = H(A) (26)

V[G(A)] =
H(A)(1−H(A))

1 + α
. (27)

As the concentration parameter α increases, the variance decreases. As α → ∞, G(A) → H(A) for
any measurable A.

• Let G ∼ DP (α, H). Recall G is itself a probability measure. Suppose we observe θ1, . . . , θn ∼ G.
These observations should help us reduce some uncertainty in G. That is, we are interested in the
posterior distribution of G given θ1, . . . , θn (the original DP is the prior). For any finite measurable
partition A1 . . . Ar of Θ, let nk =

∑n
i=1 1θi∈Ak

. Then

(G(A1), . . . , G(Ar)) | θ1, . . . , θn ∼ Dirichlet(αH(A1) + n1, . . . , αH(Ar) + nr). (28)

The posterior is

G | θ1, . . . , θn ∼ DP

(
α + n,

α

α + n
H +

1
α + n

n∑
i=1

δθi

)
. (29)

• Let G ∼ DP (α, H) and we observe θ1, . . . , θn ∼ G. What is the predictive distribution of θn+1? As
standard in Bayesian methods, we need to integrate out G and arrive at

θn+1 ∼
α

α + n
H +

1
α + n

n∑
i=1

δθi . (30)

Note this is also the base distribution in the DP posterior.

Following (30), there is a chance that θn+1 = θi for some i ≤ n. For simplicity assume H is smooth
so that any repeated values come from the δ point mass functions. In fact, let θ∗1 . . . θ∗m be the unique
values in θ1 . . . θn, and nk =

∑n
i=1 1θi=θ∗k

for k = 1 . . .m. Then θn+1 can be generated with the
following procedure:
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1. With probability α/(α + n), draw a new value from H and assign it to θn+1;

2. Otherwise, reuse value θ∗k with probability nk/n.

3. We add θn+1 to the samples, and repeat this process.

This process, as defined by (30) is known as the Blackwell-MacQueen urn scheme.

• The equality relationship in θ1 . . . θn defines a partition of n items. Think of the samples as customers
to a Chinese restaurant with infinite tables. Initially the restaurant is empty, and the first customer
sits at the first table. Let nk be the number of customers at table k after n customers have arrived.
Then with probability α/(α + n) the (n + 1)-th customer sits at a new table; otherwise he joins an
existing table with probability proportional to the number of people already sitting there. This is
known as the Chinese Restaurant Process (CRP), which defines a distribution over partitions of items.

The CRP can be thought of as “half of DP.” If, whenever a new table is used, a dish is drawn from
the base distribution θ ∼ H, and all future customers sitting on this table will eat this dish, it would
be equivalent to DP.

F The facts that there are infinite tables and the customers can never leave make the restaurant a rather
eerie place. Maybe we should rename it the Hotel California Process.

2.1 Dirichlet Process Mixture Models (DPMMs)

The most common application of DP is in “infinite mixture models,” where the number of clusters is unknown
a priori and is unbounded. The idea is simple:

G ∼ DP (α, H) (31)
θi ∼ G (32)
xi ∼ F (θ), (33)

where F (θ) is an appropriate distribution parametrized by θ.
Example 2 Let θ ∈ Rd × Sd, H = Normal-Inverse-Wishart(µ0, κ0,Λ0, ν0), then θi = (µi,Σi) is the mean
vector and covariance matrix of a d-dim Gaussian. Let F (θ) = N(µi,Σi), then we draw xi ∈ Rd from this
Gaussian.

Each observation xi has its own parameter θi. However, many of the θi’s are identical, naturally inducing
a clustering structure over x. Also note that, even though G is discrete with probability 1, the marginal
distribution over x is smooth if F is a smooth distribution.

Given observations x1 . . .xn, α,H, F , it is possible to sample using MCMC θ1 . . . θn according to the
posterior; This gives a distribution over the clusterings of the data points, from which one can also obtain
the most likely number of clusters.
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